import streamlit as st import torch import torchaudio import numpy as np import re from difflib import SequenceMatcher from transformers import pipeline # Device setup device = "cuda" if torch.cuda.is_available() else "cpu" # Load Whisper model for transcription MODEL_NAME = "alvanlii/whisper-small-cantonese" language = "zh" pipe = pipeline( task="automatic-speech-recognition", model=MODEL_NAME, chunk_length_s=10, device=device, generate_kwargs={ "no_repeat_ngram_size": 3, "repetition_penalty": 1.15, "temperature": 0.3, # "top_p": 0.97, "top_k": 20, "max_new_tokens": 200, "do_sample": False } ) pipe.model.config.forced_decoder_ids = pipe.tokenizer.get_decoder_prompt_ids(language=language, task="transcribe") rating_pipe = pipeline("text-classification", model="MonkeyDLLLLLLuffy/CustomModel-multilingual-sentiment-analysis", device=device) def is_similar(a, b, threshold=0.8): return SequenceMatcher(None, a, b).ratio() > threshold def remove_repeated_phrases(text): sentences = re.split(r'(?<=[。!?])', text) cleaned_sentences = [] for sentence in sentences: if not cleaned_sentences or not is_similar(sentence.strip(), cleaned_sentences[-1].strip()): cleaned_sentences.append(sentence.strip()) return " ".join(cleaned_sentences) def remove_punctuation(text): return re.sub(r'[^\w\s]', '', text) def transcribe_audio(audio_path): waveform, sample_rate = torchaudio.load(audio_path) if waveform.shape[0] > 1: waveform = torch.mean(waveform, dim=0, keepdim=True) waveform = waveform.squeeze(0).numpy() duration = waveform.shape[0] / sample_rate if duration > 60: chunk_size = sample_rate * 55 step_size = sample_rate * 50 results = [] for start in range(0, waveform.shape[0], step_size): chunk = waveform[start:start + chunk_size] if chunk.shape[0] == 0: break transcript = pipe({"sampling_rate": sample_rate, "raw": chunk})["text"] results.append(remove_punctuation(transcript)) return remove_punctuation(remove_repeated_phrases(" ".join(results))) return remove_punctuation(remove_repeated_phrases(pipe({"sampling_rate": sample_rate, "raw": waveform})["text"])) def rate_quality(text): chunks = [text[i:i+512] for i in range(0, len(text), 512)] results = rating_pipe(chunks, batch_size=4) label_map = {"Very Negative": "Very Poor", "Negative": "Poor", "Neutral": "Neutral", "Positive": "Good", "Very Positive": "Very Good"} processed_results = [label_map.get(res["label"], "Unknown") for res in results] return max(set(processed_results), key=processed_results.count) # Streamlit UI st.title("Audio Transcription & Quality Rating") uploaded_file = st.file_uploader("Upload an audio file", type=["wav", "mp3", "flac"]) if uploaded_file: st.audio(uploaded_file, format='audio/wav') with open("temp_audio.wav", "wb") as f: f.write(uploaded_file.read()) st.write("Processing audio...") transcript = transcribe_audio("temp_audio.wav") st.subheader("Transcript") st.write(transcript) quality_rating = rate_quality(transcript) st.subheader("Quality Rating") st.write(quality_rating)