Spaces:
Runtime error
Runtime error
Fix app.
Browse files- app.py +23 -13
- u2net.onnx +3 -0
app.py
CHANGED
@@ -11,42 +11,52 @@ from PIL import Image
|
|
11 |
import gradio
|
12 |
|
13 |
def run_inference(onnx_session, input_size, image):
|
14 |
-
#
|
15 |
temp_image = copy.deepcopy(image)
|
16 |
-
resize_image = cv.resize(temp_image, dsize=(input_size
|
17 |
x = cv.cvtColor(resize_image, cv.COLOR_BGR2RGB)
|
|
|
|
|
18 |
x = np.array(x, dtype=np.float32)
|
19 |
mean = [0.485, 0.456, 0.406]
|
20 |
std = [0.229, 0.224, 0.225]
|
21 |
x = (x / 255 - mean) / std
|
22 |
-
x = x.
|
|
|
23 |
|
24 |
-
#
|
25 |
input_name = onnx_session.get_inputs()[0].name
|
26 |
output_name = onnx_session.get_outputs()[0].name
|
27 |
onnx_result = onnx_session.run([output_name], {input_name: x})
|
28 |
|
29 |
-
#
|
30 |
onnx_result = np.array(onnx_result).squeeze()
|
31 |
-
onnx_result = (1 - onnx_result)
|
32 |
min_value = np.min(onnx_result)
|
33 |
max_value = np.max(onnx_result)
|
34 |
onnx_result = (onnx_result - min_value) / (max_value - min_value)
|
35 |
onnx_result *= 255
|
36 |
onnx_result = onnx_result.astype('uint8')
|
|
|
|
|
37 |
|
38 |
return onnx_result
|
39 |
|
40 |
# Load model
|
41 |
-
onnx_session = onnxruntime.InferenceSession("
|
42 |
|
43 |
def create_rgba(image):
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
50 |
|
51 |
css = ".output_image {height: 100% !important; width: 100% !important;}"
|
52 |
inputs = gradio.inputs.Image()
|
|
|
11 |
import gradio
|
12 |
|
13 |
def run_inference(onnx_session, input_size, image):
|
14 |
+
# リサイズ
|
15 |
temp_image = copy.deepcopy(image)
|
16 |
+
resize_image = cv.resize(temp_image, dsize=(input_size, input_size))
|
17 |
x = cv.cvtColor(resize_image, cv.COLOR_BGR2RGB)
|
18 |
+
|
19 |
+
# 前処理
|
20 |
x = np.array(x, dtype=np.float32)
|
21 |
mean = [0.485, 0.456, 0.406]
|
22 |
std = [0.229, 0.224, 0.225]
|
23 |
x = (x / 255 - mean) / std
|
24 |
+
x = x.transpose(2, 0, 1).astype('float32')
|
25 |
+
x = x.reshape(-1, 3, input_size, input_size)
|
26 |
|
27 |
+
# 推論
|
28 |
input_name = onnx_session.get_inputs()[0].name
|
29 |
output_name = onnx_session.get_outputs()[0].name
|
30 |
onnx_result = onnx_session.run([output_name], {input_name: x})
|
31 |
|
32 |
+
# 後処理
|
33 |
onnx_result = np.array(onnx_result).squeeze()
|
|
|
34 |
min_value = np.min(onnx_result)
|
35 |
max_value = np.max(onnx_result)
|
36 |
onnx_result = (onnx_result - min_value) / (max_value - min_value)
|
37 |
onnx_result *= 255
|
38 |
onnx_result = onnx_result.astype('uint8')
|
39 |
+
onnx_result[onnx_result >= 125] = 255
|
40 |
+
onnx_result[onnx_result < 125] = 0
|
41 |
|
42 |
return onnx_result
|
43 |
|
44 |
# Load model
|
45 |
+
onnx_session = onnxruntime.InferenceSession("u2net.onnx")
|
46 |
|
47 |
def create_rgba(image):
|
48 |
+
out = run_inference(
|
49 |
+
onnx_session,
|
50 |
+
320,
|
51 |
+
image,
|
52 |
+
)
|
53 |
+
resize_image = cv.resize(out, dsize=(image.shape[1], image.shape[0]))
|
54 |
+
mask = Image.fromarray(resize_image)
|
55 |
+
|
56 |
+
rgba_image = Image.fromarray(image).convert('RGBA')
|
57 |
+
rgba_image.putalpha(mask)
|
58 |
+
|
59 |
+
return rgba_image
|
60 |
|
61 |
css = ".output_image {height: 100% !important; width: 100% !important;}"
|
62 |
inputs = gradio.inputs.Image()
|
u2net.onnx
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:309ea1fc458e8f6711efb645da85d1cc2a9cd2aec261d379bba31c0a0ddc78af
|
3 |
+
size 175995934
|