Spaces:
Sleeping
Sleeping
Synced repo using 'sync_with_huggingface' Github Action
Browse files- app.py +1 -1
- gradio_app.py +147 -62
- requirements.txt +5 -4
app.py
CHANGED
|
@@ -6,7 +6,7 @@ import subprocess
|
|
| 6 |
from huggingface_hub import hf_hub_download
|
| 7 |
|
| 8 |
REPO_URL = "https://github.com/facebookresearch/videoseal.git"
|
| 9 |
-
REPO_BRANCH = '
|
| 10 |
LOCAL_PATH = "./videoseal"
|
| 11 |
|
| 12 |
def install_src():
|
|
|
|
| 6 |
from huggingface_hub import hf_hub_download
|
| 7 |
|
| 8 |
REPO_URL = "https://github.com/facebookresearch/videoseal.git"
|
| 9 |
+
REPO_BRANCH = '3de6b246bd160240c0b45790bb9b3a797eb7583a'
|
| 10 |
LOCAL_PATH = "./videoseal"
|
| 11 |
|
| 12 |
def install_src():
|
gradio_app.py
CHANGED
|
@@ -28,14 +28,22 @@ import videoseal
|
|
| 28 |
from videoseal.utils.display import save_video_audio_to_mp4
|
| 29 |
|
| 30 |
# Load video_model if not already loaded in reload mode
|
| 31 |
-
if '
|
| 32 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 33 |
|
| 34 |
-
|
| 35 |
-
|
|
|
|
|
|
|
| 36 |
video_model.eval()
|
| 37 |
video_model.to(device)
|
| 38 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 39 |
|
| 40 |
# Load the AudioSeal model
|
| 41 |
# Load audio_generator if not already loaded in reload mode
|
|
@@ -49,6 +57,10 @@ if 'audio_detector' not in globals():
|
|
| 49 |
audio_detector = AudioSeal.load_detector("audioseal_detector_16bits")
|
| 50 |
audio_detector = audio_detector.to(device)
|
| 51 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 52 |
def generate_msg_pt_by_format_string(format_string, bytes_count):
|
| 53 |
msg_hex = format_string.replace("-", "")
|
| 54 |
hex_length = bytes_count * 2
|
|
@@ -345,8 +357,9 @@ def embed_audio(
|
|
| 345 |
# print(stderr_output2)
|
| 346 |
return
|
| 347 |
|
| 348 |
-
def embed_watermark(input_path, output_path, msg_v, msg_a, video_only, progress):
|
| 349 |
output_path_video = output_path + ".video.mp4"
|
|
|
|
| 350 |
embed_video(video_model, input_path, output_path_video, msg_v, 16)
|
| 351 |
|
| 352 |
output_path_audio = output_path + ".audio.m4a"
|
|
@@ -378,6 +391,7 @@ def detect_video_clip(
|
|
| 378 |
|
| 379 |
def detect_video(
|
| 380 |
model,
|
|
|
|
| 381 |
input_path: str,
|
| 382 |
chunk_size: int
|
| 383 |
) -> None:
|
|
@@ -402,7 +416,7 @@ def detect_video(
|
|
| 402 |
chunk = np.zeros((chunk_size, height, width, 3), dtype=np.uint8)
|
| 403 |
frame_count = 0
|
| 404 |
soft_msgs = []
|
| 405 |
-
pbar = tqdm.tqdm(total=num_frames, unit='frame', desc="Watermark video detecting")
|
| 406 |
while True:
|
| 407 |
in_bytes = process1.stdout.read(frame_size)
|
| 408 |
if not in_bytes:
|
|
@@ -521,16 +535,25 @@ def detect_audio(
|
|
| 521 |
soft_message_prob = torch.cat(soft_message_prob, dim=0)
|
| 522 |
return (soft_result, soft_message, soft_pred_prob, soft_message_prob)
|
| 523 |
|
| 524 |
-
def detect_watermark(input_path, video_only):
|
| 525 |
-
|
| 526 |
-
msgs_v_avg =
|
| 527 |
-
msgs_v_frame =
|
| 528 |
-
|
| 529 |
-
|
| 530 |
-
|
| 531 |
-
|
| 532 |
-
|
| 533 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 534 |
|
| 535 |
msgs_a_most = msgs_a_res = msgs_a_frame = msgs_a_pred = msgs_a_prob = None
|
| 536 |
if not video_only:
|
|
@@ -549,7 +572,7 @@ def detect_watermark(input_path, video_only):
|
|
| 549 |
with gr.Blocks(title="VideoSeal") as demo:
|
| 550 |
gr.Markdown("""
|
| 551 |
# VideoSeal Demo
|
| 552 |
-
|
| 553 |
For video, each frame will be watermarked and detected.
|
| 554 |
For audio, each 3 seconds will be watermarked, and each second will be detected.
|
| 555 |
|
|
@@ -570,7 +593,8 @@ with gr.Blocks(title="VideoSeal") as demo:
|
|
| 570 |
with gr.Column():
|
| 571 |
embedding_type = gr.Radio(["random", "input"], value="random", label="Type", info="Type of watermarks")
|
| 572 |
|
| 573 |
-
|
|
|
|
| 574 |
msg_v, _ = generate_hex_random_message(video_model_nbytes)
|
| 575 |
embedding_msg_v = gr.Textbox(
|
| 576 |
label=f"Message ({video_model_nbytes} bytes hex string)",
|
|
@@ -578,42 +602,64 @@ with gr.Blocks(title="VideoSeal") as demo:
|
|
| 578 |
value=msg_v,
|
| 579 |
interactive=False, show_copy_button=True)
|
| 580 |
with gr.Column():
|
| 581 |
-
|
| 582 |
-
|
| 583 |
-
|
| 584 |
-
|
| 585 |
-
|
| 586 |
-
|
| 587 |
-
|
| 588 |
-
|
| 589 |
-
|
| 590 |
-
|
|
|
|
| 591 |
embedding_btn = gr.Button("Embed Watermark")
|
| 592 |
with gr.Column():
|
| 593 |
marked_vid = gr.Video(label="Output Audio", show_download_button=True)
|
| 594 |
|
| 595 |
-
def
|
| 596 |
return gr.update(visible=not video_only)
|
| 597 |
embedding_only_vid.change(
|
| 598 |
-
fn=
|
| 599 |
inputs=[embedding_only_vid],
|
| 600 |
-
outputs=[embedding_msg_a]
|
|
|
|
| 601 |
)
|
| 602 |
|
| 603 |
-
def
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 604 |
if type == "random":
|
|
|
|
| 605 |
msg_v, _ = generate_hex_random_message(video_model_nbytes)
|
| 606 |
-
msg_a,_ = generate_hex_random_message(audio_generator_nbytes)
|
| 607 |
return [gr.update(interactive=False, value=msg_v),gr.update(interactive=False, value=msg_a)]
|
| 608 |
else:
|
| 609 |
return [gr.update(interactive=True),gr.update(interactive=True)]
|
| 610 |
embedding_type.change(
|
| 611 |
fn=change_embedding_type,
|
| 612 |
-
inputs=[embedding_type],
|
| 613 |
-
outputs=[embedding_msg_v, embedding_msg_a]
|
|
|
|
| 614 |
)
|
| 615 |
|
| 616 |
-
def check_embedding_msg(msg_v, msg_a):
|
|
|
|
|
|
|
|
|
|
| 617 |
if not re.match(regex_pattern_v, msg_v):
|
| 618 |
gr.Warning(
|
| 619 |
f"Invalid format. Please use like '{format_like_v}'",
|
|
@@ -624,17 +670,36 @@ with gr.Blocks(title="VideoSeal") as demo:
|
|
| 624 |
duration=0)
|
| 625 |
embedding_msg_v.change(
|
| 626 |
fn=check_embedding_msg,
|
| 627 |
-
inputs=[embedding_msg_v, embedding_msg_a],
|
| 628 |
-
outputs=[]
|
|
|
|
| 629 |
)
|
| 630 |
embedding_msg_a.change(
|
| 631 |
fn=check_embedding_msg,
|
| 632 |
inputs=[embedding_msg_v, embedding_msg_a],
|
| 633 |
-
outputs=[]
|
|
|
|
| 634 |
)
|
| 635 |
|
| 636 |
-
def run_embed_watermark(
|
| 637 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 638 |
raise gr.Error("No file uploaded", duration=5)
|
| 639 |
if not re.match(regex_pattern_v, msg_v):
|
| 640 |
raise gr.Error(f"Invalid format. Please use like '{format_like_v}'", duration=5)
|
|
@@ -645,15 +710,15 @@ with gr.Blocks(title="VideoSeal") as demo:
|
|
| 645 |
msg_pt_a = generate_msg_pt_by_format_string(msg_a, audio_generator_nbytes)
|
| 646 |
|
| 647 |
if video_only:
|
| 648 |
-
output_path = os.path.join(os.path.dirname(
|
| 649 |
else:
|
| 650 |
-
output_path = os.path.join(os.path.dirname(
|
| 651 |
-
embed_watermark(
|
| 652 |
|
| 653 |
return output_path
|
| 654 |
embedding_btn.click(
|
| 655 |
fn=run_embed_watermark,
|
| 656 |
-
inputs=[embedding_vid, embedding_only_vid, embedding_msg_v, embedding_msg_a],
|
| 657 |
outputs=[marked_vid]
|
| 658 |
)
|
| 659 |
|
|
@@ -661,28 +726,48 @@ with gr.Blocks(title="VideoSeal") as demo:
|
|
| 661 |
with gr.Row():
|
| 662 |
with gr.Column():
|
| 663 |
detecting_vid = gr.Video(label="Input Video")
|
| 664 |
-
|
|
|
|
|
|
|
| 665 |
detecting_btn = gr.Button("Detect Watermark")
|
| 666 |
with gr.Column():
|
| 667 |
predicted_messages = gr.JSON(label="Detected Messages")
|
| 668 |
|
| 669 |
-
def run_detect_watermark(file, video_only, progress=gr.Progress(track_tqdm=True)):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 670 |
if file is None:
|
| 671 |
raise gr.Error("No file uploaded", duration=5)
|
| 672 |
|
| 673 |
-
msgs_v_most, msgs_v_avg, msgs_v_frame, msgs_a_most, msgs_a_res, msgs_a_frame, msgs_a_pred, msgs_a_prob = detect_watermark(file, video_only)
|
| 674 |
-
|
| 675 |
-
|
| 676 |
-
_,
|
| 677 |
-
|
| 678 |
-
|
| 679 |
-
|
| 680 |
-
|
| 681 |
-
|
| 682 |
-
|
| 683 |
-
|
| 684 |
-
|
| 685 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 686 |
|
| 687 |
if msgs_a_res is None:
|
| 688 |
audio_json = None
|
|
@@ -714,9 +799,9 @@ with gr.Blocks(title="VideoSeal") as demo:
|
|
| 714 |
return message_json
|
| 715 |
detecting_btn.click(
|
| 716 |
fn=run_detect_watermark,
|
| 717 |
-
inputs=[detecting_vid, detecting_only_vid],
|
| 718 |
outputs=[predicted_messages]
|
| 719 |
)
|
| 720 |
|
| 721 |
if __name__ == "__main__":
|
| 722 |
-
demo.launch()
|
|
|
|
| 28 |
from videoseal.utils.display import save_video_audio_to_mp4
|
| 29 |
|
| 30 |
# Load video_model if not already loaded in reload mode
|
| 31 |
+
if 'video_models' not in globals():
|
| 32 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 33 |
|
| 34 |
+
video_models = {}
|
| 35 |
+
|
| 36 |
+
# Load the VideoSeal model 1.0
|
| 37 |
+
video_model = videoseal.load("videoseal_1.0")
|
| 38 |
video_model.eval()
|
| 39 |
video_model.to(device)
|
| 40 |
+
video_models['1.0'] = video_model
|
| 41 |
+
|
| 42 |
+
# Load the VideoSeal model 0.0
|
| 43 |
+
video_model = videoseal.load("videoseal_0.0")
|
| 44 |
+
video_model.eval()
|
| 45 |
+
video_model.to(device)
|
| 46 |
+
video_models['0.0'] = video_model
|
| 47 |
|
| 48 |
# Load the AudioSeal model
|
| 49 |
# Load audio_generator if not already loaded in reload mode
|
|
|
|
| 57 |
audio_detector = AudioSeal.load_detector("audioseal_detector_16bits")
|
| 58 |
audio_detector = audio_detector.to(device)
|
| 59 |
|
| 60 |
+
def get_model_nbytes(model_version):
|
| 61 |
+
video_model = video_models[model_version]
|
| 62 |
+
return int(video_model.embedder.msg_processor.nbits / 8)
|
| 63 |
+
|
| 64 |
def generate_msg_pt_by_format_string(format_string, bytes_count):
|
| 65 |
msg_hex = format_string.replace("-", "")
|
| 66 |
hex_length = bytes_count * 2
|
|
|
|
| 357 |
# print(stderr_output2)
|
| 358 |
return
|
| 359 |
|
| 360 |
+
def embed_watermark(input_path, model_version, output_path, msg_v, msg_a, video_only, progress):
|
| 361 |
output_path_video = output_path + ".video.mp4"
|
| 362 |
+
video_model = video_models[model_version]
|
| 363 |
embed_video(video_model, input_path, output_path_video, msg_v, 16)
|
| 364 |
|
| 365 |
output_path_audio = output_path + ".audio.m4a"
|
|
|
|
| 391 |
|
| 392 |
def detect_video(
|
| 393 |
model,
|
| 394 |
+
version: str,
|
| 395 |
input_path: str,
|
| 396 |
chunk_size: int
|
| 397 |
) -> None:
|
|
|
|
| 416 |
chunk = np.zeros((chunk_size, height, width, 3), dtype=np.uint8)
|
| 417 |
frame_count = 0
|
| 418 |
soft_msgs = []
|
| 419 |
+
pbar = tqdm.tqdm(total=num_frames, unit='frame', desc=f"{version}: Watermark video detecting")
|
| 420 |
while True:
|
| 421 |
in_bytes = process1.stdout.read(frame_size)
|
| 422 |
if not in_bytes:
|
|
|
|
| 535 |
soft_message_prob = torch.cat(soft_message_prob, dim=0)
|
| 536 |
return (soft_result, soft_message, soft_pred_prob, soft_message_prob)
|
| 537 |
|
| 538 |
+
def detect_watermark(input_path, version_keys, video_only):
|
| 539 |
+
msgs_v_most = {}
|
| 540 |
+
msgs_v_avg = {}
|
| 541 |
+
msgs_v_frame = {}
|
| 542 |
+
for video_version, video_model in video_models.items():
|
| 543 |
+
if video_version not in version_keys:
|
| 544 |
+
continue
|
| 545 |
+
version_msgs_v_frame = detect_video(video_model, video_version, input_path, 16)
|
| 546 |
+
version_msgs_v_frame = (version_msgs_v_frame > 0).to(int)
|
| 547 |
+
version_msgs_v_avg = (version_msgs_v_frame.to(torch.float32).mean(dim=0) > 0).to(int)
|
| 548 |
+
version_msgs_v_most = None
|
| 549 |
+
version_msgs_v_unique, version_msgs_v_counts = torch.unique(version_msgs_v_frame, dim=0, return_counts=True)
|
| 550 |
+
if len(version_msgs_v_frame) > len(version_msgs_v_counts) > 0:
|
| 551 |
+
version_msgs_v_most_idx = torch.argmax(version_msgs_v_counts)
|
| 552 |
+
version_msgs_v_most = version_msgs_v_unique[version_msgs_v_most_idx]
|
| 553 |
+
|
| 554 |
+
msgs_v_most[video_version] = version_msgs_v_most
|
| 555 |
+
msgs_v_avg[video_version] = version_msgs_v_avg
|
| 556 |
+
msgs_v_frame[video_version] = version_msgs_v_frame
|
| 557 |
|
| 558 |
msgs_a_most = msgs_a_res = msgs_a_frame = msgs_a_pred = msgs_a_prob = None
|
| 559 |
if not video_only:
|
|
|
|
| 572 |
with gr.Blocks(title="VideoSeal") as demo:
|
| 573 |
gr.Markdown("""
|
| 574 |
# VideoSeal Demo
|
| 575 |
+

|
| 576 |
For video, each frame will be watermarked and detected.
|
| 577 |
For audio, each 3 seconds will be watermarked, and each second will be detected.
|
| 578 |
|
|
|
|
| 593 |
with gr.Column():
|
| 594 |
embedding_type = gr.Radio(["random", "input"], value="random", label="Type", info="Type of watermarks")
|
| 595 |
|
| 596 |
+
video_model_nbytes = get_model_nbytes(list(video_models.keys())[0])
|
| 597 |
+
format_like_v, _ = generate_hex_format_regex(video_model_nbytes)
|
| 598 |
msg_v, _ = generate_hex_random_message(video_model_nbytes)
|
| 599 |
embedding_msg_v = gr.Textbox(
|
| 600 |
label=f"Message ({video_model_nbytes} bytes hex string)",
|
|
|
|
| 602 |
value=msg_v,
|
| 603 |
interactive=False, show_copy_button=True)
|
| 604 |
with gr.Column():
|
| 605 |
+
embedding_version = gr.Dropdown(video_models.keys(), label="Model version", interactive=True)
|
| 606 |
+
with gr.Column():
|
| 607 |
+
embedding_only_vid = gr.Checkbox(label="Only Video", value=False)
|
| 608 |
+
|
| 609 |
+
format_like_a, _ = generate_hex_format_regex(audio_generator_nbytes)
|
| 610 |
+
msg_a, _ = generate_hex_random_message(audio_generator_nbytes)
|
| 611 |
+
embedding_msg_a = gr.Textbox(
|
| 612 |
+
label=f"Audio Message ({audio_generator_nbytes} bytes hex string)",
|
| 613 |
+
info=f"format like {format_like_a}",
|
| 614 |
+
value=msg_a,
|
| 615 |
+
interactive=False, show_copy_button=True)
|
| 616 |
embedding_btn = gr.Button("Embed Watermark")
|
| 617 |
with gr.Column():
|
| 618 |
marked_vid = gr.Video(label="Output Audio", show_download_button=True)
|
| 619 |
|
| 620 |
+
def change_embedding_silent(video_only):
|
| 621 |
return gr.update(visible=not video_only)
|
| 622 |
embedding_only_vid.change(
|
| 623 |
+
fn=change_embedding_silent,
|
| 624 |
inputs=[embedding_only_vid],
|
| 625 |
+
outputs=[embedding_msg_a],
|
| 626 |
+
api_name=False
|
| 627 |
)
|
| 628 |
|
| 629 |
+
def change_embedding_version(version):
|
| 630 |
+
video_model_nbytes = get_model_nbytes(version)
|
| 631 |
+
format_like_v, _ = generate_hex_format_regex(video_model_nbytes)
|
| 632 |
+
msg_v, _ = generate_hex_random_message(video_model_nbytes)
|
| 633 |
+
return gr.update(
|
| 634 |
+
label=f"Message ({video_model_nbytes} bytes hex string)",
|
| 635 |
+
info=f"format like {format_like_v}",
|
| 636 |
+
value=msg_v)
|
| 637 |
+
embedding_version.change(
|
| 638 |
+
fn=change_embedding_version,
|
| 639 |
+
inputs=[embedding_version],
|
| 640 |
+
outputs=[embedding_msg_v],
|
| 641 |
+
api_name=False
|
| 642 |
+
)
|
| 643 |
+
|
| 644 |
+
def change_embedding_type(type, version):
|
| 645 |
if type == "random":
|
| 646 |
+
video_model_nbytes = get_model_nbytes(version)
|
| 647 |
msg_v, _ = generate_hex_random_message(video_model_nbytes)
|
| 648 |
+
msg_a, _ = generate_hex_random_message(audio_generator_nbytes)
|
| 649 |
return [gr.update(interactive=False, value=msg_v),gr.update(interactive=False, value=msg_a)]
|
| 650 |
else:
|
| 651 |
return [gr.update(interactive=True),gr.update(interactive=True)]
|
| 652 |
embedding_type.change(
|
| 653 |
fn=change_embedding_type,
|
| 654 |
+
inputs=[embedding_type, embedding_version],
|
| 655 |
+
outputs=[embedding_msg_v, embedding_msg_a],
|
| 656 |
+
api_name=False
|
| 657 |
)
|
| 658 |
|
| 659 |
+
def check_embedding_msg(version_v, msg_v, msg_a):
|
| 660 |
+
video_model_nbytes = get_model_nbytes(version_v)
|
| 661 |
+
_, regex_pattern_v = generate_hex_format_regex(video_model_nbytes)
|
| 662 |
+
_, regex_pattern_a = generate_hex_format_regex(audio_generator_nbytes)
|
| 663 |
if not re.match(regex_pattern_v, msg_v):
|
| 664 |
gr.Warning(
|
| 665 |
f"Invalid format. Please use like '{format_like_v}'",
|
|
|
|
| 670 |
duration=0)
|
| 671 |
embedding_msg_v.change(
|
| 672 |
fn=check_embedding_msg,
|
| 673 |
+
inputs=[embedding_version, embedding_msg_v, embedding_msg_a],
|
| 674 |
+
outputs=[],
|
| 675 |
+
api_name=False
|
| 676 |
)
|
| 677 |
embedding_msg_a.change(
|
| 678 |
fn=check_embedding_msg,
|
| 679 |
inputs=[embedding_msg_v, embedding_msg_a],
|
| 680 |
+
outputs=[],
|
| 681 |
+
api_name=False
|
| 682 |
)
|
| 683 |
|
| 684 |
+
def run_embed_watermark(file, model_version, video_only, msg_v, msg_a, progress=gr.Progress(track_tqdm=True)):
|
| 685 |
+
"""
|
| 686 |
+
Embeds a watermark into the given video file using the specified model.
|
| 687 |
+
|
| 688 |
+
Args:
|
| 689 |
+
file (str): Path to the input video file.
|
| 690 |
+
model_version (str): Identifier for the video model version or checkpoint used for embedding.
|
| 691 |
+
video_only (bool): If True, embeds watermark only in the video stream; audio is ignored.
|
| 692 |
+
msg_v (str): A 12- or 32-byte hexadecimal string to embed as a watermark in the video stream (e.g., "FFFF").
|
| 693 |
+
msg_a (str): A 2-byte hexadecimal string to embed as a watermark in the audio stream (e.g., "FFFF").
|
| 694 |
+
progress (gr.Progress, optional): Gradio progress tracker for monitoring embedding progress. Defaults to tracking tqdm.
|
| 695 |
+
|
| 696 |
+
Returns:
|
| 697 |
+
str: File path to the watermarked output video file.
|
| 698 |
+
"""
|
| 699 |
+
video_model_nbytes = get_model_nbytes(model_version)
|
| 700 |
+
_, regex_pattern_v = generate_hex_format_regex(video_model_nbytes)
|
| 701 |
+
_, regex_pattern_a = generate_hex_format_regex(audio_generator_nbytes)
|
| 702 |
+
if file is None:
|
| 703 |
raise gr.Error("No file uploaded", duration=5)
|
| 704 |
if not re.match(regex_pattern_v, msg_v):
|
| 705 |
raise gr.Error(f"Invalid format. Please use like '{format_like_v}'", duration=5)
|
|
|
|
| 710 |
msg_pt_a = generate_msg_pt_by_format_string(msg_a, audio_generator_nbytes)
|
| 711 |
|
| 712 |
if video_only:
|
| 713 |
+
output_path = os.path.join(os.path.dirname(file), "__".join([msg_v]) + '.mp4')
|
| 714 |
else:
|
| 715 |
+
output_path = os.path.join(os.path.dirname(file), "__".join([msg_v, msg_a]) + '.mp4')
|
| 716 |
+
embed_watermark(file, model_version, output_path, msg_pt_v, msg_pt_a, video_only, progress)
|
| 717 |
|
| 718 |
return output_path
|
| 719 |
embedding_btn.click(
|
| 720 |
fn=run_embed_watermark,
|
| 721 |
+
inputs=[embedding_vid, embedding_version, embedding_only_vid, embedding_msg_v, embedding_msg_a],
|
| 722 |
outputs=[marked_vid]
|
| 723 |
)
|
| 724 |
|
|
|
|
| 726 |
with gr.Row():
|
| 727 |
with gr.Column():
|
| 728 |
detecting_vid = gr.Video(label="Input Video")
|
| 729 |
+
with gr.Row():
|
| 730 |
+
detecting_model_dd = gr.Dropdown(video_models.keys(), value=list(video_models.keys()), multiselect=True, label="Model version", interactive=True)
|
| 731 |
+
detecting_only_vid = gr.Checkbox(label="Only Video", value=False)
|
| 732 |
detecting_btn = gr.Button("Detect Watermark")
|
| 733 |
with gr.Column():
|
| 734 |
predicted_messages = gr.JSON(label="Detected Messages")
|
| 735 |
|
| 736 |
+
def run_detect_watermark(file, model_versions, video_only, progress=gr.Progress(track_tqdm=True)):
|
| 737 |
+
"""
|
| 738 |
+
Detects a watermark in the given video file using specified model versions.
|
| 739 |
+
|
| 740 |
+
Args:
|
| 741 |
+
file (str): Path to the input video file.
|
| 742 |
+
model_versions (List[str]): List of model version identifiers (e.g., checkpoint versions) to use for detection.
|
| 743 |
+
video_only (bool): If True, only the video stream is considered; audio is ignored.
|
| 744 |
+
progress (gr.Progress, optional): Gradio Progress tracker for visualizing progress. Defaults to tracking tqdm.
|
| 745 |
+
|
| 746 |
+
Returns:
|
| 747 |
+
str: A Markdown-formatted string containing the detection results.
|
| 748 |
+
"""
|
| 749 |
if file is None:
|
| 750 |
raise gr.Error("No file uploaded", duration=5)
|
| 751 |
|
| 752 |
+
msgs_v_most, msgs_v_avg, msgs_v_frame, msgs_a_most, msgs_a_res, msgs_a_frame, msgs_a_pred, msgs_a_prob = detect_watermark(file, model_versions, video_only)
|
| 753 |
+
|
| 754 |
+
video_json = {}
|
| 755 |
+
for (version_name, version_msgs_v_most), (_, version_msgs_v_avg), (_, version_msgs_v_frame) in zip(msgs_v_most.items(), msgs_v_avg.items(), msgs_v_frame.items()):
|
| 756 |
+
if version_name not in model_versions:
|
| 757 |
+
continue
|
| 758 |
+
|
| 759 |
+
video_model_nbytes = get_model_nbytes(version_name)
|
| 760 |
+
_, format_msg_v_most = generate_format_string_by_msg_pt(version_msgs_v_most, video_model_nbytes)
|
| 761 |
+
_, format_msg_v_avg = generate_format_string_by_msg_pt(version_msgs_v_avg, video_model_nbytes)
|
| 762 |
+
format_msg_v_frames = {}
|
| 763 |
+
for idx, msg in enumerate(version_msgs_v_frame):
|
| 764 |
+
_, format_msg = generate_format_string_by_msg_pt(msg, video_model_nbytes)
|
| 765 |
+
format_msg_v_frames[f"{idx}"] = format_msg
|
| 766 |
+
video_json[version_name] = {
|
| 767 |
+
"most": format_msg_v_most,
|
| 768 |
+
"avg": format_msg_v_avg,
|
| 769 |
+
"frames": format_msg_v_frames
|
| 770 |
+
}
|
| 771 |
|
| 772 |
if msgs_a_res is None:
|
| 773 |
audio_json = None
|
|
|
|
| 799 |
return message_json
|
| 800 |
detecting_btn.click(
|
| 801 |
fn=run_detect_watermark,
|
| 802 |
+
inputs=[detecting_vid, detecting_model_dd, detecting_only_vid],
|
| 803 |
outputs=[predicted_messages]
|
| 804 |
)
|
| 805 |
|
| 806 |
if __name__ == "__main__":
|
| 807 |
+
demo.launch(server_name="0.0.0.0", server_port=7860, mcp_server=True, ssr_mode=False)
|
requirements.txt
CHANGED
|
@@ -1,10 +1,11 @@
|
|
| 1 |
torch==2.5.1
|
| 2 |
-
gradio==5.
|
| 3 |
GitPython==3.1.43
|
| 4 |
-
huggingface-hub==0.
|
| 5 |
audioseal==0.1.4
|
| 6 |
matplotlib==3.10.0
|
| 7 |
soundfile==0.12.1
|
| 8 |
torchaudio==2.5.1
|
| 9 |
-
|
| 10 |
-
pydantic
|
|
|
|
|
|
| 1 |
torch==2.5.1
|
| 2 |
+
gradio[mcp]==5.28.0
|
| 3 |
GitPython==3.1.43
|
| 4 |
+
huggingface-hub==0.28.1
|
| 5 |
audioseal==0.1.4
|
| 6 |
matplotlib==3.10.0
|
| 7 |
soundfile==0.12.1
|
| 8 |
torchaudio==2.5.1
|
| 9 |
+
|
| 10 |
+
# gradio[mcp] 5.28.0 depends on pydantic>=2.11
|
| 11 |
+
pydantic==2.11.4
|