import os import copy import time import cv2 as cv import numpy as np import onnxruntime from PIL import Image import gradio def run_inference(onnx_session, input_size, image): # リサイズ temp_image = copy.deepcopy(image) resize_image = cv.resize(temp_image, dsize=(input_size, input_size)) x = cv.cvtColor(resize_image, cv.COLOR_BGR2RGB) # 前処理 x = np.array(x, dtype=np.float32) mean = [0.485, 0.456, 0.406] std = [0.229, 0.224, 0.225] x = (x / 255 - mean) / std x = x.transpose(2, 0, 1).astype('float32') x = x.reshape(-1, 3, input_size, input_size) # 推論 input_name = onnx_session.get_inputs()[0].name output_name = onnx_session.get_outputs()[0].name onnx_result = onnx_session.run([output_name], {input_name: x}) # 後処理 onnx_result = np.array(onnx_result).squeeze() min_value = np.min(onnx_result) max_value = np.max(onnx_result) onnx_result = (onnx_result - min_value) / (max_value - min_value) onnx_result *= 255 onnx_result = onnx_result.astype('uint8') return onnx_result # Load model onnx_session = onnxruntime.InferenceSession("u2net.onnx") def create_rgba(mode, image): out = run_inference( onnx_session, 320, image, ) resize_image = cv.resize(out, dsize=(image.shape[1], image.shape[0])) if mode == "binary": resize_image[resize_image > 255] = 255 resize_image[resize_image < 125] = 0 mask = Image.fromarray(resize_image) rgba_image = Image.fromarray(image).convert('RGBA') rgba_image.putalpha(mask) return rgba_image inputs = [gradio.inputs.Radio(["binary", "smooth"]), gradio.inputs.Image()] outputs = gradio.outputs.Image() gradio.Interface(fn=create_rgba, inputs=inputs, outputs=outputs).launch()