|
import streamlit as st |
|
import torch |
|
import torchaudio |
|
import numpy as np |
|
import re |
|
from difflib import SequenceMatcher |
|
from transformers import pipeline |
|
|
|
|
|
device = "cuda" if torch.cuda.is_available() else "cpu" |
|
|
|
|
|
MODEL_NAME = "alvanlii/whisper-small-cantonese" |
|
language = "zh" |
|
pipe = pipeline( |
|
task="automatic-speech-recognition", |
|
model=MODEL_NAME, |
|
chunk_length_s=10, |
|
device=device, |
|
generate_kwargs={ |
|
"no_repeat_ngram_size": 3, |
|
"repetition_penalty": 1.15, |
|
"temperature": 0.3, |
|
|
|
"top_k": 20, |
|
"max_new_tokens": 200, |
|
"do_sample": False |
|
} |
|
) |
|
pipe.model.config.forced_decoder_ids = pipe.tokenizer.get_decoder_prompt_ids(language=language, task="transcribe") |
|
|
|
rating_pipe = pipeline("text-classification", model="MonkeyDLLLLLLuffy/CustomModel-multilingual-sentiment-analysis", device=device) |
|
|
|
def is_similar(a, b, threshold=0.8): |
|
return SequenceMatcher(None, a, b).ratio() > threshold |
|
|
|
def remove_repeated_phrases(text): |
|
sentences = re.split(r'(?<=[。!?])', text) |
|
cleaned_sentences = [] |
|
for sentence in sentences: |
|
if not cleaned_sentences or not is_similar(sentence.strip(), cleaned_sentences[-1].strip()): |
|
cleaned_sentences.append(sentence.strip()) |
|
return " ".join(cleaned_sentences) |
|
|
|
def remove_punctuation(text): |
|
return re.sub(r'[^\w\s]', '', text) |
|
|
|
def transcribe_audio(audio_path): |
|
waveform, sample_rate = torchaudio.load(audio_path) |
|
if waveform.shape[0] > 1: |
|
waveform = torch.mean(waveform, dim=0, keepdim=True) |
|
waveform = waveform.squeeze(0).numpy() |
|
duration = waveform.shape[0] / sample_rate |
|
if duration > 60: |
|
chunk_size = sample_rate * 55 |
|
step_size = sample_rate * 50 |
|
results = [] |
|
for start in range(0, waveform.shape[0], step_size): |
|
chunk = waveform[start:start + chunk_size] |
|
if chunk.shape[0] == 0: |
|
break |
|
transcript = pipe({"sampling_rate": sample_rate, "raw": chunk})["text"] |
|
results.append(remove_punctuation(transcript)) |
|
return remove_punctuation(remove_repeated_phrases(" ".join(results))) |
|
return remove_punctuation(remove_repeated_phrases(pipe({"sampling_rate": sample_rate, "raw": waveform})["text"])) |
|
|
|
def rate_quality(text): |
|
chunks = [text[i:i+512] for i in range(0, len(text), 512)] |
|
results = rating_pipe(chunks, batch_size=4) |
|
label_map = {"Very Negative": "Very Poor", "Negative": "Poor", "Neutral": "Neutral", "Positive": "Good", "Very Positive": "Very Good"} |
|
processed_results = [label_map.get(res["label"], "Unknown") for res in results] |
|
return max(set(processed_results), key=processed_results.count) |
|
|
|
|
|
st.title("Audio Transcription & Quality Rating") |
|
uploaded_file = st.file_uploader("Upload an audio file", type=["wav", "mp3", "flac"]) |
|
if uploaded_file: |
|
st.audio(uploaded_file, format='audio/wav') |
|
with open("temp_audio.wav", "wb") as f: |
|
f.write(uploaded_file.read()) |
|
st.write("Processing audio...") |
|
transcript = transcribe_audio("temp_audio.wav") |
|
st.subheader("Transcript") |
|
st.write(transcript) |
|
quality_rating = rate_quality(transcript) |
|
st.subheader("Quality Rating") |
|
st.write(quality_rating) |
|
|