Update app.py
Browse files
app.py
CHANGED
@@ -1,58 +1,100 @@
|
|
1 |
-
|
2 |
from PIL import Image
|
3 |
-
|
4 |
-
from transformers import AutoProcessor, AutoModelForImageTextToText
|
5 |
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
13 |
return caption
|
14 |
-
from transformers import pipeline
|
15 |
|
|
|
|
|
|
|
16 |
def generate_story(caption):
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
22 |
story = result[0]['generated_text']
|
23 |
-
|
|
|
24 |
if len(story.split()) < 100:
|
25 |
-
|
26 |
-
story += " " +
|
27 |
return story
|
28 |
-
from gtts import gTTS
|
29 |
|
|
|
|
|
|
|
30 |
def text_to_speech(text, output_file="output.mp3"):
|
31 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
32 |
tts.save(output_file)
|
33 |
return output_file
|
34 |
-
import streamlit as st
|
35 |
-
from PIL import Image
|
36 |
|
|
|
|
|
|
|
37 |
def main():
|
38 |
st.title("儿童故事生成应用")
|
39 |
-
st.write("
|
40 |
|
41 |
uploaded_file = st.file_uploader("选择一张图片", type=["png", "jpg", "jpeg"])
|
|
|
42 |
if uploaded_file is not None:
|
|
|
43 |
image = Image.open(uploaded_file)
|
44 |
-
st.image(image, caption="上传的图片",
|
45 |
|
46 |
-
#
|
47 |
-
|
48 |
-
|
|
|
49 |
|
50 |
-
#
|
51 |
-
|
52 |
-
|
|
|
|
|
53 |
|
54 |
-
#
|
55 |
-
|
|
|
56 |
st.audio(audio_file, format="audio/mp3")
|
57 |
|
58 |
if __name__ == "__main__":
|
|
|
1 |
+
import streamlit as st
|
2 |
from PIL import Image
|
3 |
+
from transformers import pipeline
|
|
|
4 |
|
5 |
+
# ----------------------------
|
6 |
+
# 生成图像描述函数
|
7 |
+
# ----------------------------
|
8 |
+
def generate_caption(image_file):
|
9 |
+
"""
|
10 |
+
使用 Hugging Face pipeline 的 image-to-text 模型生成图片描述
|
11 |
+
参数:
|
12 |
+
image_file: 上传的图片文件(文件对象或文件路径)
|
13 |
+
返回:
|
14 |
+
caption: 生成的图片描述文本
|
15 |
+
"""
|
16 |
+
# 打开图片(如果上传的是文件流,可以直接传给 pipeline)
|
17 |
+
image = Image.open(image_file)
|
18 |
+
# 利用 image-to-text pipeline 加载 Salesforce/blip-image-captioning-base 模型
|
19 |
+
caption_generator = pipeline("image-to-text", model="Salesforce/blip-image-captioning-base")
|
20 |
+
# 直接将图片传入 pipeline,返回结果是一个列表,每个元素是一个字典
|
21 |
+
caption_results = caption_generator(image)
|
22 |
+
caption = caption_results[0]['generated_text'] # 取第一个结果
|
23 |
return caption
|
|
|
24 |
|
25 |
+
# ----------------------------
|
26 |
+
# 基于图片描述生成完整故事的函数
|
27 |
+
# ----------------------------
|
28 |
def generate_story(caption):
|
29 |
+
"""
|
30 |
+
基于图片描述生成完整故事,确保生成的故事至少包含100个单词。
|
31 |
+
参数:
|
32 |
+
caption: 图片描述文本
|
33 |
+
返回:
|
34 |
+
story: 生成的故事文本
|
35 |
+
"""
|
36 |
+
# 使用 text-generation pipeline 加载 GPT-2 模型
|
37 |
+
story_generator = pipeline("text-generation", model="gpt2")
|
38 |
+
# 构建生成故事的提示语
|
39 |
+
prompt = f"Based on the following image caption: '{caption}', generate a complete fairy tale story for children with at least 100 words. "
|
40 |
+
|
41 |
+
# 生成故事文本
|
42 |
+
result = story_generator(prompt, max_length=300, num_return_sequences=1)
|
43 |
story = result[0]['generated_text']
|
44 |
+
|
45 |
+
# 简单检查生成的故事单词数是否达到100,否则再生成部分文本补充
|
46 |
if len(story.split()) < 100:
|
47 |
+
additional = story_generator(prompt, max_length=350, num_return_sequences=1)[0]['generated_text']
|
48 |
+
story += " " + additional
|
49 |
return story
|
|
|
50 |
|
51 |
+
# ----------------------------
|
52 |
+
# 文字转语音 (TTS) 函数
|
53 |
+
# ----------------------------
|
54 |
def text_to_speech(text, output_file="output.mp3"):
|
55 |
+
"""
|
56 |
+
将文本转换为语音并保存为 mp3 文件
|
57 |
+
参数:
|
58 |
+
text: 要转换的文本
|
59 |
+
output_file: 保存的音频文件名
|
60 |
+
返回:
|
61 |
+
output_file: 转换后的音频文件路径
|
62 |
+
"""
|
63 |
+
from gtts import gTTS
|
64 |
+
# 这里语言参数设为英语 "en",
|
65 |
+
# 如需中文可修改 lang="zh-cn",但对应文本生成模型也需生成中文
|
66 |
+
tts = gTTS(text=text, lang="en")
|
67 |
tts.save(output_file)
|
68 |
return output_file
|
|
|
|
|
69 |
|
70 |
+
# ----------------------------
|
71 |
+
# 主函数:构建 Streamlit 界面
|
72 |
+
# ----------------------------
|
73 |
def main():
|
74 |
st.title("儿童故事生成应用")
|
75 |
+
st.write("上传一张图片,我们将根据图片生成有趣的故事,并转换成语音播放!")
|
76 |
|
77 |
uploaded_file = st.file_uploader("选择一张图片", type=["png", "jpg", "jpeg"])
|
78 |
+
|
79 |
if uploaded_file is not None:
|
80 |
+
# 显示上传的图片
|
81 |
image = Image.open(uploaded_file)
|
82 |
+
st.image(image, caption="上传的图片", use_column_width=True)
|
83 |
|
84 |
+
# 生成图片描述
|
85 |
+
with st.spinner("正在生成图片描述..."):
|
86 |
+
caption = generate_caption(uploaded_file)
|
87 |
+
st.write("图片描述:", caption)
|
88 |
|
89 |
+
# 根据图片描述生成完整故事
|
90 |
+
with st.spinner("正在生成故事..."):
|
91 |
+
story = generate_story(caption)
|
92 |
+
st.write("生成的故事:")
|
93 |
+
st.write(story)
|
94 |
|
95 |
+
# 文本转语音
|
96 |
+
with st.spinner("正在转换成语音..."):
|
97 |
+
audio_file = text_to_speech(story)
|
98 |
st.audio(audio_file, format="audio/mp3")
|
99 |
|
100 |
if __name__ == "__main__":
|