Spaces:
Runtime error
Runtime error
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,51 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import copy
|
3 |
+
import time
|
4 |
+
|
5 |
+
import cv2 as cv
|
6 |
+
import numpy as np
|
7 |
+
import onnxruntime
|
8 |
+
|
9 |
+
import gradio
|
10 |
+
|
11 |
+
def run_inference(onnx_session, input_size, image):
|
12 |
+
# Pre process:Resize, BGR->RGB, Transpose, PyTorch standardization, float32 cast
|
13 |
+
temp_image = copy.deepcopy(image)
|
14 |
+
resize_image = cv.resize(temp_image, dsize=(input_size[0], input_size[1]))
|
15 |
+
x = cv.cvtColor(resize_image, cv.COLOR_BGR2RGB)
|
16 |
+
x = np.array(x, dtype=np.float32)
|
17 |
+
mean = [0.485, 0.456, 0.406]
|
18 |
+
std = [0.229, 0.224, 0.225]
|
19 |
+
x = (x / 255 - mean) / std
|
20 |
+
x = x.reshape(-1, input_size[0], input_size[1], 3).astype('float32')
|
21 |
+
|
22 |
+
# Inference
|
23 |
+
input_name = onnx_session.get_inputs()[0].name
|
24 |
+
output_name = onnx_session.get_outputs()[0].name
|
25 |
+
onnx_result = onnx_session.run([output_name], {input_name: x})
|
26 |
+
|
27 |
+
# Post process
|
28 |
+
onnx_result = np.array(onnx_result).squeeze()
|
29 |
+
onnx_result = (1 - onnx_result)
|
30 |
+
min_value = np.min(onnx_result)
|
31 |
+
max_value = np.max(onnx_result)
|
32 |
+
onnx_result = (onnx_result - min_value) / (max_value - min_value)
|
33 |
+
onnx_result *= 255
|
34 |
+
onnx_result = onnx_result.astype('uint8')
|
35 |
+
|
36 |
+
return onnx_result
|
37 |
+
|
38 |
+
# Load model
|
39 |
+
onnx_session = onnxruntime.InferenceSession(model_path)
|
40 |
+
|
41 |
+
def create_rgba(image):
|
42 |
+
return run_inference(
|
43 |
+
onnx_session,
|
44 |
+
image.shape,
|
45 |
+
image,
|
46 |
+
)
|
47 |
+
|
48 |
+
css = ".output_image {height: 100% !important; width: 100% !important;}"
|
49 |
+
inputs = gradio.inputs.Image()
|
50 |
+
outputs = gradio.outputs.Image()
|
51 |
+
gradio.Interface(fn=create_rgba, inputs=inputs, outputs=outputs, css=css).launch()
|