Spaces:
Runtime error
Runtime error
updated the app.py file, removed model error due to seq2seq
Browse files- app.py +17 -3
- requirements.txt +2 -1
app.py
CHANGED
@@ -1,6 +1,7 @@
|
|
1 |
import gradio as gr
|
2 |
from transformers import AutoTokenizer, AutoModelForCausalLM
|
3 |
import torch
|
|
|
4 |
|
5 |
# Set the model name and parameters
|
6 |
model_name = "xiddiqui/News_Summarizer"
|
@@ -8,9 +9,22 @@ max_seq_length = 2048 # Choose any! We auto support RoPE Scaling internally!
|
|
8 |
dtype = None # None for auto detection
|
9 |
load_in_4bit = False # Use False if we aren't using 4bit quantization
|
10 |
|
|
|
|
|
|
|
11 |
# Load model and tokenizer
|
12 |
-
|
13 |
-
model
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
14 |
|
15 |
# Define the summarization function
|
16 |
def generate_summary(input_text):
|
@@ -31,7 +45,7 @@ def generate_summary(input_text):
|
|
31 |
return_tensors="pt",
|
32 |
truncation=True,
|
33 |
max_length=max_seq_length
|
34 |
-
).to(
|
35 |
|
36 |
# Generate summary
|
37 |
summary_ids = model.generate(
|
|
|
1 |
import gradio as gr
|
2 |
from transformers import AutoTokenizer, AutoModelForCausalLM
|
3 |
import torch
|
4 |
+
from peft import PeftModel
|
5 |
|
6 |
# Set the model name and parameters
|
7 |
model_name = "xiddiqui/News_Summarizer"
|
|
|
9 |
dtype = None # None for auto detection
|
10 |
load_in_4bit = False # Use False if we aren't using 4bit quantization
|
11 |
|
12 |
+
# Check device availability (GPU or CPU)
|
13 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
14 |
+
|
15 |
# Load model and tokenizer
|
16 |
+
|
17 |
+
# 1. Load the base model (unsloth/meta-llama-3.1-8b-bnb-4bit)
|
18 |
+
base_model_name = "unsloth/meta-llama-3.1-8b-bnb-4bit"
|
19 |
+
tokenizer = AutoTokenizer.from_pretrained(base_model_name)
|
20 |
+
model = AutoModelForCausalLM.from_pretrained(base_model_name)
|
21 |
+
|
22 |
+
# 2. Load your fine-tuned model with the LoRA adapter
|
23 |
+
adapter_model_name = "xiddiqui/News_Summarizer" # Your model path on Hugging Face
|
24 |
+
model = PeftModel.from_pretrained(model, adapter_model_name)
|
25 |
+
|
26 |
+
# Move model to the appropriate device (GPU or CPU)
|
27 |
+
model.to(device)
|
28 |
|
29 |
# Define the summarization function
|
30 |
def generate_summary(input_text):
|
|
|
45 |
return_tensors="pt",
|
46 |
truncation=True,
|
47 |
max_length=max_seq_length
|
48 |
+
).to(device) # Ensure computations are done on the same device as the model (CPU or GPU)
|
49 |
|
50 |
# Generate summary
|
51 |
summary_ids = model.generate(
|
requirements.txt
CHANGED
@@ -1,3 +1,4 @@
|
|
1 |
torch
|
2 |
transformers
|
3 |
-
gradio
|
|
|
|
1 |
torch
|
2 |
transformers
|
3 |
+
gradio
|
4 |
+
peft
|