Update app.py
Browse files
app.py
CHANGED
@@ -1,74 +1,92 @@
|
|
1 |
import streamlit as st
|
2 |
-
from transformers import pipeline
|
3 |
from PIL import Image
|
|
|
4 |
from gtts import gTTS
|
5 |
-
|
6 |
|
7 |
-
|
8 |
-
return pipeline("image-to-text", model="Salesforce/blip-image-captioning-base")
|
9 |
|
10 |
-
|
11 |
-
|
12 |
|
13 |
-
def
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
|
|
|
|
|
|
|
|
|
|
19 |
|
20 |
-
|
21 |
-
|
22 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
23 |
|
24 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
25 |
|
26 |
-
if
|
27 |
-
|
28 |
-
image = Image.open(uploaded_file).convert("RGB")
|
29 |
-
st.image(image, caption="Uploaded Image", use_container_width=True)
|
30 |
-
if st.button("Generate Story"):
|
31 |
-
with st.spinner("Generating content..."):
|
32 |
-
captioner = get_image_captioner()
|
33 |
-
caption_result = captioner(image)
|
34 |
-
caption = caption_result[0]["generated_text"]
|
35 |
-
st.subheader("Image Caption")
|
36 |
-
st.write(caption)
|
37 |
-
prompt = (
|
38 |
-
"You are a creative children's story writer. Based on the following image details, "
|
39 |
-
"please write an imaginative story for children aged 3-10. Do not simply rephrase the image details; "
|
40 |
-
"instead, expand creatively by adding fun characters, adventures, and unexpected twists. "
|
41 |
-
"The story must be at least 100 words long.\n\n"
|
42 |
-
f"Image Details: {caption}\n\nStory:"
|
43 |
-
)
|
44 |
-
story_generator = get_story_generator()
|
45 |
-
story_result = story_generator(
|
46 |
-
prompt,
|
47 |
-
max_length=300,
|
48 |
-
min_length=100,
|
49 |
-
num_return_sequences=1,
|
50 |
-
do_sample=True,
|
51 |
-
top_p=0.95,
|
52 |
-
top_k=50
|
53 |
-
)
|
54 |
-
story = story_result[0]["generated_text"]
|
55 |
-
while len(story.split()) < 100:
|
56 |
-
story_result = story_generator(
|
57 |
-
prompt,
|
58 |
-
max_length=300,
|
59 |
-
min_length=100,
|
60 |
-
num_return_sequences=1,
|
61 |
-
do_sample=True,
|
62 |
-
top_p=0.95,
|
63 |
-
top_k=50
|
64 |
-
)
|
65 |
-
story = story_result[0]["generated_text"]
|
66 |
-
if "Story:" in story:
|
67 |
-
story = story.split("Story:", 1)[-1].strip()
|
68 |
-
st.subheader("Generated Story")
|
69 |
-
st.write(story)
|
70 |
-
audio_bytes = text_to_speech(story)
|
71 |
-
st.subheader("Listen to the Story")
|
72 |
-
st.audio(audio_bytes, format="audio/mp3")
|
73 |
-
except Exception as e:
|
74 |
-
st.error(f"An error occurred: {e}")
|
|
|
1 |
import streamlit as st
|
|
|
2 |
from PIL import Image
|
3 |
+
from transformers import pipeline
|
4 |
from gtts import gTTS
|
5 |
+
import torch
|
6 |
|
7 |
+
st.set_page_config(page_title="Your Image to Audio Story", page_icon="🦜")
|
|
|
8 |
|
9 |
+
# 判断是否有可用的 GPU,如果有则使用 GPU(device=0),否则使用 CPU(device=-1)
|
10 |
+
device_id = 0 if torch.cuda.is_available() else -1
|
11 |
|
12 |
+
def generate_caption(image_file):
|
13 |
+
image = Image.open(image_file)
|
14 |
+
# 使用 GPU 进行图像描述生成,如果可用
|
15 |
+
caption_generator = pipeline(
|
16 |
+
"image-to-text",
|
17 |
+
model="Salesforce/blip-image-captioning-base",
|
18 |
+
device=device_id
|
19 |
+
)
|
20 |
+
caption_results = caption_generator(image)
|
21 |
+
caption = caption_results[0]['generated_text']
|
22 |
+
return caption
|
23 |
|
24 |
+
def generate_story(caption):
|
25 |
+
# 使用 GPU 进行文本生成操作
|
26 |
+
story_generator = pipeline(
|
27 |
+
"text-generation",
|
28 |
+
model="Qwen/Qwen2-1.5B",
|
29 |
+
device=device_id
|
30 |
+
)
|
31 |
+
messages = (
|
32 |
+
"Please based on following image caption: " + caption +
|
33 |
+
", generate a complete fairy tale story for children with at least 100 words and max 300 words"
|
34 |
+
)
|
35 |
+
result = story_generator(messages, max_length=300, num_return_sequences=1)
|
36 |
+
story = result[0]['generated_text']
|
37 |
+
return story
|
38 |
+
|
39 |
+
# 以下部分为生成插图示例代码,已注释。如果需要使用 GPU,请取消注释并确保 diffusers 相关依赖已经安装
|
40 |
+
# @st.cache_resource
|
41 |
+
# def load_image_generator():
|
42 |
+
# from diffusers import DiffusionPipeline
|
43 |
+
# device = "cuda" if torch.cuda.is_available() else "cpu"
|
44 |
+
# torch_dtype = torch.float16 if device == "cuda" else torch.float32
|
45 |
+
# pipe = DiffusionPipeline.from_pretrained(
|
46 |
+
# "stable-diffusion-v1-5/stable-diffusion-v1-5", torch_dtype=torch_dtype
|
47 |
+
# )
|
48 |
+
# pipe = pipe.to(device)
|
49 |
+
# return pipe
|
50 |
+
#
|
51 |
+
# def generate_illustration(prompt):
|
52 |
+
# pipe = load_image_generator()
|
53 |
+
# image_result = pipe(prompt)
|
54 |
+
# generated_image = image_result.images[0]
|
55 |
+
# return generated_image
|
56 |
+
|
57 |
+
def text_to_speech(text, output_file="output.mp3"):
|
58 |
+
tts = gTTS(text=text, lang="en")
|
59 |
+
tts.save(output_file)
|
60 |
+
return output_file
|
61 |
|
62 |
+
def main():
|
63 |
+
st.markdown("<h1 style='text-align: center;'>Your Image to Audio Story 🦜</h1>", unsafe_allow_html=True)
|
64 |
+
st.write("Upload an image below and we will generate an engaging story from the picture, then convert the story into an audio playback!")
|
65 |
+
|
66 |
+
uploaded_file = st.file_uploader("Select Image", type=["png", "jpg", "jpeg"])
|
67 |
+
|
68 |
+
if uploaded_file is not None:
|
69 |
+
image = Image.open(uploaded_file)
|
70 |
+
st.image(image, caption="Uploaded image", use_container_width=True)
|
71 |
+
|
72 |
+
with st.spinner("Image caption being generated..."):
|
73 |
+
caption = generate_caption(uploaded_file)
|
74 |
+
st.write("**Image Caption:**", caption)
|
75 |
+
|
76 |
+
with st.spinner("Generating story..."):
|
77 |
+
story = generate_story(caption)
|
78 |
+
st.write("**Story:**")
|
79 |
+
st.write(story)
|
80 |
+
|
81 |
+
# 如果需要生成插图,请取消以下代码的注释
|
82 |
+
# with st.spinner("Generating illustration..."):
|
83 |
+
# illustration = generate_illustration(story[:200])
|
84 |
+
# st.write("### Story Illustrations:")
|
85 |
+
# st.image(illustration, caption="Story Illustrations", use_container_width=True)
|
86 |
+
|
87 |
+
with st.spinner("Converting to voice..."):
|
88 |
+
audio_file = text_to_speech(story)
|
89 |
+
st.audio(audio_file, format="audio/mp3")
|
90 |
|
91 |
+
if __name__ == "__main__":
|
92 |
+
main()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|