Spaces:
Running
Running
add inital app
Browse files- __init__.py +1 -0
- app.py +135 -0
__init__.py
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
# -*-coding:utf-8 -*-
|
app.py
ADDED
@@ -0,0 +1,135 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import os
|
3 |
+
import json
|
4 |
+
import requests
|
5 |
+
|
6 |
+
# Streaming endpoint
|
7 |
+
API_URL = "https://api.openai.com/v1/chat/completions" # os.getenv("API_URL") + "/generate_stream"
|
8 |
+
|
9 |
+
|
10 |
+
def predict(inputs, top_p, temperature, openai_api_key, chat_counter, chatbot=[],
|
11 |
+
history=[]): # repetition_penalty, top_k
|
12 |
+
|
13 |
+
payload = {
|
14 |
+
"model": "gpt-3.5-turbo",
|
15 |
+
"messages": [{"role": "user", "content": f"{inputs}"}],
|
16 |
+
"temperature": 1.0,
|
17 |
+
"top_p": 1.0,
|
18 |
+
"n": 1,
|
19 |
+
"stream": True,
|
20 |
+
"presence_penalty": 0,
|
21 |
+
"frequency_penalty": 0,
|
22 |
+
}
|
23 |
+
|
24 |
+
headers = {
|
25 |
+
"Content-Type": "application/json",
|
26 |
+
"Authorization": f"Bearer {openai_api_key}"
|
27 |
+
}
|
28 |
+
|
29 |
+
print(f"chat_counter - {chat_counter}")
|
30 |
+
if chat_counter != 0:
|
31 |
+
messages = []
|
32 |
+
for data in chatbot:
|
33 |
+
temp1 = {}
|
34 |
+
temp1["role"] = "user"
|
35 |
+
temp1["content"] = data[0]
|
36 |
+
temp2 = {}
|
37 |
+
temp2["role"] = "assistant"
|
38 |
+
temp2["content"] = data[1]
|
39 |
+
messages.append(temp1)
|
40 |
+
messages.append(temp2)
|
41 |
+
temp3 = {}
|
42 |
+
temp3["role"] = "user"
|
43 |
+
temp3["content"] = inputs
|
44 |
+
messages.append(temp3)
|
45 |
+
# messages
|
46 |
+
payload = {
|
47 |
+
"model": "gpt-3.5-turbo",
|
48 |
+
"messages": messages, # [{"role": "user", "content": f"{inputs}"}],
|
49 |
+
"temperature": temperature, # 1.0,
|
50 |
+
"top_p": top_p, # 1.0,
|
51 |
+
"n": 1,
|
52 |
+
"stream": True,
|
53 |
+
"presence_penalty": 0,
|
54 |
+
"frequency_penalty": 0,
|
55 |
+
}
|
56 |
+
|
57 |
+
chat_counter += 1
|
58 |
+
|
59 |
+
history.append(inputs)
|
60 |
+
print(f"payload is - {payload}")
|
61 |
+
# make a POST request to the API endpoint using the requests.post method, passing in stream=True
|
62 |
+
response = requests.post(API_URL, headers=headers, json=payload, stream=True)
|
63 |
+
# response = requests.post(API_URL, headers=headers, json=payload, stream=True)
|
64 |
+
token_counter = 0
|
65 |
+
partial_words = ""
|
66 |
+
|
67 |
+
counter = 0
|
68 |
+
for chunk in response.iter_lines():
|
69 |
+
if counter == 0:
|
70 |
+
counter += 1
|
71 |
+
continue
|
72 |
+
counter += 1
|
73 |
+
# check whether each line is non-empty
|
74 |
+
if chunk:
|
75 |
+
# decode each line as response data is in bytes
|
76 |
+
if len(json.loads(chunk.decode()[6:])['choices'][0]["delta"]) == 0:
|
77 |
+
break
|
78 |
+
# print(json.loads(chunk.decode()[6:])['choices'][0]["delta"]["content"])
|
79 |
+
partial_words = partial_words + json.loads(chunk.decode()[6:])['choices'][0]["delta"]["content"]
|
80 |
+
if token_counter == 0:
|
81 |
+
history.append(" " + partial_words)
|
82 |
+
else:
|
83 |
+
history[-1] = partial_words
|
84 |
+
chat = [(history[i], history[i + 1]) for i in range(0, len(history) - 1, 2)] # convert to tuples of list
|
85 |
+
token_counter += 1
|
86 |
+
yield chat, history, chat_counter # resembles {chatbot: chat, state: history}
|
87 |
+
|
88 |
+
|
89 |
+
def reset_textbox():
|
90 |
+
return gr.update(value='')
|
91 |
+
|
92 |
+
|
93 |
+
title = """<h1 align="center">🔥Finance ChatBot 🚀Streaming🚀</h1>"""
|
94 |
+
description = """Language models can be conditioned to act like dialogue agents through a conversational prompt that typically takes the form:
|
95 |
+
```
|
96 |
+
User: <utterance>
|
97 |
+
Assistant: <utterance>
|
98 |
+
User: <utterance>
|
99 |
+
Assistant: <utterance>
|
100 |
+
...
|
101 |
+
```
|
102 |
+
In this app, you can explore the outputs of a gpt-3.5-turbo LLM.
|
103 |
+
"""
|
104 |
+
|
105 |
+
with gr.Blocks(css="""#col_container {width: 1000px; margin-left: auto; margin-right: auto;}
|
106 |
+
#chatbot {height: 520px; overflow: auto;}""") as demo:
|
107 |
+
gr.HTML(title)
|
108 |
+
gr.HTML(
|
109 |
+
'''<center><img src="https://bit.ly/3gLdBN6" alt="Duplicate Space"></a>Duplicate the Space and run securely with your OpenAI API Key</center>''')
|
110 |
+
with gr.Column(elem_id="col_container"):
|
111 |
+
openai_api_key = gr.Textbox(type='password', label="Enter your OpenAI API key here")
|
112 |
+
chatbot = gr.Chatbot(elem_id='chatbot') # c
|
113 |
+
inputs = gr.Textbox(placeholder="Hi there!", label="Type an input and press Enter") # t
|
114 |
+
state = gr.State([]) # s
|
115 |
+
b1 = gr.Button()
|
116 |
+
|
117 |
+
# inputs, top_p, temperature, top_k, repetition_penalty
|
118 |
+
with gr.Accordion("Parameters", open=False):
|
119 |
+
top_p = gr.Slider(minimum=-0, maximum=1.0, value=1.0, step=0.05, interactive=True,
|
120 |
+
label="Top-p (nucleus sampling)", )
|
121 |
+
temperature = gr.Slider(minimum=-0, maximum=5.0, value=1.0, step=0.1, interactive=True,
|
122 |
+
label="Temperature", )
|
123 |
+
# top_k = gr.Slider( minimum=1, maximum=50, value=4, step=1, interactive=True, label="Top-k",)
|
124 |
+
# repetition_penalty = gr.Slider( minimum=0.1, maximum=3.0, value=1.03, step=0.01, interactive=True, label="Repetition Penalty", )
|
125 |
+
chat_counter = gr.Number(value=0, visible=False, precision=0)
|
126 |
+
|
127 |
+
inputs.submit(predict, [inputs, top_p, temperature, openai_api_key, chat_counter, chatbot, state],
|
128 |
+
[chatbot, state, chat_counter], )
|
129 |
+
b1.click(predict, [inputs, top_p, temperature, openai_api_key, chat_counter, chatbot, state],
|
130 |
+
[chatbot, state, chat_counter], )
|
131 |
+
b1.click(reset_textbox, [], [inputs])
|
132 |
+
inputs.submit(reset_textbox, [], [inputs])
|
133 |
+
|
134 |
+
# gr.Markdown(description)
|
135 |
+
demo.queue().launch(debug=True)
|