Spaces:
Running
on
Zero
Running
on
Zero
File size: 7,566 Bytes
00fc29f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 |
import functools
import importlib
import os
from functools import partial
from inspect import isfunction
import fsspec
import numpy as np
import torch
from PIL import Image, ImageDraw, ImageFont
from safetensors.torch import load_file as load_safetensors
def disabled_train(self, mode=True):
"""使用此函数重写 model.train,以确保训练/评估模式不再改变。"""
return self
def get_string_from_tuple(s):
try:
# 检查字符串是否以小括号开始和结束
if s[0] == "(" and s[-1] == ")":
# 将字符串转换为元组
t = eval(s)
# 检查 t 的类型是否为元组
if type(t) == tuple:
return t[0]
else:
pass
except:
pass
return s
def is_power_of_two(n):
"""
chat.openai.com/chat
如果 n 是 2 的幂,则返回 True,否则返回 False。
函数 is_power_of_two 将整数 n 作为输入,如果 n 是 2 的幂,则返回 True,否则返回 False。
如果 n 小于或等于 0,就不可能是 2 的幂,因此函数返回 False。
如果 n 大于 0,函数会在 n 和 n-1 之间使用比特 AND 运算检查 n 是否是 2 的幂。如果 n 是 2 的幂,那么它的二进制表示中只有一位被置 1。当我们从 2 的幂中减去 1 时,该位右边的所有位都会变为 1,而该位本身则变为 0。 因此,当我们在 n 和 n-1 之间进行位和运算时,如果 n 是 2 的幂,则得到 0,否则得到一个非零值。
因此,如果位与运算的结果为 0,则 n 是 2 的幂,函数返回 True。否则,函数返回 False。
"""
if n <= 0:
return False
return (n & (n - 1)) == 0
def autocast(f, enabled=True):
def do_autocast(*args, **kwargs):
with torch.cuda.amp.autocast(
enabled=enabled,
dtype=torch.get_autocast_gpu_dtype(),
cache_enabled=torch.is_autocast_cache_enabled(),
):
return f(*args, **kwargs)
return do_autocast
def load_partial_from_config(config):
return partial(get_obj_from_str(config["target"]), **config.get("params", dict()))
def log_txt_as_img(wh, xc, size=10):
# wh 一个四元组 (width, height)
# xc 要绘制的标题列表
b = len(xc)
txts = list()
for bi in range(b):
txt = Image.new("RGB", wh, color="white")
draw = ImageDraw.Draw(txt)
font = ImageFont.truetype("data/DejaVuSans.ttf", size=size)
nc = int(40 * (wh[0] / 256))
if isinstance(xc[bi], list):
text_seq = xc[bi][0]
else:
text_seq = xc[bi]
lines = "\n".join(
text_seq[start : start + nc] for start in range(0, len(text_seq), nc)
)
try:
draw.text((0, 0), lines, fill="black", font=font)
except UnicodeEncodeError:
print("无法对字符串进行编码以记录日志。跳过。")
txt = np.array(txt).transpose(2, 0, 1) / 127.5 - 1.0
txts.append(txt)
txts = np.stack(txts)
txts = torch.tensor(txts)
return txts
def partialclass(cls, *args, **kwargs):
class NewCls(cls):
__init__ = functools.partialmethod(cls.__init__, *args, **kwargs)
return NewCls
def make_path_absolute(path):
fs, p = fsspec.core.url_to_fs(path)
if fs.protocol == "file":
return os.path.abspath(p)
return path
def ismap(x):
if not isinstance(x, torch.Tensor):
return False
return (len(x.shape) == 4) and (x.shape[1] > 3)
def isimage(x):
if not isinstance(x, torch.Tensor):
return False
return (len(x.shape) == 4) and (x.shape[1] == 3 or x.shape[1] == 1)
def isheatmap(x):
if not isinstance(x, torch.Tensor):
return False
return x.ndim == 2
def isneighbors(x):
if not isinstance(x, torch.Tensor):
return False
return x.ndim == 5 and (x.shape[2] == 3 or x.shape[2] == 1)
def exists(x):
return x is not None
def expand_dims_like(x, y):
while x.dim() != y.dim():
x = x.unsqueeze(-1)
return x
def default(val, d):
if exists(val):
return val
return d() if isfunction(d) else d
def mean_flat(tensor):
"""
https://github.com/openai/guided-diffusion/blob/27c20a8fab9cb472df5d6bdd6c8d11c8f430b924/guided_diffusion/nn.py#L86
取所有非批次维度的平均值。
"""
return tensor.mean(dim=list(range(1, len(tensor.shape))))
def count_params(model, verbose=False):
total_params = sum(p.numel() for p in model.parameters())
if verbose:
print(f"{model.__class__.__name__} 拥有 {total_params * 1.e-6:.2f} 个 M 参数。")
return total_params
def instantiate_from_config(config):
if not "target" in config:
if config == "__is_first_stage__":
return None
elif config == "__is_unconditional__":
return None
raise KeyError("预期键 `target` 将被实例化。")
return get_obj_from_str(config["target"])(**config.get("params", dict()))
def get_obj_from_str(string, reload=False, invalidate_cache=True):
module, cls = string.rsplit(".", 1)
if invalidate_cache:
importlib.invalidate_caches()
if reload:
module_imp = importlib.import_module(module)
importlib.reload(module_imp)
return getattr(importlib.import_module(module, package=None), cls)
def append_zero(x):
return torch.cat([x, x.new_zeros([1])])
def append_dims(x, target_dims):
"""将维数添加到张量的末尾,直到张量的维数达到 target_dims。"""
dims_to_append = target_dims - x.ndim
if dims_to_append < 0:
raise ValueError(
f"输入有 {x.ndim} 个尺寸,但 target_dims 是 {target_dims},最小"
)
return x[(...,) + (None,) * dims_to_append]
def load_model_from_config(config, ckpt, verbose=True, freeze=True):
print(f"从 {ckpt} 加载模型")
if ckpt.endswith("ckpt"):
pl_sd = torch.load(ckpt, map_location="cpu")
if "global_step" in pl_sd:
print(f"全局步骤:{pl_sd['global_step']}")
sd = pl_sd["state_dict"]
elif ckpt.endswith("safetensors"):
sd = load_safetensors(ckpt)
else:
raise NotImplementedError
model = instantiate_from_config(config.model)
m, u = model.load_state_dict(sd, strict=False)
if len(m) > 0 and verbose:
print("缺失 keys:")
print(m)
if len(u) > 0 and verbose:
print("意料之外的 keys:")
print(u)
if freeze:
for param in model.parameters():
param.requires_grad = False
model.eval()
return model
def get_configs_path() -> str:
"""
获取 `configs` 目录。
对于工作拷贝来说,这是版本库根目录下的拷贝,
但对于已安装的副本,它在 `sgm` 软件包中(见 pyproject.toml)。
"""
this_dir = os.path.dirname(__file__)
candidates = (
os.path.join(this_dir, "configs"),
os.path.join(this_dir, "..", "configs"),
)
for candidate in candidates:
candidate = os.path.abspath(candidate)
if os.path.isdir(candidate):
return candidate
raise FileNotFoundError(f"无法在 {candidates} 找到 SGM 配置")
|