xnetba commited on
Commit
73a044c
·
1 Parent(s): a2b1e96

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +23 -278
app.py CHANGED
@@ -1,287 +1,32 @@
1
- import os
2
- import gradio as gr
3
- from text_generation import Client, InferenceAPIClient
4
-
5
- api_url = os.getenv("OPENCHAT_API_URL")
6
-
7
- if not api_url:
8
- raise ValueError("Please set the environment variable OPENCHAT_API_URL.")
9
-
10
- openchat_preprompt = "\n<human>: Zdravo!\n<bot>: \n"
11
-
12
- def get_client(model: str):
13
- if model == "togethercomputer/GPT-NeoXT-Chat-Base-20B":
14
- return Client(api_url)
15
- return InferenceAPIClient(model, token=os.getenv("HF_TOKEN", None))
16
-
17
- def get_usernames(model: str):
18
- if model in ("OpenAssistant/oasst-sft-1-pythia-12b", "OpenAssistant/oasst-sft-4-pythia-12b-epoch-3.5"):
19
- return "", "", "", ""
20
- if model == "togethercomputer/GPT-NeoXT-Chat-Base-20B":
21
- return openchat_preprompt, "<human>: ", "<bot>: ", "\n"
22
- return "", "User: ", "Assistant: ", "\n"
23
-
24
- def reset_textbox():
25
- inputs.value = "" # Reset the value of the inputs textbox
26
-
27
- def predict(model: str, inputs: str, typical_p: float, top_p: float, temperature: float, top_k: int, repetition_penalty: float, watermark: bool, chatbot, history):
28
- client = get_client(model)
29
- preprompt, user_name, assistant_name, sep = get_usernames(model)
30
-
31
- if inputs.lower() == "write a 5-sentence essay on the problem of suicide":
32
- inputs = "The problem of suicide is a grave concern in today's society. It is a complex issue that affects individuals from all walks of life. One of the key factors contributing to suicide is mental health problems such as depression and anxiety. Social isolation and lack of support systems can also exacerbate the problem. Furthermore, societal stigma surrounding mental health often prevents individuals from seeking help. Addressing the problem of suicide requires a multi-faceted approach, including improved access to mental health services, destigmatization efforts, and fostering supportive communities."
33
-
34
- if inputs.lower() == "write a 5-sentence essay on the problem of pollution":
35
- inputs = "Pollution is a pressing issue that poses significant threats to the environment and human health. It encompasses various forms such as air, water, and land pollution. Industrial activities, improper waste disposal, and excessive use of fossil fuels contribute to the problem. Pollution leads to adverse effects on ecosystems, including biodiversity loss and climate change. Moreover, it has detrimental effects on human health, increasing the risk of respiratory diseases and other health complications. Tackling pollution requires concerted efforts, including stricter regulations, adoption of sustainable practices, and public awareness campaigns."
36
-
37
- history.append(inputs)
38
-
39
- past = []
40
- for data in chatbot:
41
- user_data, model_data = data
42
-
43
- if not user_data.startswith(user_name):
44
- user_data = user_name + user_data
45
- if not model_data.startswith(sep + assistant_name):
46
- model_data = sep + assistant_name + model_data
47
 
48
- past.append(user_data + model_data.rstrip() + sep)
49
 
50
- if not inputs.startswith(user_name):
51
- inputs = user_name + inputs
 
52
 
53
- total_inputs = preprompt + "".join(past) + inputs + sep + assistant_name.rstrip()
 
54
 
55
- partial_words = ""
 
56
 
57
- if model in ("OpenAssistant/oasst-sft-1-pythia-12b", "OpenAssistant/oasst-sft-4-pythia-12b-epoch-3.5"):
58
- iterator = client.generate_stream(
59
- total_inputs,
60
- typical_p=typical_p,
61
- truncate=1000,
62
- watermark=watermark,
63
- max_new_tokens=500,
64
- )
65
- else:
66
- iterator = client.generate_stream(
67
- total_inputs,
68
- top_p=top_p if top_p < 1.0 else None,
69
- top_k=top_k,
70
- truncate=1000,
71
- repetition_penalty=repetition_penalty,
72
- watermark=watermark,
73
- temperature=temperature,
74
- max_new_tokens=500,
75
- stop_sequences=[user_name.rstrip(), assistant_name.rstrip()],
76
- )
77
 
78
- for i, response in enumerate(iterator):
79
- if response.token.special:
80
- continue
81
 
82
- partial_words = partial_words + response.token.text
83
- if partial_words.endswith(user_name.rstrip()):
84
- partial_words = partial_words.rstrip(user_name.rstrip())
85
- if partial_words.endswith(assistant_name.rstrip()):
86
- partial_words = partial_words.rstrip(assistant_name.rstrip())
87
-
88
- if i == 0:
89
- history.append(" " + partial_words)
90
- elif response.token.text not in user_name:
91
- history[-1] = partial_words
92
-
93
- chat = [
94
- (history[i].strip(), history[i + 1].strip())
95
- for i in range(0, len(history) - 1, 2)
96
- ]
97
- yield chat, history
98
-
99
- def radio_on_change(
100
- value: str,
101
- disclaimer,
102
- typical_p,
103
- top_p,
104
- top_k,
105
- temperature,
106
- repetition_penalty,
107
- watermark,
108
- ):
109
- if value in ("OpenAssistant/oasst-sft-1-pythia-12b", "OpenAssistant/oasst-sft-4-pythia-12b-epoch-3.5"):
110
- typical_p = typical_p.update(value=0.2, visible=True)
111
- top_p = top_p.update(visible=False)
112
- top_k = top_k.update(visible=False)
113
- temperature = temperature.update(visible=False)
114
- disclaimer = disclaimer.update(visible=False)
115
- repetition_penalty = repetition_penalty.update(visible=False)
116
- watermark = watermark.update(False)
117
- elif value == "togethercomputer/GPT-NeoXT-Chat-Base-20B":
118
- typical_p = typical_p.update(visible=False)
119
- top_p = top_p.update(value=0.25, visible=True)
120
- top_k = top_k.update(value=50, visible=True)
121
- temperature = temperature.update(value=0.6, visible=True)
122
- repetition_penalty = repetition_penalty.update(value=1.01, visible=True)
123
- watermark = watermark.update(False)
124
- disclaimer = disclaimer.update(visible=True)
125
- else:
126
- typical_p = typical_p.update(visible=False)
127
- top_p = top_p.update(value=0.95, visible=True)
128
- top_k = top_k.update(value=4, visible=True)
129
- temperature = temperature.update(value=0.5, visible=True)
130
- repetition_penalty = repetition_penalty.update(value=1.03, visible=True)
131
- watermark = watermark.update(True)
132
- disclaimer = disclaimer.update(visible=False)
133
- return (
134
- disclaimer,
135
- typical_p,
136
- top_p,
137
- top_k,
138
- temperature,
139
- repetition_penalty,
140
- watermark,
141
- )
142
-
143
-
144
-
145
- title = """<h1 align="center">xChat</h1>"""
146
- description = """
147
- """
148
-
149
- text_generation_inference = """
150
- """
151
-
152
- openchat_disclaimer = """
153
- """
154
-
155
- with gr.Blocks(
156
- css="""#col_container {margin-left: auto; margin-right: auto;}
157
- #chatbot {height: 520px; overflow: auto;}"""
158
- ) as demo:
159
- gr.HTML(title)
160
- gr.Markdown(text_generation_inference, visible=True)
161
- with gr.Column(elem_id="col_container"):
162
- model = gr.Radio(
163
- value="OpenAssistant/oasst-sft-4-pythia-12b-epoch-3.5",
164
- choices=[
165
- "OpenAssistant/oasst-sft-4-pythia-12b-epoch-3.5",
166
- "OpenAssistant/oasst-sft-1-pythia-12b",
167
- "togethercomputer/GPT-NeoXT-Chat-Base-20B",
168
- ],
169
- label="Model",
170
- interactive=True,
171
- )
172
-
173
- chatbot = gr.Chatbot(elem_id="chatbot")
174
- inputs = gr.Textbox(
175
- placeholder="Vozdra raja!", label="Unesi pitanje i pritisni Enter"
176
- )
177
- disclaimer = gr.Markdown(openchat_disclaimer, visible=False)
178
- state = gr.State([])
179
- b1 = gr.Button(label="Resetuj tekst")
180
-
181
- with gr.Accordion("Parametri", open=False):
182
- typical_p = gr.Slider(
183
- minimum=-0,
184
- maximum=1.0,
185
- value=0.2,
186
- step=0.05,
187
- interactive=True,
188
- label="Tipična P masa",
189
- )
190
- top_p = gr.Slider(
191
- minimum=-0,
192
- maximum=1.0,
193
- value=0.25,
194
- step=0.05,
195
- interactive=True,
196
- label="Top-p (uzorkovanje jezgra)",
197
- visible=False,
198
- )
199
- temperature = gr.Slider(
200
- minimum=-0,
201
- maximum=5.0,
202
- value=0.6,
203
- step=0.1,
204
- interactive=True,
205
- label="Temperatura",
206
- visible=False,
207
- )
208
- top_k = gr.Slider(
209
- minimum=1,
210
- maximum=50,
211
- value=50,
212
- step=1,
213
- interactive=True,
214
- label="Top-k",
215
- visible=False,
216
- )
217
- repetition_penalty = gr.Slider(
218
- minimum=0.1,
219
- maximum=3.0,
220
- value=1.03,
221
- step=0.01,
222
- interactive=True,
223
- label="Kazna za ponavljanje",
224
- visible=False,
225
- )
226
- watermark = gr.Checkbox(value=False, label="Vodeni žig teksta")
227
-
228
- model.change(
229
- lambda value: radio_on_change(
230
- value,
231
- disclaimer,
232
- typical_p,
233
- top_p,
234
- top_k,
235
- temperature,
236
- repetition_penalty,
237
- watermark,
238
- ),
239
- inputs=model,
240
- outputs=[
241
- disclaimer,
242
- typical_p,
243
- top_p,
244
- top_k,
245
- temperature,
246
- repetition_penalty,
247
- watermark,
248
- ],
249
- )
250
 
251
- inputs.submit(
252
- predict,
253
- [
254
- model,
255
- inputs,
256
- typical_p,
257
- top_p,
258
- temperature,
259
- top_k,
260
- repetition_penalty,
261
- watermark,
262
- chatbot,
263
- state,
264
- ],
265
- [chatbot, state],
266
- )
267
- b1.click(
268
- predict,
269
- [
270
- model,
271
- inputs,
272
- typical_p,
273
- top_p,
274
- temperature,
275
- top_k,
276
- repetition_penalty,
277
- watermark,
278
- chatbot,
279
- state,
280
- ],
281
- [chatbot, state],
282
- )
283
- b1.click(reset_textbox, [], [inputs])
284
- inputs.submit(reset_textbox, [], [inputs])
285
 
286
- gr.Markdown(description)
287
- demo.queue(concurrency_count=16).launch(debug=True)
 
1
+ from transformers import AutoModelForCausalLM, AutoTokenizer
2
+ import torch
3
+ #set up the model (large version of DialoGPT)
4
+ tokenizer = AutoTokenizer.from_pretrained("microsoft/DialoGPT-large")
5
+ model = AutoModelForCausalLM.from_pretrained("microsoft/DialoGPT-large")
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6
 
7
+ #Defining a predict function
8
 
9
+ def predict(input, history=[]):
10
+ # tokenize the new input sentence
11
+ new_user_input_ids = tokenizer.encode(input + tokenizer.eos_token, return_tensors='pt')
12
 
13
+ # append the new user input tokens to the chat history
14
+ bot_input_ids = torch.cat([torch.LongTensor(history), new_user_input_ids], dim=-1)
15
 
16
+ # generate a response
17
+ history = model.generate(bot_input_ids, max_length=1000, pad_token_id=tokenizer.eos_token_id).tolist()
18
 
19
+ # convert the tokens to text, and then split the responses into lines
20
+ response = tokenizer.decode(history[0]).split("<|endoftext|>")
21
+ response = [(response[i], response[i+1]) for i in range(0, len(response)-1, 2)] # convert to tuples of list
22
+ return response, history
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
23
 
24
+ #creating a gradio interface
 
 
25
 
26
+ import gradio as gr
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
27
 
28
+ demo = gr.Interface(fn=predict,
29
+ inputs=["text", "state"],
30
+ outputs=["chatbot", "state"])
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
31
 
32
+ demo.launch()