Spaces:
Running
Running
| from transformers import AutoTokenizer | |
| import gradio as gr | |
| def tokenize(input_text): | |
| llama_tokens = len( | |
| llama_tokenizer(input_text, add_special_tokens=True)["input_ids"] | |
| ) | |
| llama3_tokens = len( | |
| llama3_tokenizer(input_text, add_special_tokens=True)["input_ids"] | |
| ) | |
| mistral_tokens = len( | |
| mistral_tokenizer(input_text, add_special_tokens=True)["input_ids"] | |
| ) | |
| gpt2_tokens = len(gpt2_tokenizer(input_text, add_special_tokens=True)["input_ids"]) | |
| gpt_neox_tokens = len( | |
| gpt_neox_tokenizer(input_text, add_special_tokens=True)["input_ids"] | |
| ) | |
| falcon_tokens = len( | |
| falcon_tokenizer(input_text, add_special_tokens=True)["input_ids"] | |
| ) | |
| phi2_tokens = len(phi2_tokenizer(input_text, add_special_tokens=True)["input_ids"]) | |
| t5_tokens = len(t5_tokenizer(input_text, add_special_tokens=True)["input_ids"]) | |
| gemma_tokens = len(gemma_tokenizer(input_text, add_special_tokens=True)["input_ids"]) | |
| results = { | |
| "LLaMa": llama_tokens, | |
| "LLaMa-3": llama_tokens, | |
| "Mistral": mistral_tokens, | |
| "GPT-2/GPT-J": gpt2_tokens, | |
| "GPT-NeoX": gpt_neox_tokens, | |
| "Falcon": falcon_tokens, | |
| "Phi-2": phi2_tokens, | |
| "T5": t5_tokens, | |
| "Gemma": gemma_tokens | |
| } | |
| # Sort the results in descending order based on token length | |
| sorted_results = sorted(results.items(), key=lambda x: x[1], reverse=True) | |
| return "\n".join([f"{model}: {tokens}" for model, tokens in sorted_results]) | |
| if __name__ == "__main__": | |
| llama_tokenizer = AutoTokenizer.from_pretrained("TheBloke/Llama-2-7B-fp16") | |
| llama3_tokenizer = AutoTokenizer.from_pretrained("unsloth/llama-3-8b") | |
| mistral_tokenizer = AutoTokenizer.from_pretrained("unsloth/Mistral-7B-v0.2") | |
| gpt2_tokenizer = AutoTokenizer.from_pretrained("gpt2") | |
| gpt_neox_tokenizer = AutoTokenizer.from_pretrained("EleutherAI/gpt-neox-20b") | |
| falcon_tokenizer = AutoTokenizer.from_pretrained("tiiuae/falcon-7b") | |
| phi2_tokenizer = AutoTokenizer.from_pretrained("microsoft/phi-2") | |
| t5_tokenizer = AutoTokenizer.from_pretrained("google/flan-t5-xxl") | |
| gemma_tokenizer = AutoTokenizer.from_pretrained("alpindale/gemma-2b") | |
| iface = gr.Interface(fn=tokenize, inputs=gr.Textbox(lines=9), outputs="text") | |
| iface.launch() | |