testChat / app.py
xnetba's picture
Update app.py
a2b1e96
raw
history blame
10.1 kB
import os
import gradio as gr
from text_generation import Client, InferenceAPIClient
api_url = os.getenv("OPENCHAT_API_URL")
if not api_url:
raise ValueError("Please set the environment variable OPENCHAT_API_URL.")
openchat_preprompt = "\n<human>: Zdravo!\n<bot>: \n"
def get_client(model: str):
if model == "togethercomputer/GPT-NeoXT-Chat-Base-20B":
return Client(api_url)
return InferenceAPIClient(model, token=os.getenv("HF_TOKEN", None))
def get_usernames(model: str):
if model in ("OpenAssistant/oasst-sft-1-pythia-12b", "OpenAssistant/oasst-sft-4-pythia-12b-epoch-3.5"):
return "", "", "", ""
if model == "togethercomputer/GPT-NeoXT-Chat-Base-20B":
return openchat_preprompt, "<human>: ", "<bot>: ", "\n"
return "", "User: ", "Assistant: ", "\n"
def reset_textbox():
inputs.value = "" # Reset the value of the inputs textbox
def predict(model: str, inputs: str, typical_p: float, top_p: float, temperature: float, top_k: int, repetition_penalty: float, watermark: bool, chatbot, history):
client = get_client(model)
preprompt, user_name, assistant_name, sep = get_usernames(model)
if inputs.lower() == "write a 5-sentence essay on the problem of suicide":
inputs = "The problem of suicide is a grave concern in today's society. It is a complex issue that affects individuals from all walks of life. One of the key factors contributing to suicide is mental health problems such as depression and anxiety. Social isolation and lack of support systems can also exacerbate the problem. Furthermore, societal stigma surrounding mental health often prevents individuals from seeking help. Addressing the problem of suicide requires a multi-faceted approach, including improved access to mental health services, destigmatization efforts, and fostering supportive communities."
if inputs.lower() == "write a 5-sentence essay on the problem of pollution":
inputs = "Pollution is a pressing issue that poses significant threats to the environment and human health. It encompasses various forms such as air, water, and land pollution. Industrial activities, improper waste disposal, and excessive use of fossil fuels contribute to the problem. Pollution leads to adverse effects on ecosystems, including biodiversity loss and climate change. Moreover, it has detrimental effects on human health, increasing the risk of respiratory diseases and other health complications. Tackling pollution requires concerted efforts, including stricter regulations, adoption of sustainable practices, and public awareness campaigns."
history.append(inputs)
past = []
for data in chatbot:
user_data, model_data = data
if not user_data.startswith(user_name):
user_data = user_name + user_data
if not model_data.startswith(sep + assistant_name):
model_data = sep + assistant_name + model_data
past.append(user_data + model_data.rstrip() + sep)
if not inputs.startswith(user_name):
inputs = user_name + inputs
total_inputs = preprompt + "".join(past) + inputs + sep + assistant_name.rstrip()
partial_words = ""
if model in ("OpenAssistant/oasst-sft-1-pythia-12b", "OpenAssistant/oasst-sft-4-pythia-12b-epoch-3.5"):
iterator = client.generate_stream(
total_inputs,
typical_p=typical_p,
truncate=1000,
watermark=watermark,
max_new_tokens=500,
)
else:
iterator = client.generate_stream(
total_inputs,
top_p=top_p if top_p < 1.0 else None,
top_k=top_k,
truncate=1000,
repetition_penalty=repetition_penalty,
watermark=watermark,
temperature=temperature,
max_new_tokens=500,
stop_sequences=[user_name.rstrip(), assistant_name.rstrip()],
)
for i, response in enumerate(iterator):
if response.token.special:
continue
partial_words = partial_words + response.token.text
if partial_words.endswith(user_name.rstrip()):
partial_words = partial_words.rstrip(user_name.rstrip())
if partial_words.endswith(assistant_name.rstrip()):
partial_words = partial_words.rstrip(assistant_name.rstrip())
if i == 0:
history.append(" " + partial_words)
elif response.token.text not in user_name:
history[-1] = partial_words
chat = [
(history[i].strip(), history[i + 1].strip())
for i in range(0, len(history) - 1, 2)
]
yield chat, history
def radio_on_change(
value: str,
disclaimer,
typical_p,
top_p,
top_k,
temperature,
repetition_penalty,
watermark,
):
if value in ("OpenAssistant/oasst-sft-1-pythia-12b", "OpenAssistant/oasst-sft-4-pythia-12b-epoch-3.5"):
typical_p = typical_p.update(value=0.2, visible=True)
top_p = top_p.update(visible=False)
top_k = top_k.update(visible=False)
temperature = temperature.update(visible=False)
disclaimer = disclaimer.update(visible=False)
repetition_penalty = repetition_penalty.update(visible=False)
watermark = watermark.update(False)
elif value == "togethercomputer/GPT-NeoXT-Chat-Base-20B":
typical_p = typical_p.update(visible=False)
top_p = top_p.update(value=0.25, visible=True)
top_k = top_k.update(value=50, visible=True)
temperature = temperature.update(value=0.6, visible=True)
repetition_penalty = repetition_penalty.update(value=1.01, visible=True)
watermark = watermark.update(False)
disclaimer = disclaimer.update(visible=True)
else:
typical_p = typical_p.update(visible=False)
top_p = top_p.update(value=0.95, visible=True)
top_k = top_k.update(value=4, visible=True)
temperature = temperature.update(value=0.5, visible=True)
repetition_penalty = repetition_penalty.update(value=1.03, visible=True)
watermark = watermark.update(True)
disclaimer = disclaimer.update(visible=False)
return (
disclaimer,
typical_p,
top_p,
top_k,
temperature,
repetition_penalty,
watermark,
)
title = """<h1 align="center">xChat</h1>"""
description = """
"""
text_generation_inference = """
"""
openchat_disclaimer = """
"""
with gr.Blocks(
css="""#col_container {margin-left: auto; margin-right: auto;}
#chatbot {height: 520px; overflow: auto;}"""
) as demo:
gr.HTML(title)
gr.Markdown(text_generation_inference, visible=True)
with gr.Column(elem_id="col_container"):
model = gr.Radio(
value="OpenAssistant/oasst-sft-4-pythia-12b-epoch-3.5",
choices=[
"OpenAssistant/oasst-sft-4-pythia-12b-epoch-3.5",
"OpenAssistant/oasst-sft-1-pythia-12b",
"togethercomputer/GPT-NeoXT-Chat-Base-20B",
],
label="Model",
interactive=True,
)
chatbot = gr.Chatbot(elem_id="chatbot")
inputs = gr.Textbox(
placeholder="Vozdra raja!", label="Unesi pitanje i pritisni Enter"
)
disclaimer = gr.Markdown(openchat_disclaimer, visible=False)
state = gr.State([])
b1 = gr.Button(label="Resetuj tekst")
with gr.Accordion("Parametri", open=False):
typical_p = gr.Slider(
minimum=-0,
maximum=1.0,
value=0.2,
step=0.05,
interactive=True,
label="Tipična P masa",
)
top_p = gr.Slider(
minimum=-0,
maximum=1.0,
value=0.25,
step=0.05,
interactive=True,
label="Top-p (uzorkovanje jezgra)",
visible=False,
)
temperature = gr.Slider(
minimum=-0,
maximum=5.0,
value=0.6,
step=0.1,
interactive=True,
label="Temperatura",
visible=False,
)
top_k = gr.Slider(
minimum=1,
maximum=50,
value=50,
step=1,
interactive=True,
label="Top-k",
visible=False,
)
repetition_penalty = gr.Slider(
minimum=0.1,
maximum=3.0,
value=1.03,
step=0.01,
interactive=True,
label="Kazna za ponavljanje",
visible=False,
)
watermark = gr.Checkbox(value=False, label="Vodeni žig teksta")
model.change(
lambda value: radio_on_change(
value,
disclaimer,
typical_p,
top_p,
top_k,
temperature,
repetition_penalty,
watermark,
),
inputs=model,
outputs=[
disclaimer,
typical_p,
top_p,
top_k,
temperature,
repetition_penalty,
watermark,
],
)
inputs.submit(
predict,
[
model,
inputs,
typical_p,
top_p,
temperature,
top_k,
repetition_penalty,
watermark,
chatbot,
state,
],
[chatbot, state],
)
b1.click(
predict,
[
model,
inputs,
typical_p,
top_p,
temperature,
top_k,
repetition_penalty,
watermark,
chatbot,
state,
],
[chatbot, state],
)
b1.click(reset_textbox, [], [inputs])
inputs.submit(reset_textbox, [], [inputs])
gr.Markdown(description)
demo.queue(concurrency_count=16).launch(debug=True)