Spaces:
Build error
Build error
xhlm123
commited on
Commit
·
804e0a1
1
Parent(s):
b7a8592
Add application file
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- .gitattributes +0 -35
- AR/__pycache__/__init__.cpython-39.pyc +0 -0
- AR/data/bucket_sampler.py +0 -163
- AR/data/data_module.py +0 -76
- AR/data/dataset.py +0 -321
- AR/models/__init__.py +0 -0
- AR/models/__pycache__/__init__.cpython-39.pyc +0 -0
- AR/models/__pycache__/t2s_lightning_module.cpython-39.pyc +0 -0
- AR/models/__pycache__/t2s_model.cpython-39.pyc +0 -0
- AR/models/__pycache__/utils.cpython-39.pyc +0 -0
- AR/models/t2s_lightning_module.py +0 -141
- AR/models/t2s_lightning_module_onnx.py +0 -107
- AR/models/t2s_model.py +0 -588
- AR/models/t2s_model_onnx.py +0 -338
- AR/models/utils.py +0 -229
- AR/modules/__init__.py +0 -0
- AR/modules/__pycache__/__init__.cpython-39.pyc +0 -0
- AR/modules/__pycache__/activation.cpython-39.pyc +0 -0
- AR/modules/__pycache__/embedding.cpython-39.pyc +0 -0
- AR/modules/__pycache__/lr_schedulers.cpython-39.pyc +0 -0
- AR/modules/__pycache__/optim.cpython-39.pyc +0 -0
- AR/modules/__pycache__/patched_mha_with_cache.cpython-39.pyc +0 -0
- AR/modules/__pycache__/scaling.cpython-39.pyc +0 -0
- AR/modules/__pycache__/transformer.cpython-39.pyc +0 -0
- AR/modules/activation.py +0 -428
- AR/modules/activation_onnx.py +0 -178
- AR/modules/embedding.py +0 -81
- AR/modules/embedding_onnx.py +0 -63
- AR/modules/lr_schedulers.py +0 -83
- AR/modules/optim.py +0 -622
- AR/modules/patched_mha_with_cache.py +0 -465
- AR/modules/patched_mha_with_cache_onnx.py +0 -92
- AR/modules/scaling.py +0 -335
- AR/modules/transformer.py +0 -378
- AR/modules/transformer_onnx.py +0 -292
- AR/text_processing/__init__.py +0 -0
- AR/text_processing/phonemizer.py +0 -79
- AR/text_processing/symbols.py +0 -10
- AR/utils/__init__.py +0 -37
- AR/utils/initialize.py +0 -38
- AR/utils/io.py +0 -34
- README.md +0 -12
- __pycache__/utils.cpython-39.pyc +0 -0
- app.py +0 -678
- configs/s1.yaml +0 -31
- configs/s1big.yaml +0 -31
- configs/s1big2.yaml +0 -31
- configs/s1longer.yaml +0 -31
- configs/s1mq.yaml +0 -77
- configs/s2.json +0 -90
.gitattributes
DELETED
|
@@ -1,35 +0,0 @@
|
|
| 1 |
-
*.7z filter=lfs diff=lfs merge=lfs -text
|
| 2 |
-
*.arrow filter=lfs diff=lfs merge=lfs -text
|
| 3 |
-
*.bin filter=lfs diff=lfs merge=lfs -text
|
| 4 |
-
*.bz2 filter=lfs diff=lfs merge=lfs -text
|
| 5 |
-
*.ckpt filter=lfs diff=lfs merge=lfs -text
|
| 6 |
-
*.ftz filter=lfs diff=lfs merge=lfs -text
|
| 7 |
-
*.gz filter=lfs diff=lfs merge=lfs -text
|
| 8 |
-
*.h5 filter=lfs diff=lfs merge=lfs -text
|
| 9 |
-
*.joblib filter=lfs diff=lfs merge=lfs -text
|
| 10 |
-
*.lfs.* filter=lfs diff=lfs merge=lfs -text
|
| 11 |
-
*.mlmodel filter=lfs diff=lfs merge=lfs -text
|
| 12 |
-
*.model filter=lfs diff=lfs merge=lfs -text
|
| 13 |
-
*.msgpack filter=lfs diff=lfs merge=lfs -text
|
| 14 |
-
*.npy filter=lfs diff=lfs merge=lfs -text
|
| 15 |
-
*.npz filter=lfs diff=lfs merge=lfs -text
|
| 16 |
-
*.onnx filter=lfs diff=lfs merge=lfs -text
|
| 17 |
-
*.ot filter=lfs diff=lfs merge=lfs -text
|
| 18 |
-
*.parquet filter=lfs diff=lfs merge=lfs -text
|
| 19 |
-
*.pb filter=lfs diff=lfs merge=lfs -text
|
| 20 |
-
*.pickle filter=lfs diff=lfs merge=lfs -text
|
| 21 |
-
*.pkl filter=lfs diff=lfs merge=lfs -text
|
| 22 |
-
*.pt filter=lfs diff=lfs merge=lfs -text
|
| 23 |
-
*.pth filter=lfs diff=lfs merge=lfs -text
|
| 24 |
-
*.rar filter=lfs diff=lfs merge=lfs -text
|
| 25 |
-
*.safetensors filter=lfs diff=lfs merge=lfs -text
|
| 26 |
-
saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
| 27 |
-
*.tar.* filter=lfs diff=lfs merge=lfs -text
|
| 28 |
-
*.tar filter=lfs diff=lfs merge=lfs -text
|
| 29 |
-
*.tflite filter=lfs diff=lfs merge=lfs -text
|
| 30 |
-
*.tgz filter=lfs diff=lfs merge=lfs -text
|
| 31 |
-
*.wasm filter=lfs diff=lfs merge=lfs -text
|
| 32 |
-
*.xz filter=lfs diff=lfs merge=lfs -text
|
| 33 |
-
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 34 |
-
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 35 |
-
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
AR/__pycache__/__init__.cpython-39.pyc
DELETED
|
Binary file (143 Bytes)
|
|
|
AR/data/bucket_sampler.py
DELETED
|
@@ -1,163 +0,0 @@
|
|
| 1 |
-
# modified from https://github.com/yangdongchao/SoundStorm/blob/master/soundstorm/s1/AR/data/bucket_sampler.py
|
| 2 |
-
# reference: https://github.com/lifeiteng/vall-e
|
| 3 |
-
import itertools
|
| 4 |
-
import math
|
| 5 |
-
import random
|
| 6 |
-
from random import shuffle
|
| 7 |
-
from typing import Iterator
|
| 8 |
-
from typing import Optional
|
| 9 |
-
from typing import TypeVar
|
| 10 |
-
|
| 11 |
-
import torch
|
| 12 |
-
import torch.distributed as dist
|
| 13 |
-
from torch.utils.data import Dataset
|
| 14 |
-
from torch.utils.data import Sampler
|
| 15 |
-
|
| 16 |
-
__all__ = [
|
| 17 |
-
"DistributedBucketSampler",
|
| 18 |
-
]
|
| 19 |
-
|
| 20 |
-
T_co = TypeVar("T_co", covariant=True)
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
class DistributedBucketSampler(Sampler[T_co]):
|
| 24 |
-
r"""
|
| 25 |
-
sort the dataset wrt. input length
|
| 26 |
-
divide samples into buckets
|
| 27 |
-
sort within buckets
|
| 28 |
-
divide buckets into batches
|
| 29 |
-
sort batches
|
| 30 |
-
"""
|
| 31 |
-
|
| 32 |
-
def __init__(
|
| 33 |
-
self,
|
| 34 |
-
dataset: Dataset,
|
| 35 |
-
num_replicas: Optional[int] = None,
|
| 36 |
-
rank: Optional[int] = None,
|
| 37 |
-
shuffle: bool = True,
|
| 38 |
-
seed: int = 0,
|
| 39 |
-
drop_last: bool = False,
|
| 40 |
-
batch_size: int = 32,
|
| 41 |
-
) -> None:
|
| 42 |
-
if num_replicas is None:
|
| 43 |
-
if not dist.is_available():
|
| 44 |
-
raise RuntimeError("Requires distributed package to be available")
|
| 45 |
-
num_replicas = dist.get_world_size() if torch.cuda.is_available() else 1
|
| 46 |
-
if rank is None:
|
| 47 |
-
if not dist.is_available():
|
| 48 |
-
raise RuntimeError("Requires distributed package to be available")
|
| 49 |
-
rank = dist.get_rank() if torch.cuda.is_available() else 0
|
| 50 |
-
if torch.cuda.is_available():
|
| 51 |
-
torch.cuda.set_device(rank)
|
| 52 |
-
if rank >= num_replicas or rank < 0:
|
| 53 |
-
raise ValueError(
|
| 54 |
-
"Invalid rank {}, rank should be in the interval"
|
| 55 |
-
" [0, {}]".format(rank, num_replicas - 1)
|
| 56 |
-
)
|
| 57 |
-
self.dataset = dataset
|
| 58 |
-
self.num_replicas = num_replicas
|
| 59 |
-
self.rank = rank
|
| 60 |
-
self.epoch = 0
|
| 61 |
-
self.drop_last = drop_last
|
| 62 |
-
# If the dataset length is evenly divisible by # of replicas, then there
|
| 63 |
-
# is no need to drop any data, since the dataset will be split equally.
|
| 64 |
-
if (
|
| 65 |
-
self.drop_last and len(self.dataset) % self.num_replicas != 0
|
| 66 |
-
): # type: ignore[arg-type]
|
| 67 |
-
# Split to nearest available length that is evenly divisible.
|
| 68 |
-
# This is to ensure each rank receives the same amount of data when
|
| 69 |
-
# using this Sampler.
|
| 70 |
-
self.num_samples = math.ceil(
|
| 71 |
-
(len(self.dataset) - self.num_replicas)
|
| 72 |
-
/ self.num_replicas # type: ignore[arg-type]
|
| 73 |
-
)
|
| 74 |
-
else:
|
| 75 |
-
self.num_samples = math.ceil(
|
| 76 |
-
len(self.dataset) / self.num_replicas
|
| 77 |
-
) # type: ignore[arg-type]
|
| 78 |
-
self.total_size = self.num_samples * self.num_replicas
|
| 79 |
-
self.shuffle = shuffle
|
| 80 |
-
self.seed = seed
|
| 81 |
-
self.batch_size = batch_size
|
| 82 |
-
self.id_with_length = self._get_sample_lengths()
|
| 83 |
-
self.id_buckets = self.make_buckets(bucket_width=2.0)
|
| 84 |
-
|
| 85 |
-
def _get_sample_lengths(self):
|
| 86 |
-
id_with_lengths = []
|
| 87 |
-
for i in range(len(self.dataset)):
|
| 88 |
-
id_with_lengths.append((i, self.dataset.get_sample_length(i)))
|
| 89 |
-
id_with_lengths.sort(key=lambda x: x[1])
|
| 90 |
-
return id_with_lengths
|
| 91 |
-
|
| 92 |
-
def make_buckets(self, bucket_width: float = 2.0):
|
| 93 |
-
buckets = []
|
| 94 |
-
cur = []
|
| 95 |
-
max_sec = bucket_width
|
| 96 |
-
for id, sec in self.id_with_length:
|
| 97 |
-
if sec < max_sec:
|
| 98 |
-
cur.append(id)
|
| 99 |
-
else:
|
| 100 |
-
buckets.append(cur)
|
| 101 |
-
cur = [id]
|
| 102 |
-
max_sec += bucket_width
|
| 103 |
-
if len(cur) > 0:
|
| 104 |
-
buckets.append(cur)
|
| 105 |
-
return buckets
|
| 106 |
-
|
| 107 |
-
def __iter__(self) -> Iterator[T_co]:
|
| 108 |
-
if self.shuffle:
|
| 109 |
-
# deterministically shuffle based on epoch and seed
|
| 110 |
-
g = torch.Generator()
|
| 111 |
-
g.manual_seed(self.seed + self.epoch)
|
| 112 |
-
random.seed(self.epoch + self.seed)
|
| 113 |
-
shuffled_bucket = []
|
| 114 |
-
for buc in self.id_buckets:
|
| 115 |
-
buc_copy = buc.copy()
|
| 116 |
-
shuffle(buc_copy)
|
| 117 |
-
shuffled_bucket.append(buc_copy)
|
| 118 |
-
grouped_batch_size = self.batch_size * self.num_replicas
|
| 119 |
-
shuffled_bucket = list(itertools.chain(*shuffled_bucket))
|
| 120 |
-
n_batch = int(math.ceil(len(shuffled_bucket) / grouped_batch_size))
|
| 121 |
-
batches = [
|
| 122 |
-
shuffled_bucket[b * grouped_batch_size : (b + 1) * grouped_batch_size]
|
| 123 |
-
for b in range(n_batch)
|
| 124 |
-
]
|
| 125 |
-
shuffle(batches)
|
| 126 |
-
indices = list(itertools.chain(*batches))
|
| 127 |
-
else:
|
| 128 |
-
# type: ignore[arg-type]
|
| 129 |
-
indices = list(range(len(self.dataset)))
|
| 130 |
-
|
| 131 |
-
if not self.drop_last:
|
| 132 |
-
# add extra samples to make it evenly divisible
|
| 133 |
-
padding_size = self.total_size - len(indices)
|
| 134 |
-
if padding_size <= len(indices):
|
| 135 |
-
indices += indices[:padding_size]
|
| 136 |
-
else:
|
| 137 |
-
indices += (indices * math.ceil(padding_size / len(indices)))[
|
| 138 |
-
:padding_size
|
| 139 |
-
]
|
| 140 |
-
else:
|
| 141 |
-
# remove tail of data to make it evenly divisible.
|
| 142 |
-
indices = indices[: self.total_size]
|
| 143 |
-
assert len(indices) == self.total_size
|
| 144 |
-
|
| 145 |
-
# subsample
|
| 146 |
-
indices = indices[self.rank : self.total_size : self.num_replicas]
|
| 147 |
-
assert len(indices) == self.num_samples
|
| 148 |
-
|
| 149 |
-
return iter(indices)
|
| 150 |
-
|
| 151 |
-
def __len__(self) -> int:
|
| 152 |
-
return self.num_samples
|
| 153 |
-
|
| 154 |
-
def set_epoch(self, epoch: int) -> None:
|
| 155 |
-
r"""
|
| 156 |
-
Sets the epoch for this sampler. When :attr:`shuffle=True`, this ensures all replicas
|
| 157 |
-
use a different random ordering for each epoch. Otherwise, the next iteration of this
|
| 158 |
-
sampler will yield the same ordering.
|
| 159 |
-
|
| 160 |
-
Args:
|
| 161 |
-
epoch (int): Epoch number.
|
| 162 |
-
"""
|
| 163 |
-
self.epoch = epoch
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
AR/data/data_module.py
DELETED
|
@@ -1,76 +0,0 @@
|
|
| 1 |
-
# modified from https://github.com/yangdongchao/SoundStorm/blob/master/soundstorm/s1/AR/data/data_module.py
|
| 2 |
-
# reference: https://github.com/lifeiteng/vall-e
|
| 3 |
-
from pytorch_lightning import LightningDataModule
|
| 4 |
-
from AR.data.bucket_sampler import DistributedBucketSampler
|
| 5 |
-
from AR.data.dataset import Text2SemanticDataset
|
| 6 |
-
from torch.utils.data import DataLoader
|
| 7 |
-
|
| 8 |
-
|
| 9 |
-
class Text2SemanticDataModule(LightningDataModule):
|
| 10 |
-
def __init__(
|
| 11 |
-
self,
|
| 12 |
-
config,
|
| 13 |
-
train_semantic_path,
|
| 14 |
-
train_phoneme_path,
|
| 15 |
-
dev_semantic_path=None,
|
| 16 |
-
dev_phoneme_path=None,
|
| 17 |
-
):
|
| 18 |
-
super().__init__()
|
| 19 |
-
self.config = config
|
| 20 |
-
self.train_semantic_path = train_semantic_path
|
| 21 |
-
self.train_phoneme_path = train_phoneme_path
|
| 22 |
-
self.dev_semantic_path = dev_semantic_path
|
| 23 |
-
self.dev_phoneme_path = dev_phoneme_path
|
| 24 |
-
self.num_workers = self.config["data"]["num_workers"]
|
| 25 |
-
|
| 26 |
-
def prepare_data(self):
|
| 27 |
-
pass
|
| 28 |
-
|
| 29 |
-
def setup(self, stage=None, output_logs=False):
|
| 30 |
-
self._train_dataset = Text2SemanticDataset(
|
| 31 |
-
phoneme_path=self.train_phoneme_path,
|
| 32 |
-
semantic_path=self.train_semantic_path,
|
| 33 |
-
max_sec=self.config["data"]["max_sec"],
|
| 34 |
-
pad_val=self.config["data"]["pad_val"],
|
| 35 |
-
)
|
| 36 |
-
self._dev_dataset = self._train_dataset
|
| 37 |
-
# self._dev_dataset = Text2SemanticDataset(
|
| 38 |
-
# phoneme_path=self.dev_phoneme_path,
|
| 39 |
-
# semantic_path=self.dev_semantic_path,
|
| 40 |
-
# max_sample=self.config['data']['max_eval_sample'],
|
| 41 |
-
# max_sec=self.config['data']['max_sec'],
|
| 42 |
-
# pad_val=self.config['data']['pad_val'])
|
| 43 |
-
|
| 44 |
-
def train_dataloader(self):
|
| 45 |
-
batch_size=self.config["train"]["batch_size"]//2 if self.config["train"].get("if_dpo",False)==True else self.config["train"]["batch_size"]
|
| 46 |
-
batch_size = max(min(batch_size,len(self._train_dataset)//4),1)#防止不保存
|
| 47 |
-
sampler = DistributedBucketSampler(self._train_dataset, batch_size=batch_size)
|
| 48 |
-
return DataLoader(
|
| 49 |
-
self._train_dataset,
|
| 50 |
-
batch_size=batch_size,
|
| 51 |
-
sampler=sampler,
|
| 52 |
-
collate_fn=self._train_dataset.collate,
|
| 53 |
-
num_workers=self.num_workers,
|
| 54 |
-
persistent_workers=True,
|
| 55 |
-
prefetch_factor=16,
|
| 56 |
-
)
|
| 57 |
-
|
| 58 |
-
def val_dataloader(self):
|
| 59 |
-
return DataLoader(
|
| 60 |
-
self._dev_dataset,
|
| 61 |
-
batch_size=1,
|
| 62 |
-
shuffle=False,
|
| 63 |
-
collate_fn=self._train_dataset.collate,
|
| 64 |
-
num_workers=max(self.num_workers, 12),
|
| 65 |
-
persistent_workers=True,
|
| 66 |
-
prefetch_factor=16,
|
| 67 |
-
)
|
| 68 |
-
|
| 69 |
-
# 这个会使用到嘛?
|
| 70 |
-
def test_dataloader(self):
|
| 71 |
-
return DataLoader(
|
| 72 |
-
self._dev_dataset,
|
| 73 |
-
batch_size=1,
|
| 74 |
-
shuffle=False,
|
| 75 |
-
collate_fn=self._train_dataset.collate,
|
| 76 |
-
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
AR/data/dataset.py
DELETED
|
@@ -1,321 +0,0 @@
|
|
| 1 |
-
# modified from https://github.com/yangdongchao/SoundStorm/blob/master/soundstorm/s1/AR/data/dataset.py
|
| 2 |
-
# reference: https://github.com/lifeiteng/vall-e
|
| 3 |
-
import pdb
|
| 4 |
-
import sys
|
| 5 |
-
|
| 6 |
-
# sys.path.append("/data/docker/liujing04/gpt-vits/mq-vits-s1bert_no_bert")
|
| 7 |
-
import traceback, os
|
| 8 |
-
from typing import Dict
|
| 9 |
-
from typing import List
|
| 10 |
-
|
| 11 |
-
import numpy as np
|
| 12 |
-
import pandas as pd
|
| 13 |
-
import torch, json
|
| 14 |
-
from torch.utils.data import DataLoader
|
| 15 |
-
from torch.utils.data import Dataset
|
| 16 |
-
from transformers import AutoTokenizer
|
| 17 |
-
|
| 18 |
-
from text import cleaned_text_to_sequence
|
| 19 |
-
|
| 20 |
-
# from config import exp_dir
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
def batch_sequences(sequences: List[np.array], axis: int = 0, pad_value: int = 0):
|
| 24 |
-
seq = sequences[0]
|
| 25 |
-
ndim = seq.ndim
|
| 26 |
-
if axis < 0:
|
| 27 |
-
axis += ndim
|
| 28 |
-
dtype = seq.dtype
|
| 29 |
-
pad_value = dtype.type(pad_value)
|
| 30 |
-
seq_lengths = [seq.shape[axis] for seq in sequences]
|
| 31 |
-
max_length = np.max(seq_lengths)
|
| 32 |
-
|
| 33 |
-
padded_sequences = []
|
| 34 |
-
for seq, length in zip(sequences, seq_lengths):
|
| 35 |
-
padding = (
|
| 36 |
-
[(0, 0)] * axis + [(0, max_length - length)] + [(0, 0)] * (ndim - axis - 1)
|
| 37 |
-
)
|
| 38 |
-
padded_seq = np.pad(seq, padding, mode="constant", constant_values=pad_value)
|
| 39 |
-
padded_sequences.append(padded_seq)
|
| 40 |
-
batch = np.stack(padded_sequences)
|
| 41 |
-
return batch
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
class Text2SemanticDataset(Dataset):
|
| 45 |
-
"""dataset class for text tokens to semantic model training."""
|
| 46 |
-
|
| 47 |
-
def __init__(
|
| 48 |
-
self,
|
| 49 |
-
phoneme_path: str,
|
| 50 |
-
semantic_path: str,
|
| 51 |
-
max_sample: int = None,
|
| 52 |
-
max_sec: int = 100,
|
| 53 |
-
pad_val: int = 1024,
|
| 54 |
-
# min value of phoneme/sec
|
| 55 |
-
min_ps_ratio: int = 3,
|
| 56 |
-
# max value of phoneme/sec
|
| 57 |
-
max_ps_ratio: int = 25,
|
| 58 |
-
) -> None:
|
| 59 |
-
super().__init__()
|
| 60 |
-
|
| 61 |
-
self.semantic_data = pd.read_csv(
|
| 62 |
-
semantic_path, delimiter="\t", encoding="utf-8"
|
| 63 |
-
)
|
| 64 |
-
# get dict
|
| 65 |
-
self.path2 = phoneme_path # "%s/2-name2text.txt"%exp_dir#phoneme_path
|
| 66 |
-
self.path3 = "%s/3-bert" % (
|
| 67 |
-
os.path.basename(phoneme_path)
|
| 68 |
-
) # "%s/3-bert"%exp_dir#bert_dir
|
| 69 |
-
self.path6 = semantic_path # "%s/6-name2semantic.tsv"%exp_dir#semantic_path
|
| 70 |
-
assert os.path.exists(self.path2)
|
| 71 |
-
assert os.path.exists(self.path6)
|
| 72 |
-
self.phoneme_data = {}
|
| 73 |
-
with open(self.path2, "r", encoding="utf8") as f:
|
| 74 |
-
lines = f.read().strip("\n").split("\n")
|
| 75 |
-
|
| 76 |
-
for line in lines:
|
| 77 |
-
tmp = line.split("\t")
|
| 78 |
-
if len(tmp) != 4:
|
| 79 |
-
continue
|
| 80 |
-
self.phoneme_data[tmp[0]] = [tmp[1], tmp[2], tmp[3]]
|
| 81 |
-
|
| 82 |
-
# self.phoneme_data = np.load(phoneme_path, allow_pickle=True).item()
|
| 83 |
-
# pad for semantic tokens
|
| 84 |
-
self.PAD: int = pad_val
|
| 85 |
-
# self.hz = 25
|
| 86 |
-
# with open("/data/docker/liujing04/gpt-vits/mq-vits-s1bert_no_bert/configs/s2.json", "r") as f:data = f.read()
|
| 87 |
-
# data=json.loads(data)["model"]["semantic_frame_rate"]#50hz
|
| 88 |
-
# self.hz=int(data[:-2])#
|
| 89 |
-
self.hz = int(os.environ.get("hz", "25hz")[:-2])
|
| 90 |
-
|
| 91 |
-
# max seconds of semantic token
|
| 92 |
-
self.max_sec = max_sec
|
| 93 |
-
self.min_ps_ratio = min_ps_ratio
|
| 94 |
-
self.max_ps_ratio = max_ps_ratio
|
| 95 |
-
|
| 96 |
-
if max_sample is not None:
|
| 97 |
-
self.semantic_data = self.semantic_data[:max_sample]
|
| 98 |
-
|
| 99 |
-
# {idx: (semantic, phoneme)}
|
| 100 |
-
# semantic list, phoneme list
|
| 101 |
-
self.semantic_phoneme = []
|
| 102 |
-
self.item_names = []
|
| 103 |
-
|
| 104 |
-
self.inited = False
|
| 105 |
-
|
| 106 |
-
if not self.inited:
|
| 107 |
-
# 调用初始化函数
|
| 108 |
-
self.init_batch()
|
| 109 |
-
self.inited = True
|
| 110 |
-
del self.semantic_data
|
| 111 |
-
del self.phoneme_data
|
| 112 |
-
# self.tokenizer = AutoTokenizer.from_pretrained("hfl/chinese-roberta-wwm-ext-large")
|
| 113 |
-
# self.tokenizer = AutoTokenizer.from_pretrained("/data/docker/liujing04/bert-vits2/Bert-VITS2-master20231106/bert/chinese-roberta-wwm-ext-large")
|
| 114 |
-
|
| 115 |
-
def init_batch(self):
|
| 116 |
-
semantic_data_len = len(self.semantic_data)
|
| 117 |
-
phoneme_data_len = len(self.phoneme_data.keys())
|
| 118 |
-
print("semantic_data_len:", semantic_data_len)
|
| 119 |
-
print("phoneme_data_len:", phoneme_data_len)
|
| 120 |
-
print(self.semantic_data)
|
| 121 |
-
idx = 0
|
| 122 |
-
num_not_in = 0
|
| 123 |
-
num_deleted_bigger = 0
|
| 124 |
-
num_deleted_ps = 0
|
| 125 |
-
for i in range(semantic_data_len):
|
| 126 |
-
# 先依次遍历
|
| 127 |
-
# get str
|
| 128 |
-
item_name = self.semantic_data.iloc[i,0]
|
| 129 |
-
# print(self.phoneme_data)
|
| 130 |
-
try:
|
| 131 |
-
phoneme, word2ph, text = self.phoneme_data[item_name]
|
| 132 |
-
except Exception:
|
| 133 |
-
traceback.print_exc()
|
| 134 |
-
# print(f"{item_name} not in self.phoneme_data !")
|
| 135 |
-
num_not_in += 1
|
| 136 |
-
continue
|
| 137 |
-
|
| 138 |
-
semantic_str = self.semantic_data.iloc[i,1]
|
| 139 |
-
# get token list
|
| 140 |
-
semantic_ids = [int(idx) for idx in semantic_str.split(" ")]
|
| 141 |
-
# (T), 是否需要变成 (1, T) -> 不需要,因为需要求 len
|
| 142 |
-
# 过滤掉太长的样本
|
| 143 |
-
if (
|
| 144 |
-
len(semantic_ids) > self.max_sec * self.hz
|
| 145 |
-
): #########1###根据token个数推测总时长过滤时长60s(config里)#40*25=1k
|
| 146 |
-
num_deleted_bigger += 1
|
| 147 |
-
continue
|
| 148 |
-
# (T, ), 这个速度不会很慢,所以可以在一开始就处理,无需在 __getitem__ 里面单个处理####
|
| 149 |
-
phoneme = phoneme.split(" ")
|
| 150 |
-
|
| 151 |
-
try:
|
| 152 |
-
phoneme_ids = cleaned_text_to_sequence(phoneme)
|
| 153 |
-
except:
|
| 154 |
-
traceback.print_exc()
|
| 155 |
-
# print(f"{item_name} not in self.phoneme_data !")
|
| 156 |
-
num_not_in += 1
|
| 157 |
-
continue
|
| 158 |
-
# if len(phoneme_ids) >400:###########2:改为恒定限制为semantic/2.5就行
|
| 159 |
-
if (
|
| 160 |
-
len(phoneme_ids) > self.max_sec * self.hz / 2.5
|
| 161 |
-
): ###########2:改为恒定限制为semantic/2.5就行
|
| 162 |
-
num_deleted_ps += 1
|
| 163 |
-
continue
|
| 164 |
-
# if len(semantic_ids) > 1000:###########3
|
| 165 |
-
# num_deleted_bigger += 1
|
| 166 |
-
# continue
|
| 167 |
-
|
| 168 |
-
ps_ratio = len(phoneme_ids) / (len(semantic_ids) / self.hz)
|
| 169 |
-
|
| 170 |
-
if (
|
| 171 |
-
ps_ratio > self.max_ps_ratio or ps_ratio < self.min_ps_ratio
|
| 172 |
-
): ##########4#3~25#每秒多少个phone
|
| 173 |
-
num_deleted_ps += 1
|
| 174 |
-
# print(item_name)
|
| 175 |
-
continue
|
| 176 |
-
|
| 177 |
-
self.semantic_phoneme.append((semantic_ids, phoneme_ids))
|
| 178 |
-
idx += 1
|
| 179 |
-
self.item_names.append(item_name)
|
| 180 |
-
|
| 181 |
-
min_num = 100 # 20直接不补#30补了也不存ckpt
|
| 182 |
-
leng = len(self.semantic_phoneme)
|
| 183 |
-
if leng < min_num:
|
| 184 |
-
tmp1 = self.semantic_phoneme
|
| 185 |
-
tmp2 = self.item_names
|
| 186 |
-
self.semantic_phoneme = []
|
| 187 |
-
self.item_names = []
|
| 188 |
-
for _ in range(max(2, int(min_num / leng))):
|
| 189 |
-
self.semantic_phoneme += tmp1
|
| 190 |
-
self.item_names += tmp2
|
| 191 |
-
if num_not_in > 0:
|
| 192 |
-
print(f"there are {num_not_in} semantic datas not in phoneme datas")
|
| 193 |
-
if num_deleted_bigger > 0:
|
| 194 |
-
print(
|
| 195 |
-
f"deleted {num_deleted_bigger} audios who's duration are bigger than {self.max_sec} seconds"
|
| 196 |
-
)
|
| 197 |
-
if num_deleted_ps > 0:
|
| 198 |
-
# 4702 for LibriTTS, LirbriTTS 是标注数据, 是否需要筛?=> 需要,有值为 100 的极端值
|
| 199 |
-
print(
|
| 200 |
-
f"deleted {num_deleted_ps} audios who's phoneme/sec are bigger than {self.max_ps_ratio} or smaller than {self.min_ps_ratio}"
|
| 201 |
-
)
|
| 202 |
-
"""
|
| 203 |
-
there are 31 semantic datas not in phoneme datas
|
| 204 |
-
deleted 34 audios who's duration are bigger than 54 seconds
|
| 205 |
-
deleted 3190 audios who's phoneme/sec are bigger than 25 or smaller than 3
|
| 206 |
-
dataset.__len__(): 366463
|
| 207 |
-
|
| 208 |
-
"""
|
| 209 |
-
# 345410 for LibriTTS
|
| 210 |
-
print("dataset.__len__():", self.__len__())
|
| 211 |
-
|
| 212 |
-
def __get_item_names__(self) -> List[str]:
|
| 213 |
-
return self.item_names
|
| 214 |
-
|
| 215 |
-
def __len__(self) -> int:
|
| 216 |
-
return len(self.semantic_phoneme)
|
| 217 |
-
|
| 218 |
-
def __getitem__(self, idx: int) -> Dict:
|
| 219 |
-
semantic_ids, phoneme_ids = self.semantic_phoneme[idx]
|
| 220 |
-
item_name = self.item_names[idx]
|
| 221 |
-
phoneme_ids_len = len(phoneme_ids)
|
| 222 |
-
# semantic tokens target
|
| 223 |
-
semantic_ids_len = len(semantic_ids)
|
| 224 |
-
|
| 225 |
-
flag = 0
|
| 226 |
-
path_bert = "%s/%s.pt" % (self.path3, item_name)
|
| 227 |
-
if os.path.exists(path_bert) == True:
|
| 228 |
-
bert_feature = torch.load(path_bert, map_location="cpu")
|
| 229 |
-
else:
|
| 230 |
-
flag = 1
|
| 231 |
-
if flag == 1:
|
| 232 |
-
# bert_feature=torch.zeros_like(phoneme_ids,dtype=torch.float32)
|
| 233 |
-
bert_feature = None
|
| 234 |
-
else:
|
| 235 |
-
assert bert_feature.shape[-1] == len(phoneme_ids)
|
| 236 |
-
return {
|
| 237 |
-
"idx": idx,
|
| 238 |
-
"phoneme_ids": phoneme_ids,
|
| 239 |
-
"phoneme_ids_len": phoneme_ids_len,
|
| 240 |
-
"semantic_ids": semantic_ids,
|
| 241 |
-
"semantic_ids_len": semantic_ids_len,
|
| 242 |
-
"bert_feature": bert_feature,
|
| 243 |
-
}
|
| 244 |
-
|
| 245 |
-
def get_sample_length(self, idx: int):
|
| 246 |
-
semantic_ids = self.semantic_phoneme[idx][0]
|
| 247 |
-
sec = 1.0 * len(semantic_ids) / self.hz
|
| 248 |
-
return sec
|
| 249 |
-
|
| 250 |
-
def collate(self, examples: List[Dict]) -> Dict:
|
| 251 |
-
sample_index: List[int] = []
|
| 252 |
-
phoneme_ids: List[torch.Tensor] = []
|
| 253 |
-
phoneme_ids_lens: List[int] = []
|
| 254 |
-
semantic_ids: List[torch.Tensor] = []
|
| 255 |
-
semantic_ids_lens: List[int] = []
|
| 256 |
-
# return
|
| 257 |
-
|
| 258 |
-
for item in examples:
|
| 259 |
-
sample_index.append(item["idx"])
|
| 260 |
-
phoneme_ids.append(np.array(item["phoneme_ids"], dtype=np.int64))
|
| 261 |
-
semantic_ids.append(np.array(item["semantic_ids"], dtype=np.int64))
|
| 262 |
-
phoneme_ids_lens.append(item["phoneme_ids_len"])
|
| 263 |
-
semantic_ids_lens.append(item["semantic_ids_len"])
|
| 264 |
-
|
| 265 |
-
# pad 0
|
| 266 |
-
phoneme_ids = batch_sequences(phoneme_ids)
|
| 267 |
-
semantic_ids = batch_sequences(semantic_ids, pad_value=self.PAD)
|
| 268 |
-
|
| 269 |
-
# # convert each batch to torch.tensor
|
| 270 |
-
phoneme_ids = torch.tensor(phoneme_ids)
|
| 271 |
-
semantic_ids = torch.tensor(semantic_ids)
|
| 272 |
-
phoneme_ids_lens = torch.tensor(phoneme_ids_lens)
|
| 273 |
-
semantic_ids_lens = torch.tensor(semantic_ids_lens)
|
| 274 |
-
bert_padded = torch.FloatTensor(len(examples), 1024, max(phoneme_ids_lens))
|
| 275 |
-
bert_padded.zero_()
|
| 276 |
-
|
| 277 |
-
for idx, item in enumerate(examples):
|
| 278 |
-
bert = item["bert_feature"]
|
| 279 |
-
if bert != None:
|
| 280 |
-
bert_padded[idx, :, : bert.shape[-1]] = bert
|
| 281 |
-
|
| 282 |
-
return {
|
| 283 |
-
# List[int]
|
| 284 |
-
"ids": sample_index,
|
| 285 |
-
# torch.Tensor (B, max_phoneme_length)
|
| 286 |
-
"phoneme_ids": phoneme_ids,
|
| 287 |
-
# torch.Tensor (B)
|
| 288 |
-
"phoneme_ids_len": phoneme_ids_lens,
|
| 289 |
-
# torch.Tensor (B, max_semantic_ids_length)
|
| 290 |
-
"semantic_ids": semantic_ids,
|
| 291 |
-
# torch.Tensor (B)
|
| 292 |
-
"semantic_ids_len": semantic_ids_lens,
|
| 293 |
-
# torch.Tensor (B, 1024, max_phoneme_length)
|
| 294 |
-
"bert_feature": bert_padded,
|
| 295 |
-
}
|
| 296 |
-
|
| 297 |
-
|
| 298 |
-
if __name__ == "__main__":
|
| 299 |
-
root_dir = "/data/docker/liujing04/gpt-vits/prepare/dump_mix/"
|
| 300 |
-
dataset = Text2SemanticDataset(
|
| 301 |
-
phoneme_path=root_dir + "phoneme_train.npy",
|
| 302 |
-
semantic_path=root_dir + "semantic_train.tsv",
|
| 303 |
-
)
|
| 304 |
-
|
| 305 |
-
batch_size = 12
|
| 306 |
-
dataloader = DataLoader(
|
| 307 |
-
dataset, batch_size=batch_size, collate_fn=dataset.collate, shuffle=False
|
| 308 |
-
)
|
| 309 |
-
for i, batch in enumerate(dataloader):
|
| 310 |
-
if i % 1000 == 0:
|
| 311 |
-
print(i)
|
| 312 |
-
# if i == 0:
|
| 313 |
-
# print('batch["ids"]:', batch["ids"])
|
| 314 |
-
# print('batch["phoneme_ids"]:', batch["phoneme_ids"],
|
| 315 |
-
# batch["phoneme_ids"].shape)
|
| 316 |
-
# print('batch["phoneme_ids_len"]:', batch["phoneme_ids_len"],
|
| 317 |
-
# batch["phoneme_ids_len"].shape)
|
| 318 |
-
# print('batch["semantic_ids"]:', batch["semantic_ids"],
|
| 319 |
-
# batch["semantic_ids"].shape)
|
| 320 |
-
# print('batch["semantic_ids_len"]:', batch["semantic_ids_len"],
|
| 321 |
-
# batch["semantic_ids_len"].shape)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
AR/models/__init__.py
DELETED
|
File without changes
|
AR/models/__pycache__/__init__.cpython-39.pyc
DELETED
|
Binary file (150 Bytes)
|
|
|
AR/models/__pycache__/t2s_lightning_module.cpython-39.pyc
DELETED
|
Binary file (3.22 kB)
|
|
|
AR/models/__pycache__/t2s_model.cpython-39.pyc
DELETED
|
Binary file (12.6 kB)
|
|
|
AR/models/__pycache__/utils.cpython-39.pyc
DELETED
|
Binary file (6.63 kB)
|
|
|
AR/models/t2s_lightning_module.py
DELETED
|
@@ -1,141 +0,0 @@
|
|
| 1 |
-
# modified from https://github.com/yangdongchao/SoundStorm/blob/master/soundstorm/s1/AR/models/t2s_lightning_module.py
|
| 2 |
-
# reference: https://github.com/lifeiteng/vall-e
|
| 3 |
-
import os, sys
|
| 4 |
-
|
| 5 |
-
now_dir = os.getcwd()
|
| 6 |
-
sys.path.append(now_dir)
|
| 7 |
-
from typing import Dict
|
| 8 |
-
|
| 9 |
-
import torch
|
| 10 |
-
from pytorch_lightning import LightningModule
|
| 11 |
-
from AR.models.t2s_model import Text2SemanticDecoder
|
| 12 |
-
from AR.modules.lr_schedulers import WarmupCosineLRSchedule
|
| 13 |
-
from AR.modules.optim import ScaledAdam
|
| 14 |
-
|
| 15 |
-
class Text2SemanticLightningModule(LightningModule):
|
| 16 |
-
def __init__(self, config, output_dir, is_train=True):
|
| 17 |
-
super().__init__()
|
| 18 |
-
self.config = config
|
| 19 |
-
self.top_k = 3
|
| 20 |
-
self.model = Text2SemanticDecoder(config=config, top_k=self.top_k)
|
| 21 |
-
pretrained_s1 = config.get("pretrained_s1")
|
| 22 |
-
if pretrained_s1 and is_train:
|
| 23 |
-
# print(self.load_state_dict(torch.load(pretrained_s1,map_location="cpu")["state_dict"]))
|
| 24 |
-
print(
|
| 25 |
-
self.load_state_dict(
|
| 26 |
-
torch.load(pretrained_s1, map_location="cpu")["weight"]
|
| 27 |
-
)
|
| 28 |
-
)
|
| 29 |
-
if is_train:
|
| 30 |
-
self.automatic_optimization = False
|
| 31 |
-
self.save_hyperparameters()
|
| 32 |
-
self.eval_dir = output_dir / "eval"
|
| 33 |
-
self.eval_dir.mkdir(parents=True, exist_ok=True)
|
| 34 |
-
|
| 35 |
-
def training_step(self, batch: Dict, batch_idx: int):
|
| 36 |
-
opt = self.optimizers()
|
| 37 |
-
scheduler = self.lr_schedulers()
|
| 38 |
-
forward=self.model.forward if self.config["train"].get("if_dpo",False)==True else self.model.forward_old
|
| 39 |
-
loss, acc = forward(
|
| 40 |
-
batch["phoneme_ids"],
|
| 41 |
-
batch["phoneme_ids_len"],
|
| 42 |
-
batch["semantic_ids"],
|
| 43 |
-
batch["semantic_ids_len"],
|
| 44 |
-
batch["bert_feature"],
|
| 45 |
-
)
|
| 46 |
-
self.manual_backward(loss)
|
| 47 |
-
if batch_idx > 0 and batch_idx % 4 == 0:
|
| 48 |
-
opt.step()
|
| 49 |
-
opt.zero_grad()
|
| 50 |
-
scheduler.step()
|
| 51 |
-
|
| 52 |
-
self.log(
|
| 53 |
-
"total_loss",
|
| 54 |
-
loss,
|
| 55 |
-
on_step=True,
|
| 56 |
-
on_epoch=True,
|
| 57 |
-
prog_bar=True,
|
| 58 |
-
sync_dist=True,
|
| 59 |
-
)
|
| 60 |
-
self.log(
|
| 61 |
-
"lr",
|
| 62 |
-
scheduler.get_last_lr()[0],
|
| 63 |
-
on_epoch=True,
|
| 64 |
-
prog_bar=True,
|
| 65 |
-
sync_dist=True,
|
| 66 |
-
)
|
| 67 |
-
self.log(
|
| 68 |
-
f"top_{self.top_k}_acc",
|
| 69 |
-
acc,
|
| 70 |
-
on_step=True,
|
| 71 |
-
on_epoch=True,
|
| 72 |
-
prog_bar=True,
|
| 73 |
-
sync_dist=True,
|
| 74 |
-
)
|
| 75 |
-
|
| 76 |
-
def validation_step(self, batch: Dict, batch_idx: int):
|
| 77 |
-
return
|
| 78 |
-
|
| 79 |
-
# # get loss
|
| 80 |
-
# loss, acc = self.model.forward(
|
| 81 |
-
# batch['phoneme_ids'], batch['phoneme_ids_len'],
|
| 82 |
-
# batch['semantic_ids'], batch['semantic_ids_len'],
|
| 83 |
-
# batch['bert_feature']
|
| 84 |
-
# )
|
| 85 |
-
#
|
| 86 |
-
# self.log(
|
| 87 |
-
# "val_total_loss",
|
| 88 |
-
# loss,
|
| 89 |
-
# on_step=True,
|
| 90 |
-
# on_epoch=True,
|
| 91 |
-
# prog_bar=True,
|
| 92 |
-
# sync_dist=True)
|
| 93 |
-
# self.log(
|
| 94 |
-
# f"val_top_{self.top_k}_acc",
|
| 95 |
-
# acc,
|
| 96 |
-
# on_step=True,
|
| 97 |
-
# on_epoch=True,
|
| 98 |
-
# prog_bar=True,
|
| 99 |
-
# sync_dist=True)
|
| 100 |
-
#
|
| 101 |
-
# # get infer output
|
| 102 |
-
# semantic_len = batch['semantic_ids'].size(1)
|
| 103 |
-
# prompt_len = min(int(semantic_len * 0.5), 150)
|
| 104 |
-
# prompt = batch['semantic_ids'][:, :prompt_len]
|
| 105 |
-
# pred_semantic = self.model.infer(batch['phoneme_ids'],
|
| 106 |
-
# batch['phoneme_ids_len'], prompt,
|
| 107 |
-
# batch['bert_feature']
|
| 108 |
-
# )
|
| 109 |
-
# save_name = f'semantic_toks_{batch_idx}.pt'
|
| 110 |
-
# save_path = os.path.join(self.eval_dir, save_name)
|
| 111 |
-
# torch.save(pred_semantic.detach().cpu(), save_path)
|
| 112 |
-
|
| 113 |
-
def configure_optimizers(self):
|
| 114 |
-
model_parameters = self.model.parameters()
|
| 115 |
-
parameters_names = []
|
| 116 |
-
parameters_names.append(
|
| 117 |
-
[name_param_pair[0] for name_param_pair in self.model.named_parameters()]
|
| 118 |
-
)
|
| 119 |
-
lm_opt = ScaledAdam(
|
| 120 |
-
model_parameters,
|
| 121 |
-
lr=0.01,
|
| 122 |
-
betas=(0.9, 0.95),
|
| 123 |
-
clipping_scale=2.0,
|
| 124 |
-
parameters_names=parameters_names,
|
| 125 |
-
show_dominant_parameters=False,
|
| 126 |
-
clipping_update_period=1000,
|
| 127 |
-
)
|
| 128 |
-
|
| 129 |
-
return {
|
| 130 |
-
"optimizer": lm_opt,
|
| 131 |
-
"lr_scheduler": {
|
| 132 |
-
"scheduler": WarmupCosineLRSchedule(
|
| 133 |
-
lm_opt,
|
| 134 |
-
init_lr=self.config["optimizer"]["lr_init"],
|
| 135 |
-
peak_lr=self.config["optimizer"]["lr"],
|
| 136 |
-
end_lr=self.config["optimizer"]["lr_end"],
|
| 137 |
-
warmup_steps=self.config["optimizer"]["warmup_steps"],
|
| 138 |
-
total_steps=self.config["optimizer"]["decay_steps"],
|
| 139 |
-
)
|
| 140 |
-
},
|
| 141 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
AR/models/t2s_lightning_module_onnx.py
DELETED
|
@@ -1,107 +0,0 @@
|
|
| 1 |
-
# modified from https://github.com/yangdongchao/SoundStorm/blob/master/soundstorm/s1/AR/models/t2s_lightning_module.py
|
| 2 |
-
# reference: https://github.com/lifeiteng/vall-e
|
| 3 |
-
import os, sys
|
| 4 |
-
|
| 5 |
-
now_dir = os.getcwd()
|
| 6 |
-
sys.path.append(now_dir)
|
| 7 |
-
from typing import Dict
|
| 8 |
-
|
| 9 |
-
import torch
|
| 10 |
-
from pytorch_lightning import LightningModule
|
| 11 |
-
from AR.models.t2s_model_onnx import Text2SemanticDecoder
|
| 12 |
-
from AR.modules.lr_schedulers import WarmupCosineLRSchedule
|
| 13 |
-
from AR.modules.optim import ScaledAdam
|
| 14 |
-
|
| 15 |
-
|
| 16 |
-
class Text2SemanticLightningModule(LightningModule):
|
| 17 |
-
def __init__(self, config, output_dir, is_train=True):
|
| 18 |
-
super().__init__()
|
| 19 |
-
self.config = config
|
| 20 |
-
self.top_k = 3
|
| 21 |
-
self.model = Text2SemanticDecoder(config=config, top_k=self.top_k)
|
| 22 |
-
pretrained_s1 = config.get("pretrained_s1")
|
| 23 |
-
if pretrained_s1 and is_train:
|
| 24 |
-
# print(self.load_state_dict(torch.load(pretrained_s1,map_location="cpu")["state_dict"]))
|
| 25 |
-
print(
|
| 26 |
-
self.load_state_dict(
|
| 27 |
-
torch.load(pretrained_s1, map_location="cpu")["weight"]
|
| 28 |
-
)
|
| 29 |
-
)
|
| 30 |
-
if is_train:
|
| 31 |
-
self.automatic_optimization = False
|
| 32 |
-
self.save_hyperparameters()
|
| 33 |
-
self.eval_dir = output_dir / "eval"
|
| 34 |
-
self.eval_dir.mkdir(parents=True, exist_ok=True)
|
| 35 |
-
|
| 36 |
-
def training_step(self, batch: Dict, batch_idx: int):
|
| 37 |
-
opt = self.optimizers()
|
| 38 |
-
scheduler = self.lr_schedulers()
|
| 39 |
-
loss, acc = self.model.forward(
|
| 40 |
-
batch["phoneme_ids"],
|
| 41 |
-
batch["phoneme_ids_len"],
|
| 42 |
-
batch["semantic_ids"],
|
| 43 |
-
batch["semantic_ids_len"],
|
| 44 |
-
batch["bert_feature"],
|
| 45 |
-
)
|
| 46 |
-
self.manual_backward(loss)
|
| 47 |
-
if batch_idx > 0 and batch_idx % 4 == 0:
|
| 48 |
-
opt.step()
|
| 49 |
-
opt.zero_grad()
|
| 50 |
-
scheduler.step()
|
| 51 |
-
|
| 52 |
-
self.log(
|
| 53 |
-
"total_loss",
|
| 54 |
-
loss,
|
| 55 |
-
on_step=True,
|
| 56 |
-
on_epoch=True,
|
| 57 |
-
prog_bar=True,
|
| 58 |
-
sync_dist=True,
|
| 59 |
-
)
|
| 60 |
-
self.log(
|
| 61 |
-
"lr",
|
| 62 |
-
scheduler.get_last_lr()[0],
|
| 63 |
-
on_epoch=True,
|
| 64 |
-
prog_bar=True,
|
| 65 |
-
sync_dist=True,
|
| 66 |
-
)
|
| 67 |
-
self.log(
|
| 68 |
-
f"top_{self.top_k}_acc",
|
| 69 |
-
acc,
|
| 70 |
-
on_step=True,
|
| 71 |
-
on_epoch=True,
|
| 72 |
-
prog_bar=True,
|
| 73 |
-
sync_dist=True,
|
| 74 |
-
)
|
| 75 |
-
|
| 76 |
-
def validation_step(self, batch: Dict, batch_idx: int):
|
| 77 |
-
return
|
| 78 |
-
|
| 79 |
-
def configure_optimizers(self):
|
| 80 |
-
model_parameters = self.model.parameters()
|
| 81 |
-
parameters_names = []
|
| 82 |
-
parameters_names.append(
|
| 83 |
-
[name_param_pair[0] for name_param_pair in self.model.named_parameters()]
|
| 84 |
-
)
|
| 85 |
-
lm_opt = ScaledAdam(
|
| 86 |
-
model_parameters,
|
| 87 |
-
lr=0.01,
|
| 88 |
-
betas=(0.9, 0.95),
|
| 89 |
-
clipping_scale=2.0,
|
| 90 |
-
parameters_names=parameters_names,
|
| 91 |
-
show_dominant_parameters=False,
|
| 92 |
-
clipping_update_period=1000,
|
| 93 |
-
)
|
| 94 |
-
|
| 95 |
-
return {
|
| 96 |
-
"optimizer": lm_opt,
|
| 97 |
-
"lr_scheduler": {
|
| 98 |
-
"scheduler": WarmupCosineLRSchedule(
|
| 99 |
-
lm_opt,
|
| 100 |
-
init_lr=self.config["optimizer"]["lr_init"],
|
| 101 |
-
peak_lr=self.config["optimizer"]["lr"],
|
| 102 |
-
end_lr=self.config["optimizer"]["lr_end"],
|
| 103 |
-
warmup_steps=self.config["optimizer"]["warmup_steps"],
|
| 104 |
-
total_steps=self.config["optimizer"]["decay_steps"],
|
| 105 |
-
)
|
| 106 |
-
},
|
| 107 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
AR/models/t2s_model.py
DELETED
|
@@ -1,588 +0,0 @@
|
|
| 1 |
-
# modified from https://github.com/yangdongchao/SoundStorm/blob/master/soundstorm/s1/AR/models/t2s_model.py
|
| 2 |
-
# reference: https://github.com/lifeiteng/vall-e
|
| 3 |
-
from typing import List
|
| 4 |
-
|
| 5 |
-
import torch
|
| 6 |
-
from tqdm import tqdm
|
| 7 |
-
|
| 8 |
-
from AR.models.utils import make_pad_mask
|
| 9 |
-
from AR.models.utils import (
|
| 10 |
-
topk_sampling,
|
| 11 |
-
sample,
|
| 12 |
-
logits_to_probs,
|
| 13 |
-
multinomial_sample_one_no_sync,
|
| 14 |
-
dpo_loss,
|
| 15 |
-
make_reject_y,
|
| 16 |
-
get_batch_logps
|
| 17 |
-
)
|
| 18 |
-
from AR.modules.embedding import SinePositionalEmbedding
|
| 19 |
-
from AR.modules.embedding import TokenEmbedding
|
| 20 |
-
from AR.modules.transformer import LayerNorm
|
| 21 |
-
from AR.modules.transformer import TransformerEncoder
|
| 22 |
-
from AR.modules.transformer import TransformerEncoderLayer
|
| 23 |
-
from torch import nn
|
| 24 |
-
from torch.nn import functional as F
|
| 25 |
-
from torchmetrics.classification import MulticlassAccuracy
|
| 26 |
-
|
| 27 |
-
default_config = {
|
| 28 |
-
"embedding_dim": 512,
|
| 29 |
-
"hidden_dim": 512,
|
| 30 |
-
"num_head": 8,
|
| 31 |
-
"num_layers": 12,
|
| 32 |
-
"num_codebook": 8,
|
| 33 |
-
"p_dropout": 0.0,
|
| 34 |
-
"vocab_size": 1024 + 1,
|
| 35 |
-
"phoneme_vocab_size": 512,
|
| 36 |
-
"EOS": 1024,
|
| 37 |
-
}
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
@torch.jit.script
|
| 41 |
-
class T2SMLP:
|
| 42 |
-
def __init__(self, w1, b1, w2, b2):
|
| 43 |
-
self.w1 = w1
|
| 44 |
-
self.b1 = b1
|
| 45 |
-
self.w2 = w2
|
| 46 |
-
self.b2 = b2
|
| 47 |
-
|
| 48 |
-
def forward(self, x):
|
| 49 |
-
x = F.relu(F.linear(x, self.w1, self.b1))
|
| 50 |
-
x = F.linear(x, self.w2, self.b2)
|
| 51 |
-
return x
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
@torch.jit.script
|
| 55 |
-
class T2SBlock:
|
| 56 |
-
def __init__(
|
| 57 |
-
self,
|
| 58 |
-
num_heads,
|
| 59 |
-
hidden_dim: int,
|
| 60 |
-
mlp: T2SMLP,
|
| 61 |
-
qkv_w,
|
| 62 |
-
qkv_b,
|
| 63 |
-
out_w,
|
| 64 |
-
out_b,
|
| 65 |
-
norm_w1,
|
| 66 |
-
norm_b1,
|
| 67 |
-
norm_eps1,
|
| 68 |
-
norm_w2,
|
| 69 |
-
norm_b2,
|
| 70 |
-
norm_eps2,
|
| 71 |
-
):
|
| 72 |
-
self.num_heads = num_heads
|
| 73 |
-
self.mlp = mlp
|
| 74 |
-
self.hidden_dim: int = hidden_dim
|
| 75 |
-
self.qkv_w = qkv_w
|
| 76 |
-
self.qkv_b = qkv_b
|
| 77 |
-
self.out_w = out_w
|
| 78 |
-
self.out_b = out_b
|
| 79 |
-
self.norm_w1 = norm_w1
|
| 80 |
-
self.norm_b1 = norm_b1
|
| 81 |
-
self.norm_eps1 = norm_eps1
|
| 82 |
-
self.norm_w2 = norm_w2
|
| 83 |
-
self.norm_b2 = norm_b2
|
| 84 |
-
self.norm_eps2 = norm_eps2
|
| 85 |
-
|
| 86 |
-
def process_prompt(self, x, attn_mask : torch.Tensor):
|
| 87 |
-
q, k, v = F.linear(x, self.qkv_w, self.qkv_b).chunk(3, dim=-1)
|
| 88 |
-
|
| 89 |
-
batch_size = q.shape[0]
|
| 90 |
-
q_len = q.shape[1]
|
| 91 |
-
kv_len = k.shape[1]
|
| 92 |
-
|
| 93 |
-
k_cache = k
|
| 94 |
-
v_cache = v
|
| 95 |
-
|
| 96 |
-
q = q.view(batch_size, q_len, self.num_heads, -1).transpose(1, 2)
|
| 97 |
-
k = k_cache.view(batch_size, kv_len, self.num_heads, -1).transpose(1, 2)
|
| 98 |
-
v = v_cache.view(batch_size, kv_len, self.num_heads, -1).transpose(1, 2)
|
| 99 |
-
|
| 100 |
-
attn = F.scaled_dot_product_attention(q, k, v, ~attn_mask)
|
| 101 |
-
|
| 102 |
-
attn = attn.permute(2, 0, 1, 3).reshape(batch_size, -1, self.hidden_dim)
|
| 103 |
-
attn = F.linear(attn, self.out_w, self.out_b)
|
| 104 |
-
|
| 105 |
-
x = F.layer_norm(
|
| 106 |
-
x + attn, [self.hidden_dim], self.norm_w1, self.norm_b1, self.norm_eps1
|
| 107 |
-
)
|
| 108 |
-
x = F.layer_norm(
|
| 109 |
-
x + self.mlp.forward(x),
|
| 110 |
-
[self.hidden_dim],
|
| 111 |
-
self.norm_w2,
|
| 112 |
-
self.norm_b2,
|
| 113 |
-
self.norm_eps2,
|
| 114 |
-
)
|
| 115 |
-
return x, k_cache, v_cache
|
| 116 |
-
|
| 117 |
-
def decode_next_token(self, x, k_cache, v_cache):
|
| 118 |
-
q, k, v = F.linear(x, self.qkv_w, self.qkv_b).chunk(3, dim=-1)
|
| 119 |
-
|
| 120 |
-
k_cache = torch.cat([k_cache, k], dim=1)
|
| 121 |
-
v_cache = torch.cat([v_cache, v], dim=1)
|
| 122 |
-
kv_len = k_cache.shape[1]
|
| 123 |
-
|
| 124 |
-
batch_size = q.shape[0]
|
| 125 |
-
q_len = q.shape[1]
|
| 126 |
-
|
| 127 |
-
q = q.view(batch_size, q_len, self.num_heads, -1).transpose(1, 2)
|
| 128 |
-
k = k_cache.view(batch_size, kv_len, self.num_heads, -1).transpose(1, 2)
|
| 129 |
-
v = v_cache.view(batch_size, kv_len, self.num_heads, -1).transpose(1, 2)
|
| 130 |
-
|
| 131 |
-
|
| 132 |
-
attn = F.scaled_dot_product_attention(q, k, v)
|
| 133 |
-
|
| 134 |
-
attn = attn.permute(2, 0, 1, 3).reshape(batch_size, -1, self.hidden_dim)
|
| 135 |
-
attn = F.linear(attn, self.out_w, self.out_b)
|
| 136 |
-
|
| 137 |
-
x = F.layer_norm(
|
| 138 |
-
x + attn, [self.hidden_dim], self.norm_w1, self.norm_b1, self.norm_eps1
|
| 139 |
-
)
|
| 140 |
-
x = F.layer_norm(
|
| 141 |
-
x + self.mlp.forward(x),
|
| 142 |
-
[self.hidden_dim],
|
| 143 |
-
self.norm_w2,
|
| 144 |
-
self.norm_b2,
|
| 145 |
-
self.norm_eps2,
|
| 146 |
-
)
|
| 147 |
-
return x, k_cache, v_cache
|
| 148 |
-
|
| 149 |
-
|
| 150 |
-
@torch.jit.script
|
| 151 |
-
class T2STransformer:
|
| 152 |
-
def __init__(self, num_blocks : int, blocks: List[T2SBlock]):
|
| 153 |
-
self.num_blocks : int = num_blocks
|
| 154 |
-
self.blocks = blocks
|
| 155 |
-
|
| 156 |
-
def process_prompt(
|
| 157 |
-
self, x, attn_mask : torch.Tensor):
|
| 158 |
-
k_cache : List[torch.Tensor] = []
|
| 159 |
-
v_cache : List[torch.Tensor] = []
|
| 160 |
-
for i in range(self.num_blocks):
|
| 161 |
-
x, k_cache_, v_cache_ = self.blocks[i].process_prompt(x, attn_mask)
|
| 162 |
-
k_cache.append(k_cache_)
|
| 163 |
-
v_cache.append(v_cache_)
|
| 164 |
-
return x, k_cache, v_cache
|
| 165 |
-
|
| 166 |
-
def decode_next_token(
|
| 167 |
-
self, x, k_cache: List[torch.Tensor], v_cache: List[torch.Tensor]
|
| 168 |
-
):
|
| 169 |
-
for i in range(self.num_blocks):
|
| 170 |
-
x, k_cache[i], v_cache[i] = self.blocks[i].decode_next_token(x, k_cache[i], v_cache[i])
|
| 171 |
-
return x, k_cache, v_cache
|
| 172 |
-
|
| 173 |
-
|
| 174 |
-
class Text2SemanticDecoder(nn.Module):
|
| 175 |
-
def __init__(self, config, norm_first=False, top_k=3):
|
| 176 |
-
super(Text2SemanticDecoder, self).__init__()
|
| 177 |
-
self.model_dim = config["model"]["hidden_dim"]
|
| 178 |
-
self.embedding_dim = config["model"]["embedding_dim"]
|
| 179 |
-
self.num_head = config["model"]["head"]
|
| 180 |
-
self.num_layers = config["model"]["n_layer"]
|
| 181 |
-
self.norm_first = norm_first
|
| 182 |
-
self.vocab_size = config["model"]["vocab_size"]
|
| 183 |
-
self.phoneme_vocab_size = config["model"]["phoneme_vocab_size"]
|
| 184 |
-
self.p_dropout = config["model"]["dropout"]
|
| 185 |
-
self.EOS = config["model"]["EOS"]
|
| 186 |
-
self.norm_first = norm_first
|
| 187 |
-
assert self.EOS == self.vocab_size - 1
|
| 188 |
-
# should be same as num of kmeans bin
|
| 189 |
-
# assert self.EOS == 1024
|
| 190 |
-
self.bert_proj = nn.Linear(1024, self.embedding_dim)
|
| 191 |
-
self.ar_text_embedding = TokenEmbedding(
|
| 192 |
-
self.embedding_dim, self.phoneme_vocab_size, self.p_dropout
|
| 193 |
-
)
|
| 194 |
-
self.ar_text_position = SinePositionalEmbedding(
|
| 195 |
-
self.embedding_dim, dropout=0.1, scale=False, alpha=True
|
| 196 |
-
)
|
| 197 |
-
self.ar_audio_embedding = TokenEmbedding(
|
| 198 |
-
self.embedding_dim, self.vocab_size, self.p_dropout
|
| 199 |
-
)
|
| 200 |
-
self.ar_audio_position = SinePositionalEmbedding(
|
| 201 |
-
self.embedding_dim, dropout=0.1, scale=False, alpha=True
|
| 202 |
-
)
|
| 203 |
-
|
| 204 |
-
self.h = TransformerEncoder(
|
| 205 |
-
TransformerEncoderLayer(
|
| 206 |
-
d_model=self.model_dim,
|
| 207 |
-
nhead=self.num_head,
|
| 208 |
-
dim_feedforward=self.model_dim * 4,
|
| 209 |
-
dropout=0.1,
|
| 210 |
-
batch_first=True,
|
| 211 |
-
norm_first=norm_first,
|
| 212 |
-
),
|
| 213 |
-
num_layers=self.num_layers,
|
| 214 |
-
norm=LayerNorm(self.model_dim) if norm_first else None,
|
| 215 |
-
)
|
| 216 |
-
|
| 217 |
-
self.ar_predict_layer = nn.Linear(self.model_dim, self.vocab_size, bias=False)
|
| 218 |
-
self.loss_fct = nn.CrossEntropyLoss(reduction="sum")
|
| 219 |
-
|
| 220 |
-
self.ar_accuracy_metric = MulticlassAccuracy(
|
| 221 |
-
self.vocab_size,
|
| 222 |
-
top_k=top_k,
|
| 223 |
-
average="micro",
|
| 224 |
-
multidim_average="global",
|
| 225 |
-
ignore_index=self.EOS,
|
| 226 |
-
)
|
| 227 |
-
|
| 228 |
-
blocks = []
|
| 229 |
-
|
| 230 |
-
for i in range(self.num_layers):
|
| 231 |
-
layer = self.h.layers[i]
|
| 232 |
-
t2smlp = T2SMLP(
|
| 233 |
-
layer.linear1.weight,
|
| 234 |
-
layer.linear1.bias,
|
| 235 |
-
layer.linear2.weight,
|
| 236 |
-
layer.linear2.bias
|
| 237 |
-
)
|
| 238 |
-
|
| 239 |
-
block = T2SBlock(
|
| 240 |
-
self.num_head,
|
| 241 |
-
self.model_dim,
|
| 242 |
-
t2smlp,
|
| 243 |
-
layer.self_attn.in_proj_weight,
|
| 244 |
-
layer.self_attn.in_proj_bias,
|
| 245 |
-
layer.self_attn.out_proj.weight,
|
| 246 |
-
layer.self_attn.out_proj.bias,
|
| 247 |
-
layer.norm1.weight,
|
| 248 |
-
layer.norm1.bias,
|
| 249 |
-
layer.norm1.eps,
|
| 250 |
-
layer.norm2.weight,
|
| 251 |
-
layer.norm2.bias,
|
| 252 |
-
layer.norm2.eps
|
| 253 |
-
)
|
| 254 |
-
|
| 255 |
-
blocks.append(block)
|
| 256 |
-
|
| 257 |
-
self.t2s_transformer = T2STransformer(self.num_layers, blocks)
|
| 258 |
-
|
| 259 |
-
# self.t2s_transformer.process_prompt = torch.compile(self.t2s_transformer.process_prompt,mode="reduce-overhead", fullgraph=True)
|
| 260 |
-
# self.t2s_transformer.decode_next_token = torch.compile(self.t2s_transformer.decode_next_token,mode="reduce-overhead", fullgraph=True)
|
| 261 |
-
|
| 262 |
-
def make_input_data(self, x, x_lens, y, y_lens, bert_feature):
|
| 263 |
-
x = self.ar_text_embedding(x)
|
| 264 |
-
x = x + self.bert_proj(bert_feature.transpose(1, 2))
|
| 265 |
-
x = self.ar_text_position(x)
|
| 266 |
-
x_mask = make_pad_mask(x_lens)
|
| 267 |
-
|
| 268 |
-
y_mask = make_pad_mask(y_lens)
|
| 269 |
-
y_mask_int = y_mask.type(torch.int64)
|
| 270 |
-
codes = y.type(torch.int64) * (1 - y_mask_int)
|
| 271 |
-
|
| 272 |
-
# Training
|
| 273 |
-
# AR Decoder
|
| 274 |
-
y, targets = self.pad_y_eos(codes, y_mask_int, eos_id=self.EOS)
|
| 275 |
-
x_len = x_lens.max()
|
| 276 |
-
y_len = y_lens.max()
|
| 277 |
-
y_emb = self.ar_audio_embedding(y)
|
| 278 |
-
y_pos = self.ar_audio_position(y_emb)
|
| 279 |
-
|
| 280 |
-
xy_padding_mask = torch.concat([x_mask, y_mask], dim=1)
|
| 281 |
-
|
| 282 |
-
ar_xy_padding_mask = xy_padding_mask
|
| 283 |
-
|
| 284 |
-
x_attn_mask = F.pad(
|
| 285 |
-
torch.zeros((x_len, x_len), dtype=torch.bool, device=x.device),
|
| 286 |
-
(0, y_len),
|
| 287 |
-
value=True,
|
| 288 |
-
)
|
| 289 |
-
|
| 290 |
-
y_attn_mask = F.pad(
|
| 291 |
-
torch.triu(
|
| 292 |
-
torch.ones(y_len, y_len, dtype=torch.bool, device=x.device),
|
| 293 |
-
diagonal=1,
|
| 294 |
-
),
|
| 295 |
-
(x_len, 0),
|
| 296 |
-
value=False,
|
| 297 |
-
)
|
| 298 |
-
|
| 299 |
-
xy_attn_mask = torch.concat([x_attn_mask, y_attn_mask], dim=0)
|
| 300 |
-
bsz, src_len = x.shape[0], x_len + y_len
|
| 301 |
-
_xy_padding_mask = (
|
| 302 |
-
ar_xy_padding_mask.view(bsz, 1, 1, src_len)
|
| 303 |
-
.expand(-1, self.num_head, -1, -1)
|
| 304 |
-
.reshape(bsz * self.num_head, 1, src_len)
|
| 305 |
-
)
|
| 306 |
-
xy_attn_mask = xy_attn_mask.logical_or(_xy_padding_mask)
|
| 307 |
-
new_attn_mask = torch.zeros_like(xy_attn_mask, dtype=x.dtype)
|
| 308 |
-
new_attn_mask.masked_fill_(xy_attn_mask, float("-inf"))
|
| 309 |
-
xy_attn_mask = new_attn_mask
|
| 310 |
-
# x 和完整的 y 一次性输入模型
|
| 311 |
-
xy_pos = torch.concat([x, y_pos], dim=1)
|
| 312 |
-
|
| 313 |
-
return xy_pos, xy_attn_mask, targets
|
| 314 |
-
|
| 315 |
-
def forward(self, x, x_lens, y, y_lens, bert_feature):
|
| 316 |
-
"""
|
| 317 |
-
x: phoneme_ids
|
| 318 |
-
y: semantic_ids
|
| 319 |
-
"""
|
| 320 |
-
|
| 321 |
-
reject_y, reject_y_lens = make_reject_y(y, y_lens)
|
| 322 |
-
|
| 323 |
-
xy_pos, xy_attn_mask, targets = self.make_input_data(x, x_lens, y, y_lens, bert_feature)
|
| 324 |
-
|
| 325 |
-
xy_dec, _ = self.h(
|
| 326 |
-
(xy_pos, None),
|
| 327 |
-
mask=xy_attn_mask,
|
| 328 |
-
)
|
| 329 |
-
x_len = x_lens.max()
|
| 330 |
-
logits = self.ar_predict_layer(xy_dec[:, x_len:])
|
| 331 |
-
|
| 332 |
-
###### DPO #############
|
| 333 |
-
reject_xy_pos, reject_xy_attn_mask, reject_targets = self.make_input_data(x, x_lens, reject_y, reject_y_lens, bert_feature)
|
| 334 |
-
|
| 335 |
-
reject_xy_dec, _ = self.h(
|
| 336 |
-
(reject_xy_pos, None),
|
| 337 |
-
mask=reject_xy_attn_mask,
|
| 338 |
-
)
|
| 339 |
-
x_len = x_lens.max()
|
| 340 |
-
reject_logits = self.ar_predict_layer(reject_xy_dec[:, x_len:])
|
| 341 |
-
|
| 342 |
-
# loss
|
| 343 |
-
# from feiteng: 每次 duration 越多, 梯度更新也应该更多, 所以用 sum
|
| 344 |
-
|
| 345 |
-
loss_1 = F.cross_entropy(logits.permute(0, 2, 1), targets, reduction="sum")
|
| 346 |
-
acc = self.ar_accuracy_metric(logits.permute(0, 2, 1).detach(), targets).item()
|
| 347 |
-
|
| 348 |
-
A_logits, R_logits = get_batch_logps(logits, reject_logits, targets, reject_targets)
|
| 349 |
-
loss_2, _, _ = dpo_loss(A_logits, R_logits, 0, 0, 0.2, reference_free=True)
|
| 350 |
-
|
| 351 |
-
loss = loss_1 + loss_2
|
| 352 |
-
|
| 353 |
-
return loss, acc
|
| 354 |
-
|
| 355 |
-
def forward_old(self, x, x_lens, y, y_lens, bert_feature):
|
| 356 |
-
"""
|
| 357 |
-
x: phoneme_ids
|
| 358 |
-
y: semantic_ids
|
| 359 |
-
"""
|
| 360 |
-
x = self.ar_text_embedding(x)
|
| 361 |
-
x = x + self.bert_proj(bert_feature.transpose(1, 2))
|
| 362 |
-
x = self.ar_text_position(x)
|
| 363 |
-
x_mask = make_pad_mask(x_lens)
|
| 364 |
-
|
| 365 |
-
y_mask = make_pad_mask(y_lens)
|
| 366 |
-
y_mask_int = y_mask.type(torch.int64)
|
| 367 |
-
codes = y.type(torch.int64) * (1 - y_mask_int)
|
| 368 |
-
|
| 369 |
-
# Training
|
| 370 |
-
# AR Decoder
|
| 371 |
-
y, targets = self.pad_y_eos(codes, y_mask_int, eos_id=self.EOS)
|
| 372 |
-
x_len = x_lens.max()
|
| 373 |
-
y_len = y_lens.max()
|
| 374 |
-
y_emb = self.ar_audio_embedding(y)
|
| 375 |
-
y_pos = self.ar_audio_position(y_emb)
|
| 376 |
-
|
| 377 |
-
xy_padding_mask = torch.concat([x_mask, y_mask], dim=1)
|
| 378 |
-
ar_xy_padding_mask = xy_padding_mask
|
| 379 |
-
|
| 380 |
-
x_attn_mask = F.pad(
|
| 381 |
-
torch.zeros((x_len, x_len), dtype=torch.bool, device=x.device),
|
| 382 |
-
(0, y_len),
|
| 383 |
-
value=True,
|
| 384 |
-
)
|
| 385 |
-
y_attn_mask = F.pad(
|
| 386 |
-
torch.triu(
|
| 387 |
-
torch.ones(y_len, y_len, dtype=torch.bool, device=x.device),
|
| 388 |
-
diagonal=1,
|
| 389 |
-
),
|
| 390 |
-
(x_len, 0),
|
| 391 |
-
value=False,
|
| 392 |
-
)
|
| 393 |
-
xy_attn_mask = torch.concat([x_attn_mask, y_attn_mask], dim=0)
|
| 394 |
-
bsz, src_len = x.shape[0], x_len + y_len
|
| 395 |
-
_xy_padding_mask = (
|
| 396 |
-
ar_xy_padding_mask.view(bsz, 1, 1, src_len)
|
| 397 |
-
.expand(-1, self.num_head, -1, -1)
|
| 398 |
-
.reshape(bsz * self.num_head, 1, src_len)
|
| 399 |
-
)
|
| 400 |
-
xy_attn_mask = xy_attn_mask.logical_or(_xy_padding_mask)
|
| 401 |
-
new_attn_mask = torch.zeros_like(xy_attn_mask, dtype=x.dtype)
|
| 402 |
-
new_attn_mask.masked_fill_(xy_attn_mask, float("-inf"))
|
| 403 |
-
xy_attn_mask = new_attn_mask
|
| 404 |
-
# x 和完整的 y 一次性输入模型
|
| 405 |
-
xy_pos = torch.concat([x, y_pos], dim=1)
|
| 406 |
-
xy_dec, _ = self.h(
|
| 407 |
-
(xy_pos, None),
|
| 408 |
-
mask=xy_attn_mask,
|
| 409 |
-
)
|
| 410 |
-
logits = self.ar_predict_layer(xy_dec[:, x_len:]).permute(0, 2, 1)
|
| 411 |
-
# loss
|
| 412 |
-
# from feiteng: 每次 duration 越多, 梯度更新也应该更多, 所以用 sum
|
| 413 |
-
loss = F.cross_entropy(logits, targets, reduction="sum")
|
| 414 |
-
acc = self.ar_accuracy_metric(logits.detach(), targets).item()
|
| 415 |
-
return loss, acc
|
| 416 |
-
|
| 417 |
-
# 需要看下这个函数和 forward 的区别以及没有 semantic 的时候 prompts 输入什么
|
| 418 |
-
def infer(
|
| 419 |
-
self,
|
| 420 |
-
x,
|
| 421 |
-
x_lens,
|
| 422 |
-
prompts,
|
| 423 |
-
bert_feature,
|
| 424 |
-
top_k: int = -100,
|
| 425 |
-
early_stop_num: int = -1,
|
| 426 |
-
temperature: float = 1.0,
|
| 427 |
-
):
|
| 428 |
-
x = self.ar_text_embedding(x)
|
| 429 |
-
x = x + self.bert_proj(bert_feature.transpose(1, 2))
|
| 430 |
-
x = self.ar_text_position(x)
|
| 431 |
-
|
| 432 |
-
# AR Decoder
|
| 433 |
-
y = prompts
|
| 434 |
-
prefix_len = y.shape[1]
|
| 435 |
-
x_len = x.shape[1]
|
| 436 |
-
x_attn_mask = torch.zeros((x_len, x_len), dtype=torch.bool)
|
| 437 |
-
stop = False
|
| 438 |
-
for _ in tqdm(range(1500)):
|
| 439 |
-
y_emb = self.ar_audio_embedding(y)
|
| 440 |
-
y_pos = self.ar_audio_position(y_emb)
|
| 441 |
-
# x 和逐渐增长的 y 一起输入给模型
|
| 442 |
-
xy_pos = torch.concat([x, y_pos], dim=1)
|
| 443 |
-
y_len = y.shape[1]
|
| 444 |
-
x_attn_mask_pad = F.pad(
|
| 445 |
-
x_attn_mask,
|
| 446 |
-
(0, y_len),
|
| 447 |
-
value=True,
|
| 448 |
-
)
|
| 449 |
-
y_attn_mask = F.pad(
|
| 450 |
-
torch.triu(torch.ones(y_len, y_len, dtype=torch.bool), diagonal=1),
|
| 451 |
-
(x_len, 0),
|
| 452 |
-
value=False,
|
| 453 |
-
)
|
| 454 |
-
xy_attn_mask = torch.concat([x_attn_mask_pad, y_attn_mask], dim=0).to(
|
| 455 |
-
y.device
|
| 456 |
-
)
|
| 457 |
-
|
| 458 |
-
xy_dec, _ = self.h(
|
| 459 |
-
(xy_pos, None),
|
| 460 |
-
mask=xy_attn_mask,
|
| 461 |
-
)
|
| 462 |
-
logits = self.ar_predict_layer(xy_dec[:, -1])
|
| 463 |
-
samples = topk_sampling(
|
| 464 |
-
logits, top_k=top_k, top_p=1.0, temperature=temperature
|
| 465 |
-
)
|
| 466 |
-
|
| 467 |
-
if early_stop_num != -1 and (y.shape[1] - prefix_len) > early_stop_num:
|
| 468 |
-
print("use early stop num:", early_stop_num)
|
| 469 |
-
stop = True
|
| 470 |
-
|
| 471 |
-
if torch.argmax(logits, dim=-1)[0] == self.EOS or samples[0, 0] == self.EOS:
|
| 472 |
-
# print(torch.argmax(logits, dim=-1)[0] == self.EOS, samples[0, 0] == self.EOS)
|
| 473 |
-
stop = True
|
| 474 |
-
if stop:
|
| 475 |
-
if prompts.shape[1] == y.shape[1]:
|
| 476 |
-
y = torch.concat([y, torch.zeros_like(samples)], dim=1)
|
| 477 |
-
print("bad zero prediction")
|
| 478 |
-
print(f"T2S Decoding EOS [{prefix_len} -> {y.shape[1]}]")
|
| 479 |
-
break
|
| 480 |
-
# 本次生成的 semantic_ids 和之前的 y 构成新的 y
|
| 481 |
-
# print(samples.shape)#[1,1]#第一个1是bs
|
| 482 |
-
# import os
|
| 483 |
-
# os._exit(2333)
|
| 484 |
-
y = torch.concat([y, samples], dim=1)
|
| 485 |
-
return y
|
| 486 |
-
|
| 487 |
-
def pad_y_eos(self, y, y_mask_int, eos_id):
|
| 488 |
-
targets = F.pad(y, (0, 1), value=0) + eos_id * F.pad(
|
| 489 |
-
y_mask_int, (0, 1), value=1
|
| 490 |
-
)
|
| 491 |
-
# 错位
|
| 492 |
-
return targets[:, :-1], targets[:, 1:]
|
| 493 |
-
|
| 494 |
-
def infer_panel(
|
| 495 |
-
self,
|
| 496 |
-
x, #####全部文本token
|
| 497 |
-
x_lens,
|
| 498 |
-
prompts, ####参考音频token
|
| 499 |
-
bert_feature,
|
| 500 |
-
top_k: int = -100,
|
| 501 |
-
top_p: int = 100,
|
| 502 |
-
early_stop_num: int = -1,
|
| 503 |
-
temperature: float = 1.0,
|
| 504 |
-
):
|
| 505 |
-
x = self.ar_text_embedding(x)
|
| 506 |
-
x = x + self.bert_proj(bert_feature.transpose(1, 2))
|
| 507 |
-
x = self.ar_text_position(x)
|
| 508 |
-
|
| 509 |
-
# AR Decoder
|
| 510 |
-
y = prompts
|
| 511 |
-
|
| 512 |
-
x_len = x.shape[1]
|
| 513 |
-
x_attn_mask = torch.zeros((x_len, x_len), dtype=torch.bool)
|
| 514 |
-
stop = False
|
| 515 |
-
# print(1111111,self.num_layers)
|
| 516 |
-
|
| 517 |
-
k_cache = None
|
| 518 |
-
v_cache = None
|
| 519 |
-
################### first step ##########################
|
| 520 |
-
if y is not None:
|
| 521 |
-
y_emb = self.ar_audio_embedding(y)
|
| 522 |
-
y_len = y_emb.shape[1]
|
| 523 |
-
prefix_len = y.shape[1]
|
| 524 |
-
y_pos = self.ar_audio_position(y_emb)
|
| 525 |
-
xy_pos = torch.concat([x, y_pos], dim=1)
|
| 526 |
-
ref_free = False
|
| 527 |
-
else:
|
| 528 |
-
y_emb = None
|
| 529 |
-
y_len = 0
|
| 530 |
-
prefix_len = 0
|
| 531 |
-
y_pos = None
|
| 532 |
-
xy_pos = x
|
| 533 |
-
y = torch.zeros(x.shape[0], 0, dtype=torch.int, device=x.device)
|
| 534 |
-
ref_free = True
|
| 535 |
-
|
| 536 |
-
x_attn_mask_pad = F.pad(
|
| 537 |
-
x_attn_mask,
|
| 538 |
-
(0, y_len), ###xx的纯0扩展到xx纯0+xy纯1,(x,x+y)
|
| 539 |
-
value=True,
|
| 540 |
-
)
|
| 541 |
-
y_attn_mask = F.pad( ###yy的右上1扩展到左边xy的0,(y,x+y)
|
| 542 |
-
torch.triu(torch.ones(y_len, y_len, dtype=torch.bool), diagonal=1),
|
| 543 |
-
(x_len, 0),
|
| 544 |
-
value=False,
|
| 545 |
-
)
|
| 546 |
-
xy_attn_mask = torch.concat([x_attn_mask_pad, y_attn_mask], dim=0).to(
|
| 547 |
-
x.device
|
| 548 |
-
)
|
| 549 |
-
|
| 550 |
-
for idx in tqdm(range(1500)):
|
| 551 |
-
if xy_attn_mask is not None:
|
| 552 |
-
xy_dec, k_cache, v_cache = self.t2s_transformer.process_prompt(xy_pos, xy_attn_mask)
|
| 553 |
-
else:
|
| 554 |
-
xy_dec, k_cache, v_cache = self.t2s_transformer.decode_next_token(xy_pos, k_cache, v_cache)
|
| 555 |
-
|
| 556 |
-
logits = self.ar_predict_layer(
|
| 557 |
-
xy_dec[:, -1]
|
| 558 |
-
)
|
| 559 |
-
|
| 560 |
-
if idx == 0:
|
| 561 |
-
xy_attn_mask = None
|
| 562 |
-
logits = logits[:, :-1]
|
| 563 |
-
samples = sample(
|
| 564 |
-
logits[0], y, top_k=top_k, top_p=top_p, repetition_penalty=1.35, temperature=temperature
|
| 565 |
-
)[0].unsqueeze(0)
|
| 566 |
-
|
| 567 |
-
y = torch.concat([y, samples], dim=1)
|
| 568 |
-
|
| 569 |
-
if early_stop_num != -1 and (y.shape[1] - prefix_len) > early_stop_num:
|
| 570 |
-
print("use early stop num:", early_stop_num)
|
| 571 |
-
stop = True
|
| 572 |
-
|
| 573 |
-
if torch.argmax(logits, dim=-1)[0] == self.EOS or samples[0, 0] == self.EOS:
|
| 574 |
-
stop = True
|
| 575 |
-
if stop:
|
| 576 |
-
if y.shape[1]==0:
|
| 577 |
-
y = torch.concat([y, torch.zeros_like(samples)], dim=1)
|
| 578 |
-
print("bad zero prediction")
|
| 579 |
-
print(f"T2S Decoding EOS [{prefix_len} -> {y.shape[1]}]")
|
| 580 |
-
break
|
| 581 |
-
|
| 582 |
-
####################### update next step ###################################
|
| 583 |
-
y_emb = self.ar_audio_embedding(y[:, -1:])
|
| 584 |
-
xy_pos = y_emb * self.ar_audio_position.x_scale + self.ar_audio_position.alpha * self.ar_audio_position.pe[:, y_len + idx].to(dtype=y_emb.dtype,device=y_emb.device)
|
| 585 |
-
|
| 586 |
-
if ref_free:
|
| 587 |
-
return y[:, :-1], 0
|
| 588 |
-
return y[:, :-1], idx - 1
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
AR/models/t2s_model_onnx.py
DELETED
|
@@ -1,338 +0,0 @@
|
|
| 1 |
-
# modified from https://github.com/yangdongchao/SoundStorm/blob/master/soundstorm/s1/AR/models/t2s_model.py
|
| 2 |
-
# reference: https://github.com/lifeiteng/vall-e
|
| 3 |
-
import torch
|
| 4 |
-
from tqdm import tqdm
|
| 5 |
-
|
| 6 |
-
from AR.modules.embedding_onnx import SinePositionalEmbedding
|
| 7 |
-
from AR.modules.embedding_onnx import TokenEmbedding
|
| 8 |
-
from AR.modules.transformer_onnx import LayerNorm
|
| 9 |
-
from AR.modules.transformer_onnx import TransformerEncoder
|
| 10 |
-
from AR.modules.transformer_onnx import TransformerEncoderLayer
|
| 11 |
-
from torch import nn
|
| 12 |
-
from torch.nn import functional as F
|
| 13 |
-
from torchmetrics.classification import MulticlassAccuracy
|
| 14 |
-
|
| 15 |
-
default_config = {
|
| 16 |
-
"embedding_dim": 512,
|
| 17 |
-
"hidden_dim": 512,
|
| 18 |
-
"num_head": 8,
|
| 19 |
-
"num_layers": 12,
|
| 20 |
-
"num_codebook": 8,
|
| 21 |
-
"p_dropout": 0.0,
|
| 22 |
-
"vocab_size": 1024 + 1,
|
| 23 |
-
"phoneme_vocab_size": 512,
|
| 24 |
-
"EOS": 1024,
|
| 25 |
-
}
|
| 26 |
-
|
| 27 |
-
inf_tensor_value = torch.FloatTensor([-float("Inf")]).float()
|
| 28 |
-
|
| 29 |
-
def logits_to_probs(
|
| 30 |
-
logits,
|
| 31 |
-
previous_tokens = None,
|
| 32 |
-
temperature: float = 1.0,
|
| 33 |
-
top_k = None,
|
| 34 |
-
top_p = None,
|
| 35 |
-
repetition_penalty: float = 1.0,
|
| 36 |
-
):
|
| 37 |
-
previous_tokens = previous_tokens.squeeze()
|
| 38 |
-
if previous_tokens is not None and repetition_penalty != 1.0:
|
| 39 |
-
previous_tokens = previous_tokens.long()
|
| 40 |
-
score = torch.gather(logits, dim=0, index=previous_tokens)
|
| 41 |
-
score = torch.where(
|
| 42 |
-
score < 0, score * repetition_penalty, score / repetition_penalty
|
| 43 |
-
)
|
| 44 |
-
logits.scatter_(dim=0, index=previous_tokens, src=score)
|
| 45 |
-
|
| 46 |
-
if top_p is not None and top_p < 1.0:
|
| 47 |
-
sorted_logits, sorted_indices = torch.sort(logits, descending=True)
|
| 48 |
-
cum_probs = torch.cumsum(
|
| 49 |
-
torch.nn.functional.softmax(sorted_logits, dim=-1), dim=-1
|
| 50 |
-
)
|
| 51 |
-
sorted_indices_to_remove = cum_probs > top_p
|
| 52 |
-
sorted_indices_to_remove[0] = False # keep at least one option
|
| 53 |
-
indices_to_remove = sorted_indices_to_remove.scatter(
|
| 54 |
-
dim=0, index=sorted_indices, src=sorted_indices_to_remove
|
| 55 |
-
)
|
| 56 |
-
logits = logits.masked_fill(indices_to_remove, -float("Inf"))
|
| 57 |
-
|
| 58 |
-
logits = logits / max(temperature, 1e-5)
|
| 59 |
-
|
| 60 |
-
if top_k is not None:
|
| 61 |
-
v, _ = torch.topk(logits, top_k)
|
| 62 |
-
pivot = v.select(-1, -1).unsqueeze(-1)
|
| 63 |
-
logits = torch.where(logits < pivot, inf_tensor_value, logits)
|
| 64 |
-
|
| 65 |
-
probs = torch.nn.functional.softmax(logits, dim=-1)
|
| 66 |
-
return probs
|
| 67 |
-
|
| 68 |
-
|
| 69 |
-
def multinomial_sample_one_no_sync(
|
| 70 |
-
probs_sort
|
| 71 |
-
): # Does multinomial sampling without a cuda synchronization
|
| 72 |
-
q = torch.randn_like(probs_sort)
|
| 73 |
-
return torch.argmax(probs_sort / q, dim=-1, keepdim=True).to(dtype=torch.int)
|
| 74 |
-
|
| 75 |
-
|
| 76 |
-
def sample(
|
| 77 |
-
logits,
|
| 78 |
-
previous_tokens,
|
| 79 |
-
**sampling_kwargs,
|
| 80 |
-
):
|
| 81 |
-
probs = logits_to_probs(
|
| 82 |
-
logits=logits, previous_tokens=previous_tokens, **sampling_kwargs
|
| 83 |
-
)
|
| 84 |
-
idx_next = multinomial_sample_one_no_sync(probs)
|
| 85 |
-
return idx_next, probs
|
| 86 |
-
|
| 87 |
-
|
| 88 |
-
class OnnxEncoder(nn.Module):
|
| 89 |
-
def __init__(self, ar_text_embedding, bert_proj, ar_text_position):
|
| 90 |
-
super().__init__()
|
| 91 |
-
self.ar_text_embedding = ar_text_embedding
|
| 92 |
-
self.bert_proj = bert_proj
|
| 93 |
-
self.ar_text_position = ar_text_position
|
| 94 |
-
|
| 95 |
-
def forward(self, x, bert_feature):
|
| 96 |
-
x = self.ar_text_embedding(x)
|
| 97 |
-
x = x + self.bert_proj(bert_feature.transpose(1, 2))
|
| 98 |
-
return self.ar_text_position(x)
|
| 99 |
-
|
| 100 |
-
|
| 101 |
-
class T2SFirstStageDecoder(nn.Module):
|
| 102 |
-
def __init__(self, ar_audio_embedding, ar_audio_position, h, ar_predict_layer, loss_fct, ar_accuracy_metric,
|
| 103 |
-
top_k, early_stop_num, num_layers):
|
| 104 |
-
super().__init__()
|
| 105 |
-
self.ar_audio_embedding = ar_audio_embedding
|
| 106 |
-
self.ar_audio_position = ar_audio_position
|
| 107 |
-
self.h = h
|
| 108 |
-
self.ar_predict_layer = ar_predict_layer
|
| 109 |
-
self.loss_fct = loss_fct
|
| 110 |
-
self.ar_accuracy_metric = ar_accuracy_metric
|
| 111 |
-
self.top_k = top_k
|
| 112 |
-
self.early_stop_num = early_stop_num
|
| 113 |
-
self.num_layers = num_layers
|
| 114 |
-
|
| 115 |
-
def forward(self, x, prompt):
|
| 116 |
-
y = prompt
|
| 117 |
-
x_example = x[:,:,0] * 0.0
|
| 118 |
-
#N, 1, 512
|
| 119 |
-
cache = {
|
| 120 |
-
"all_stage": self.num_layers,
|
| 121 |
-
"k": None,
|
| 122 |
-
"v": None,
|
| 123 |
-
"y_emb": None,
|
| 124 |
-
"first_infer": 1,
|
| 125 |
-
"stage": 0,
|
| 126 |
-
}
|
| 127 |
-
|
| 128 |
-
y_emb = self.ar_audio_embedding(y)
|
| 129 |
-
|
| 130 |
-
cache["y_emb"] = y_emb
|
| 131 |
-
y_pos = self.ar_audio_position(y_emb)
|
| 132 |
-
|
| 133 |
-
xy_pos = torch.concat([x, y_pos], dim=1)
|
| 134 |
-
|
| 135 |
-
y_example = y_pos[:,:,0] * 0.0
|
| 136 |
-
x_attn_mask = torch.matmul(x_example.transpose(0, 1) , x_example).bool()
|
| 137 |
-
y_attn_mask = torch.ones_like(torch.matmul(y_example.transpose(0, 1), y_example), dtype=torch.int64)
|
| 138 |
-
y_attn_mask = torch.cumsum(y_attn_mask, dim=1) - torch.cumsum(
|
| 139 |
-
torch.ones_like(y_example.transpose(0, 1), dtype=torch.int64), dim=0
|
| 140 |
-
)
|
| 141 |
-
y_attn_mask = y_attn_mask > 0
|
| 142 |
-
|
| 143 |
-
x_y_pad = torch.matmul(x_example.transpose(0, 1), y_example).bool()
|
| 144 |
-
y_x_pad = torch.matmul(y_example.transpose(0, 1), x_example).bool()
|
| 145 |
-
x_attn_mask_pad = torch.cat([x_attn_mask, torch.ones_like(x_y_pad)], dim=1)
|
| 146 |
-
y_attn_mask = torch.cat([y_x_pad, y_attn_mask], dim=1)
|
| 147 |
-
xy_attn_mask = torch.concat([x_attn_mask_pad, y_attn_mask], dim=0)
|
| 148 |
-
cache["k"] = torch.matmul(x_attn_mask_pad[0].float().unsqueeze(-1), torch.zeros((1, 512)))\
|
| 149 |
-
.unsqueeze(1).repeat(self.num_layers, 1, 1, 1)
|
| 150 |
-
cache["v"] = torch.matmul(x_attn_mask_pad[0].float().unsqueeze(-1), torch.zeros((1, 512)))\
|
| 151 |
-
.unsqueeze(1).repeat(self.num_layers, 1, 1, 1)
|
| 152 |
-
|
| 153 |
-
xy_dec = self.h(xy_pos, mask=xy_attn_mask, cache=cache)
|
| 154 |
-
logits = self.ar_predict_layer(xy_dec[:, -1])
|
| 155 |
-
samples = sample(logits[0], y, top_k=self.top_k, top_p=1.0, repetition_penalty=1.35)[0].unsqueeze(0)
|
| 156 |
-
|
| 157 |
-
y = torch.concat([y, samples], dim=1)
|
| 158 |
-
|
| 159 |
-
return y, cache["k"], cache["v"], cache["y_emb"], x_example
|
| 160 |
-
|
| 161 |
-
|
| 162 |
-
class T2SStageDecoder(nn.Module):
|
| 163 |
-
def __init__(self, ar_audio_embedding, ar_audio_position, h, ar_predict_layer, loss_fct, ar_accuracy_metric,
|
| 164 |
-
top_k, early_stop_num, num_layers):
|
| 165 |
-
super().__init__()
|
| 166 |
-
self.ar_audio_embedding = ar_audio_embedding
|
| 167 |
-
self.ar_audio_position = ar_audio_position
|
| 168 |
-
self.h = h
|
| 169 |
-
self.ar_predict_layer = ar_predict_layer
|
| 170 |
-
self.loss_fct = loss_fct
|
| 171 |
-
self.ar_accuracy_metric = ar_accuracy_metric
|
| 172 |
-
self.top_k = top_k
|
| 173 |
-
self.early_stop_num = early_stop_num
|
| 174 |
-
self.num_layers = num_layers
|
| 175 |
-
|
| 176 |
-
def forward(self, y, k, v, y_emb, x_example):
|
| 177 |
-
cache = {
|
| 178 |
-
"all_stage": self.num_layers,
|
| 179 |
-
"k": torch.nn.functional.pad(k, (0, 0, 0, 0, 0, 1)),
|
| 180 |
-
"v": torch.nn.functional.pad(v, (0, 0, 0, 0, 0, 1)),
|
| 181 |
-
"y_emb": y_emb,
|
| 182 |
-
"first_infer": 0,
|
| 183 |
-
"stage": 0,
|
| 184 |
-
}
|
| 185 |
-
|
| 186 |
-
y_emb = torch.cat(
|
| 187 |
-
[cache["y_emb"], self.ar_audio_embedding(y[:, -1:])], 1
|
| 188 |
-
)
|
| 189 |
-
cache["y_emb"] = y_emb
|
| 190 |
-
y_pos = self.ar_audio_position(y_emb)
|
| 191 |
-
|
| 192 |
-
xy_pos = y_pos[:, -1:]
|
| 193 |
-
|
| 194 |
-
y_example = y_pos[:,:,0] * 0.0
|
| 195 |
-
|
| 196 |
-
xy_attn_mask = torch.cat([x_example, y_example], dim=1)
|
| 197 |
-
xy_attn_mask = torch.zeros_like(xy_attn_mask, dtype=torch.bool)
|
| 198 |
-
|
| 199 |
-
xy_dec = self.h(xy_pos, mask=xy_attn_mask, cache=cache)
|
| 200 |
-
logits = self.ar_predict_layer(xy_dec[:, -1])
|
| 201 |
-
samples = sample(logits[0], y, top_k=self.top_k, top_p=1.0, repetition_penalty=1.35)[0].unsqueeze(0)
|
| 202 |
-
|
| 203 |
-
y = torch.concat([y, samples], dim=1)
|
| 204 |
-
|
| 205 |
-
return y, cache["k"], cache["v"], cache["y_emb"], logits, samples
|
| 206 |
-
|
| 207 |
-
|
| 208 |
-
class Text2SemanticDecoder(nn.Module):
|
| 209 |
-
def __init__(self, config, norm_first=False, top_k=3):
|
| 210 |
-
super(Text2SemanticDecoder, self).__init__()
|
| 211 |
-
self.model_dim = config["model"]["hidden_dim"]
|
| 212 |
-
self.embedding_dim = config["model"]["embedding_dim"]
|
| 213 |
-
self.num_head = config["model"]["head"]
|
| 214 |
-
self.num_layers = config["model"]["n_layer"]
|
| 215 |
-
self.norm_first = norm_first
|
| 216 |
-
self.vocab_size = config["model"]["vocab_size"]
|
| 217 |
-
self.phoneme_vocab_size = config["model"]["phoneme_vocab_size"]
|
| 218 |
-
self.p_dropout = float(config["model"]["dropout"])
|
| 219 |
-
self.EOS = config["model"]["EOS"]
|
| 220 |
-
self.norm_first = norm_first
|
| 221 |
-
assert self.EOS == self.vocab_size - 1
|
| 222 |
-
self.bert_proj = nn.Linear(1024, self.embedding_dim)
|
| 223 |
-
self.ar_text_embedding = TokenEmbedding(self.embedding_dim, self.phoneme_vocab_size, self.p_dropout)
|
| 224 |
-
self.ar_text_position = SinePositionalEmbedding(self.embedding_dim, dropout=0.1, scale=False, alpha=True)
|
| 225 |
-
self.ar_audio_embedding = TokenEmbedding(self.embedding_dim, self.vocab_size, self.p_dropout)
|
| 226 |
-
self.ar_audio_position = SinePositionalEmbedding(self.embedding_dim, dropout=0.1, scale=False, alpha=True)
|
| 227 |
-
self.h = TransformerEncoder(
|
| 228 |
-
TransformerEncoderLayer(
|
| 229 |
-
d_model=self.model_dim,
|
| 230 |
-
nhead=self.num_head,
|
| 231 |
-
dim_feedforward=self.model_dim * 4,
|
| 232 |
-
dropout=0.1,
|
| 233 |
-
batch_first=True,
|
| 234 |
-
norm_first=norm_first,
|
| 235 |
-
),
|
| 236 |
-
num_layers=self.num_layers,
|
| 237 |
-
norm=LayerNorm(self.model_dim) if norm_first else None,
|
| 238 |
-
)
|
| 239 |
-
self.ar_predict_layer = nn.Linear(self.model_dim, self.vocab_size, bias=False)
|
| 240 |
-
self.loss_fct = nn.CrossEntropyLoss(reduction="sum")
|
| 241 |
-
self.ar_accuracy_metric = MulticlassAccuracy(
|
| 242 |
-
self.vocab_size,
|
| 243 |
-
top_k=top_k,
|
| 244 |
-
average="micro",
|
| 245 |
-
multidim_average="global",
|
| 246 |
-
ignore_index=self.EOS,
|
| 247 |
-
)
|
| 248 |
-
self.top_k = torch.LongTensor([1])
|
| 249 |
-
self.early_stop_num = torch.LongTensor([-1])
|
| 250 |
-
|
| 251 |
-
def init_onnx(self):
|
| 252 |
-
self.onnx_encoder = OnnxEncoder(self.ar_text_embedding, self.bert_proj, self.ar_text_position)
|
| 253 |
-
self.first_stage_decoder = T2SFirstStageDecoder(self.ar_audio_embedding, self.ar_audio_position, self.h,
|
| 254 |
-
self.ar_predict_layer, self.loss_fct, self.ar_accuracy_metric, self.top_k, self.early_stop_num,
|
| 255 |
-
self.num_layers)
|
| 256 |
-
self.stage_decoder = T2SStageDecoder(self.ar_audio_embedding, self.ar_audio_position, self.h,
|
| 257 |
-
self.ar_predict_layer, self.loss_fct, self.ar_accuracy_metric, self.top_k, self.early_stop_num,
|
| 258 |
-
self.num_layers)
|
| 259 |
-
|
| 260 |
-
def forward(self, x, prompts, bert_feature):
|
| 261 |
-
early_stop_num = self.early_stop_num
|
| 262 |
-
prefix_len = prompts.shape[1]
|
| 263 |
-
|
| 264 |
-
x = self.onnx_encoder(x, bert_feature)
|
| 265 |
-
y, k, v, y_emb, stage, x_example = self.first_stage_decoder(x, prompts)
|
| 266 |
-
|
| 267 |
-
stop = False
|
| 268 |
-
for idx in range(1, 1500):
|
| 269 |
-
enco = self.stage_decoder(y, k, v, y_emb, stage, x_example)
|
| 270 |
-
y, k, v, y_emb, stage, logits, samples = enco
|
| 271 |
-
if early_stop_num != -1 and (y.shape[1] - prefix_len) > early_stop_num:
|
| 272 |
-
stop = True
|
| 273 |
-
if torch.argmax(logits, dim=-1)[0] == self.EOS or samples[0, 0] == self.EOS:
|
| 274 |
-
stop = True
|
| 275 |
-
if stop:
|
| 276 |
-
break
|
| 277 |
-
y[0, -1] = 0
|
| 278 |
-
return y, idx
|
| 279 |
-
|
| 280 |
-
def infer(self, x, prompts, bert_feature):
|
| 281 |
-
top_k = self.top_k
|
| 282 |
-
early_stop_num = self.early_stop_num
|
| 283 |
-
|
| 284 |
-
x = self.onnx_encoder(x, bert_feature)
|
| 285 |
-
|
| 286 |
-
y = prompts
|
| 287 |
-
prefix_len = y.shape[1]
|
| 288 |
-
x_len = x.shape[1]
|
| 289 |
-
x_example = x[:,:,0] * 0.0
|
| 290 |
-
x_attn_mask = torch.matmul(x_example.transpose(0, 1), x_example)
|
| 291 |
-
x_attn_mask = torch.zeros_like(x_attn_mask, dtype=torch.bool)
|
| 292 |
-
|
| 293 |
-
stop = False
|
| 294 |
-
cache = {
|
| 295 |
-
"all_stage": self.num_layers,
|
| 296 |
-
"k": [None] * self.num_layers,
|
| 297 |
-
"v": [None] * self.num_layers,
|
| 298 |
-
"y_emb": None,
|
| 299 |
-
"first_infer": 1,
|
| 300 |
-
"stage": 0,
|
| 301 |
-
}
|
| 302 |
-
for idx in range(1500):
|
| 303 |
-
if cache["first_infer"] == 1:
|
| 304 |
-
y_emb = self.ar_audio_embedding(y)
|
| 305 |
-
else:
|
| 306 |
-
y_emb = torch.cat(
|
| 307 |
-
[cache["y_emb"], self.ar_audio_embedding(y[:, -1:])], 1
|
| 308 |
-
)
|
| 309 |
-
cache["y_emb"] = y_emb
|
| 310 |
-
y_pos = self.ar_audio_position(y_emb)
|
| 311 |
-
if cache["first_infer"] == 1:
|
| 312 |
-
xy_pos = torch.concat([x, y_pos], dim=1)
|
| 313 |
-
else:
|
| 314 |
-
xy_pos = y_pos[:, -1:]
|
| 315 |
-
y_len = y_pos.shape[1]
|
| 316 |
-
if cache["first_infer"] == 1:
|
| 317 |
-
x_attn_mask_pad = F.pad(x_attn_mask, (0, y_len), value=True)
|
| 318 |
-
y_attn_mask = F.pad(
|
| 319 |
-
torch.triu(torch.ones(y_len, y_len, dtype=torch.bool), diagonal=1),
|
| 320 |
-
(x_len, 0), value=False
|
| 321 |
-
)
|
| 322 |
-
xy_attn_mask = torch.concat([x_attn_mask_pad, y_attn_mask], dim=0)
|
| 323 |
-
else:
|
| 324 |
-
xy_attn_mask = torch.zeros((1, x_len + y_len), dtype=torch.bool)
|
| 325 |
-
xy_dec = self.h(xy_pos, mask=xy_attn_mask, cache=cache)
|
| 326 |
-
logits = self.ar_predict_layer(xy_dec[:, -1])
|
| 327 |
-
samples = sample(logits[0], y, top_k=top_k, top_p=1.0, repetition_penalty=1.35)[0].unsqueeze(0)
|
| 328 |
-
if early_stop_num != -1 and (y.shape[1] - prefix_len) > early_stop_num:
|
| 329 |
-
stop = True
|
| 330 |
-
if torch.argmax(logits, dim=-1)[0] == self.EOS or samples[0, 0] == self.EOS:
|
| 331 |
-
stop = True
|
| 332 |
-
if stop:
|
| 333 |
-
if prompts.shape[1] == y.shape[1]:
|
| 334 |
-
y = torch.concat([y, torch.zeros_like(samples)], dim=1)
|
| 335 |
-
break
|
| 336 |
-
y = torch.concat([y, samples], dim=1)
|
| 337 |
-
cache["first_infer"] = 0
|
| 338 |
-
return y, idx
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
AR/models/utils.py
DELETED
|
@@ -1,229 +0,0 @@
|
|
| 1 |
-
# modified from https://github.com/yangdongchao/SoundStorm/blob/master/soundstorm/s1/AR/models/utils.py
|
| 2 |
-
# reference: https://github.com/lifeiteng/vall-e
|
| 3 |
-
import torch
|
| 4 |
-
import torch.nn.functional as F
|
| 5 |
-
from typing import Tuple
|
| 6 |
-
|
| 7 |
-
def sequence_mask(length, max_length=None):
|
| 8 |
-
if max_length is None:
|
| 9 |
-
max_length = length.max()
|
| 10 |
-
x = torch.arange(max_length, dtype=length.dtype, device=length.device)
|
| 11 |
-
return x.unsqueeze(0) < length.unsqueeze(1)
|
| 12 |
-
|
| 13 |
-
|
| 14 |
-
def make_pad_mask(lengths: torch.Tensor, max_len: int = 0) -> torch.Tensor:
|
| 15 |
-
"""
|
| 16 |
-
Args:
|
| 17 |
-
lengths:
|
| 18 |
-
A 1-D tensor containing sentence lengths.
|
| 19 |
-
max_len:
|
| 20 |
-
The length of masks.
|
| 21 |
-
Returns:
|
| 22 |
-
Return a 2-D bool tensor, where masked positions
|
| 23 |
-
are filled with `True` and non-masked positions are
|
| 24 |
-
filled with `False`.
|
| 25 |
-
|
| 26 |
-
#>>> lengths = torch.tensor([1, 3, 2, 5])
|
| 27 |
-
#>>> make_pad_mask(lengths)
|
| 28 |
-
tensor([[False, True, True, True, True],
|
| 29 |
-
[False, False, False, True, True],
|
| 30 |
-
[False, False, True, True, True],
|
| 31 |
-
[False, False, False, False, False]])
|
| 32 |
-
"""
|
| 33 |
-
assert lengths.ndim == 1, lengths.ndim
|
| 34 |
-
max_len = max(max_len, lengths.max())
|
| 35 |
-
n = lengths.size(0)
|
| 36 |
-
seq_range = torch.arange(0, max_len, device=lengths.device)
|
| 37 |
-
expaned_lengths = seq_range.unsqueeze(0).expand(n, max_len)
|
| 38 |
-
|
| 39 |
-
return expaned_lengths >= lengths.unsqueeze(-1)
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
# https://github.com/microsoft/unilm/blob/master/xtune/src/transformers/modeling_utils.py
|
| 43 |
-
def top_k_top_p_filtering(
|
| 44 |
-
logits, top_k=0, top_p=1.0, filter_value=-float("Inf"), min_tokens_to_keep=1
|
| 45 |
-
):
|
| 46 |
-
"""Filter a distribution of logits using top-k and/or nucleus (top-p) filtering
|
| 47 |
-
Args:
|
| 48 |
-
logits: logits distribution shape (batch size, vocabulary size)
|
| 49 |
-
if top_k > 0: keep only top k tokens with highest probability (top-k filtering).
|
| 50 |
-
if top_p < 1.0: keep the top tokens with cumulative probability >= top_p (nucleus filtering).
|
| 51 |
-
Nucleus filtering is described in Holtzman et al. (http://arxiv.org/abs/1904.09751)
|
| 52 |
-
Make sure we keep at least min_tokens_to_keep per batch example in the output
|
| 53 |
-
From: https://gist.github.com/thomwolf/1a5a29f6962089e871b94cbd09daf317
|
| 54 |
-
"""
|
| 55 |
-
if top_k > 0:
|
| 56 |
-
top_k = min(max(top_k, min_tokens_to_keep), logits.size(-1)) # Safety check
|
| 57 |
-
# Remove all tokens with a probability less than the last token of the top-k
|
| 58 |
-
indices_to_remove = logits < torch.topk(logits, top_k)[0][..., -1, None]
|
| 59 |
-
logits[indices_to_remove] = filter_value
|
| 60 |
-
|
| 61 |
-
if top_p < 1.0:
|
| 62 |
-
sorted_logits, sorted_indices = torch.sort(logits, descending=True)
|
| 63 |
-
cumulative_probs = torch.cumsum(F.softmax(sorted_logits, dim=-1), dim=-1)
|
| 64 |
-
|
| 65 |
-
# Remove tokens with cumulative probability above the threshold (token with 0 are kept)
|
| 66 |
-
sorted_indices_to_remove = cumulative_probs > top_p
|
| 67 |
-
if min_tokens_to_keep > 1:
|
| 68 |
-
# Keep at least min_tokens_to_keep (set to min_tokens_to_keep-1 because we add the first one below)
|
| 69 |
-
sorted_indices_to_remove[..., :min_tokens_to_keep] = 0
|
| 70 |
-
# Shift the indices to the right to keep also the first token above the threshold
|
| 71 |
-
sorted_indices_to_remove[..., 1:] = sorted_indices_to_remove[..., :-1].clone()
|
| 72 |
-
sorted_indices_to_remove[..., 0] = 0
|
| 73 |
-
|
| 74 |
-
# scatter sorted tensors to original indexing
|
| 75 |
-
indices_to_remove = sorted_indices_to_remove.scatter(
|
| 76 |
-
1, sorted_indices, sorted_indices_to_remove
|
| 77 |
-
)
|
| 78 |
-
logits[indices_to_remove] = filter_value
|
| 79 |
-
return logits
|
| 80 |
-
|
| 81 |
-
|
| 82 |
-
def topk_sampling(logits, top_k=10, top_p=1.0, temperature=1.0):
|
| 83 |
-
# temperature: (`optional`) float
|
| 84 |
-
# The value used to module the next token probabilities. Must be strictly positive. Default to 1.0.
|
| 85 |
-
# top_k: (`optional`) int
|
| 86 |
-
# The number of highest probability vocabulary tokens to keep for top-k-filtering. Between 1 and infinity. Default to 50.
|
| 87 |
-
# top_p: (`optional`) float
|
| 88 |
-
# The cumulative probability of parameter highest probability vocabulary tokens to keep for nucleus sampling. Must be between 0 and 1. Default to 1.
|
| 89 |
-
|
| 90 |
-
# Temperature (higher temperature => more likely to sample low probability tokens)
|
| 91 |
-
if temperature != 1.0:
|
| 92 |
-
logits = logits / temperature
|
| 93 |
-
# Top-p/top-k filtering
|
| 94 |
-
logits = top_k_top_p_filtering(logits, top_k=top_k, top_p=top_p)
|
| 95 |
-
# Sample
|
| 96 |
-
token = torch.multinomial(F.softmax(logits, dim=-1), num_samples=1)
|
| 97 |
-
return token
|
| 98 |
-
|
| 99 |
-
|
| 100 |
-
from typing import Optional, Tuple
|
| 101 |
-
|
| 102 |
-
|
| 103 |
-
def multinomial_sample_one_no_sync(
|
| 104 |
-
probs_sort,
|
| 105 |
-
): # Does multinomial sampling without a cuda synchronization
|
| 106 |
-
q = torch.empty_like(probs_sort).exponential_(1)
|
| 107 |
-
return torch.argmax(probs_sort / q, dim=-1, keepdim=True).to(dtype=torch.int)
|
| 108 |
-
|
| 109 |
-
|
| 110 |
-
def logits_to_probs(
|
| 111 |
-
logits,
|
| 112 |
-
previous_tokens: Optional[torch.Tensor] = None,
|
| 113 |
-
temperature: float = 1.0,
|
| 114 |
-
top_k: Optional[int] = None,
|
| 115 |
-
top_p: Optional[int] = None,
|
| 116 |
-
repetition_penalty: float = 1.0,
|
| 117 |
-
):
|
| 118 |
-
if previous_tokens is not None:
|
| 119 |
-
previous_tokens = previous_tokens.squeeze()
|
| 120 |
-
# print(logits.shape,previous_tokens.shape)
|
| 121 |
-
# pdb.set_trace()
|
| 122 |
-
if previous_tokens is not None and repetition_penalty != 1.0:
|
| 123 |
-
previous_tokens = previous_tokens.long()
|
| 124 |
-
score = torch.gather(logits, dim=0, index=previous_tokens)
|
| 125 |
-
score = torch.where(
|
| 126 |
-
score < 0, score * repetition_penalty, score / repetition_penalty
|
| 127 |
-
)
|
| 128 |
-
logits.scatter_(dim=0, index=previous_tokens, src=score)
|
| 129 |
-
|
| 130 |
-
if top_p is not None and top_p < 1.0:
|
| 131 |
-
sorted_logits, sorted_indices = torch.sort(logits, descending=True)
|
| 132 |
-
cum_probs = torch.cumsum(
|
| 133 |
-
torch.nn.functional.softmax(sorted_logits, dim=-1), dim=-1
|
| 134 |
-
)
|
| 135 |
-
sorted_indices_to_remove = cum_probs > top_p
|
| 136 |
-
sorted_indices_to_remove[0] = False # keep at least one option
|
| 137 |
-
indices_to_remove = sorted_indices_to_remove.scatter(
|
| 138 |
-
dim=0, index=sorted_indices, src=sorted_indices_to_remove
|
| 139 |
-
)
|
| 140 |
-
logits = logits.masked_fill(indices_to_remove, -float("Inf"))
|
| 141 |
-
|
| 142 |
-
logits = logits / max(temperature, 1e-5)
|
| 143 |
-
|
| 144 |
-
if top_k is not None:
|
| 145 |
-
v, _ = torch.topk(logits, min(top_k, logits.size(-1)))
|
| 146 |
-
pivot = v.select(-1, -1).unsqueeze(-1)
|
| 147 |
-
logits = torch.where(logits < pivot, -float("Inf"), logits)
|
| 148 |
-
|
| 149 |
-
probs = torch.nn.functional.softmax(logits, dim=-1)
|
| 150 |
-
return probs
|
| 151 |
-
|
| 152 |
-
|
| 153 |
-
def sample(
|
| 154 |
-
logits,
|
| 155 |
-
previous_tokens: Optional[torch.Tensor] = None,
|
| 156 |
-
**sampling_kwargs,
|
| 157 |
-
) -> Tuple[torch.Tensor, torch.Tensor]:
|
| 158 |
-
probs = logits_to_probs(
|
| 159 |
-
logits=logits, previous_tokens=previous_tokens, **sampling_kwargs
|
| 160 |
-
)
|
| 161 |
-
idx_next = multinomial_sample_one_no_sync(probs)
|
| 162 |
-
return idx_next, probs
|
| 163 |
-
|
| 164 |
-
def dpo_loss(policy_chosen_logps: torch.FloatTensor,
|
| 165 |
-
policy_rejected_logps: torch.FloatTensor,
|
| 166 |
-
reference_chosen_logps: torch.FloatTensor,
|
| 167 |
-
reference_rejected_logps: torch.FloatTensor,
|
| 168 |
-
beta: float,
|
| 169 |
-
reference_free: bool = False) -> Tuple[torch.FloatTensor, torch.FloatTensor, torch.FloatTensor]:
|
| 170 |
-
pi_logratios = policy_chosen_logps - policy_rejected_logps
|
| 171 |
-
ref_logratios = reference_chosen_logps - reference_rejected_logps
|
| 172 |
-
|
| 173 |
-
if reference_free:
|
| 174 |
-
ref_logratios = 0
|
| 175 |
-
|
| 176 |
-
logits = pi_logratios - ref_logratios
|
| 177 |
-
|
| 178 |
-
losses = -F.logsigmoid(beta * logits)
|
| 179 |
-
chosen_rewards = beta * (policy_chosen_logps - reference_chosen_logps).detach()
|
| 180 |
-
rejected_rewards = beta * (policy_rejected_logps - reference_rejected_logps).detach()
|
| 181 |
-
|
| 182 |
-
return losses.mean(), chosen_rewards, rejected_rewards
|
| 183 |
-
|
| 184 |
-
def get_batch_logps(logits_target: torch.FloatTensor, logits_reject: torch.FloatTensor, labels_target: torch.LongTensor, labels_reject: torch.LongTensor, average_log_prob: bool = False) -> Tuple[torch.FloatTensor, torch.FloatTensor]:
|
| 185 |
-
|
| 186 |
-
# dummy token; we'll ignore the losses on these tokens later
|
| 187 |
-
|
| 188 |
-
per_token_logps_target = torch.gather(logits_target.log_softmax(-1), dim=2, index=labels_target.unsqueeze(2)).squeeze(2)
|
| 189 |
-
per_token_logps_reject = torch.gather(logits_reject.log_softmax(-1), dim=2, index=labels_reject.unsqueeze(2)).squeeze(2)
|
| 190 |
-
|
| 191 |
-
return per_token_logps_target.sum(-1), per_token_logps_reject.sum(-1)
|
| 192 |
-
|
| 193 |
-
def make_reject_y(y_o, y_lens):
|
| 194 |
-
def repeat_P(y):
|
| 195 |
-
range_idx, _ = torch.randint(0, len(y), size=(2,)).sort()
|
| 196 |
-
pre = y[:range_idx[0]]
|
| 197 |
-
shf = y[range_idx[1]:]
|
| 198 |
-
range_text = y[range_idx[0]:range_idx[1]]
|
| 199 |
-
new_y = torch.cat([pre, range_text, range_text, shf])
|
| 200 |
-
return new_y
|
| 201 |
-
def lost_P(y):
|
| 202 |
-
range_idx, _ = torch.randint(0, len(y), size=(2,)).sort()
|
| 203 |
-
pre = y[:range_idx[0]]
|
| 204 |
-
shf = y[range_idx[1]:]
|
| 205 |
-
range_text = y[range_idx[0]:range_idx[1]]
|
| 206 |
-
new_y = torch.cat([pre, shf])
|
| 207 |
-
return new_y
|
| 208 |
-
bs = len(y_lens)
|
| 209 |
-
reject_y = []
|
| 210 |
-
reject_y_lens = []
|
| 211 |
-
for b in range(bs):
|
| 212 |
-
process_item_idx = torch.randint(0, 1, size=(1, ))[0]
|
| 213 |
-
if process_item_idx == 0:
|
| 214 |
-
new_y = repeat_P(y_o[b])
|
| 215 |
-
reject_y.append(new_y)
|
| 216 |
-
reject_y_lens.append(len(new_y))
|
| 217 |
-
elif process_item_idx==1:
|
| 218 |
-
new_y = lost_P(y_o[b])
|
| 219 |
-
reject_y.append(new_y)
|
| 220 |
-
reject_y_lens.append(len(new_y))
|
| 221 |
-
max_length = max(reject_y_lens)
|
| 222 |
-
for b in range(bs):
|
| 223 |
-
pad_length = max_length - reject_y_lens[b]
|
| 224 |
-
reject_y[b] = torch.cat([reject_y[b], torch.zeros(pad_length, dtype=y_o.dtype, device=y_o.device)], dim=0)
|
| 225 |
-
|
| 226 |
-
reject_y = torch.stack(reject_y, dim = 0)
|
| 227 |
-
reject_y_lens = torch.tensor(reject_y_lens, device=y_lens.device)
|
| 228 |
-
|
| 229 |
-
return reject_y, reject_y_lens
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
AR/modules/__init__.py
DELETED
|
File without changes
|
AR/modules/__pycache__/__init__.cpython-39.pyc
DELETED
|
Binary file (151 Bytes)
|
|
|
AR/modules/__pycache__/activation.cpython-39.pyc
DELETED
|
Binary file (14 kB)
|
|
|
AR/modules/__pycache__/embedding.cpython-39.pyc
DELETED
|
Binary file (3.05 kB)
|
|
|
AR/modules/__pycache__/lr_schedulers.cpython-39.pyc
DELETED
|
Binary file (2.37 kB)
|
|
|
AR/modules/__pycache__/optim.cpython-39.pyc
DELETED
|
Binary file (18.9 kB)
|
|
|
AR/modules/__pycache__/patched_mha_with_cache.cpython-39.pyc
DELETED
|
Binary file (11.3 kB)
|
|
|
AR/modules/__pycache__/scaling.cpython-39.pyc
DELETED
|
Binary file (9.51 kB)
|
|
|
AR/modules/__pycache__/transformer.cpython-39.pyc
DELETED
|
Binary file (9.79 kB)
|
|
|
AR/modules/activation.py
DELETED
|
@@ -1,428 +0,0 @@
|
|
| 1 |
-
# modified from https://github.com/lifeiteng/vall-e/blob/main/valle/modules/activation.py
|
| 2 |
-
from typing import Optional
|
| 3 |
-
from typing import Tuple
|
| 4 |
-
import torch
|
| 5 |
-
from torch import Tensor
|
| 6 |
-
from torch.nn import Linear
|
| 7 |
-
from torch.nn import Module
|
| 8 |
-
from torch.nn.init import constant_
|
| 9 |
-
from torch.nn.init import xavier_normal_
|
| 10 |
-
from torch.nn.init import xavier_uniform_
|
| 11 |
-
from torch.nn.modules.linear import NonDynamicallyQuantizableLinear
|
| 12 |
-
from torch.nn.parameter import Parameter
|
| 13 |
-
|
| 14 |
-
from torch.nn import functional as F
|
| 15 |
-
from AR.modules.patched_mha_with_cache import multi_head_attention_forward_patched
|
| 16 |
-
|
| 17 |
-
F.multi_head_attention_forward = multi_head_attention_forward_patched
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
class MultiheadAttention(Module):
|
| 21 |
-
r"""Allows the model to jointly attend to information
|
| 22 |
-
from different representation subspaces as described in the paper:
|
| 23 |
-
`Attention Is All You Need <https://arxiv.org/abs/1706.03762>`_.
|
| 24 |
-
|
| 25 |
-
Multi-Head Attention is defined as:
|
| 26 |
-
|
| 27 |
-
.. math::
|
| 28 |
-
\text{MultiHead}(Q, K, V) = \text{Concat}(head_1,\dots,head_h)W^O
|
| 29 |
-
|
| 30 |
-
where :math:`head_i = \text{Attention}(QW_i^Q, KW_i^K, VW_i^V)`.
|
| 31 |
-
|
| 32 |
-
``forward()`` will use a special optimized implementation if all of the following
|
| 33 |
-
conditions are met:
|
| 34 |
-
|
| 35 |
-
- self attention is being computed (i.e., ``query``, ``key``, and ``value`` are the same tensor. This
|
| 36 |
-
restriction will be loosened in the future.)
|
| 37 |
-
- Either autograd is disabled (using ``torch.inference_mode`` or ``torch.no_grad``) or no tensor argument ``requires_grad``
|
| 38 |
-
- training is disabled (using ``.eval()``)
|
| 39 |
-
- dropout is 0
|
| 40 |
-
- ``add_bias_kv`` is ``False``
|
| 41 |
-
- ``add_zero_attn`` is ``False``
|
| 42 |
-
- ``batch_first`` is ``True`` and the input is batched
|
| 43 |
-
- ``kdim`` and ``vdim`` are equal to ``embed_dim``
|
| 44 |
-
- at most one of ``key_padding_mask`` or ``attn_mask`` is passed
|
| 45 |
-
- if a `NestedTensor <https://pytorch.org/docs/stable/nested.html>`_ is passed, neither ``key_padding_mask``
|
| 46 |
-
nor ``attn_mask`` is passed
|
| 47 |
-
|
| 48 |
-
If the optimized implementation is in use, a
|
| 49 |
-
`NestedTensor <https://pytorch.org/docs/stable/nested.html>`_ can be passed for
|
| 50 |
-
``query``/``key``/``value`` to represent padding more efficiently than using a
|
| 51 |
-
padding mask. In this case, a `NestedTensor <https://pytorch.org/docs/stable/nested.html>`_
|
| 52 |
-
will be returned, and an additional speedup proportional to the fraction of the input
|
| 53 |
-
that is padding can be expected.
|
| 54 |
-
|
| 55 |
-
Args:
|
| 56 |
-
embed_dim: Total dimension of the model.
|
| 57 |
-
num_heads: Number of parallel attention heads. Note that ``embed_dim`` will be split
|
| 58 |
-
across ``num_heads`` (i.e. each head will have dimension ``embed_dim // num_heads``).
|
| 59 |
-
dropout: Dropout probability on ``attn_output_weights``. Default: ``0.0`` (no dropout).
|
| 60 |
-
bias: If specified, adds bias to input / output projection layers. Default: ``True``.
|
| 61 |
-
add_bias_kv: If specified, adds bias to the key and value sequences at dim=0. Default: ``False``.
|
| 62 |
-
add_zero_attn: If specified, adds a new batch of zeros to the key and value sequences at dim=1.
|
| 63 |
-
Default: ``False``.
|
| 64 |
-
kdim: Total number of features for keys. Default: ``None`` (uses ``kdim=embed_dim``).
|
| 65 |
-
vdim: Total number of features for values. Default: ``None`` (uses ``vdim=embed_dim``).
|
| 66 |
-
batch_first: If ``True``, then the input and output tensors are provided
|
| 67 |
-
as (batch, seq, feature). Default: ``False`` (seq, batch, feature).
|
| 68 |
-
|
| 69 |
-
Examples::
|
| 70 |
-
|
| 71 |
-
>>> # xdoctest: +SKIP
|
| 72 |
-
>>> multihead_attn = nn.MultiheadAttention(embed_dim, num_heads)
|
| 73 |
-
>>> attn_output, attn_output_weights = multihead_attn(query, key, value)
|
| 74 |
-
|
| 75 |
-
"""
|
| 76 |
-
__constants__ = ["batch_first"]
|
| 77 |
-
bias_k: Optional[torch.Tensor]
|
| 78 |
-
bias_v: Optional[torch.Tensor]
|
| 79 |
-
|
| 80 |
-
def __init__(
|
| 81 |
-
self,
|
| 82 |
-
embed_dim,
|
| 83 |
-
num_heads,
|
| 84 |
-
dropout=0.0,
|
| 85 |
-
bias=True,
|
| 86 |
-
add_bias_kv=False,
|
| 87 |
-
add_zero_attn=False,
|
| 88 |
-
kdim=None,
|
| 89 |
-
vdim=None,
|
| 90 |
-
batch_first=False,
|
| 91 |
-
linear1_cls=Linear,
|
| 92 |
-
linear2_cls=Linear,
|
| 93 |
-
device=None,
|
| 94 |
-
dtype=None,
|
| 95 |
-
) -> None:
|
| 96 |
-
factory_kwargs = {"device": device, "dtype": dtype}
|
| 97 |
-
super(MultiheadAttention, self).__init__()
|
| 98 |
-
self.embed_dim = embed_dim
|
| 99 |
-
self.kdim = kdim if kdim is not None else embed_dim
|
| 100 |
-
self.vdim = vdim if vdim is not None else embed_dim
|
| 101 |
-
self._qkv_same_embed_dim = self.kdim == embed_dim and self.vdim == embed_dim
|
| 102 |
-
|
| 103 |
-
self.num_heads = num_heads
|
| 104 |
-
self.dropout = dropout
|
| 105 |
-
self.batch_first = batch_first
|
| 106 |
-
self.head_dim = embed_dim // num_heads
|
| 107 |
-
assert (
|
| 108 |
-
self.head_dim * num_heads == self.embed_dim
|
| 109 |
-
), "embed_dim must be divisible by num_heads"
|
| 110 |
-
|
| 111 |
-
if add_bias_kv:
|
| 112 |
-
self.bias_k = Parameter(torch.empty((1, 1, embed_dim), **factory_kwargs))
|
| 113 |
-
self.bias_v = Parameter(torch.empty((1, 1, embed_dim), **factory_kwargs))
|
| 114 |
-
else:
|
| 115 |
-
self.bias_k = self.bias_v = None
|
| 116 |
-
|
| 117 |
-
if linear1_cls == Linear:
|
| 118 |
-
if not self._qkv_same_embed_dim:
|
| 119 |
-
self.q_proj_weight = Parameter(
|
| 120 |
-
torch.empty((embed_dim, embed_dim), **factory_kwargs)
|
| 121 |
-
)
|
| 122 |
-
self.k_proj_weight = Parameter(
|
| 123 |
-
torch.empty((embed_dim, self.kdim), **factory_kwargs)
|
| 124 |
-
)
|
| 125 |
-
self.v_proj_weight = Parameter(
|
| 126 |
-
torch.empty((embed_dim, self.vdim), **factory_kwargs)
|
| 127 |
-
)
|
| 128 |
-
self.register_parameter("in_proj_weight", None)
|
| 129 |
-
else:
|
| 130 |
-
self.in_proj_weight = Parameter(
|
| 131 |
-
torch.empty((3 * embed_dim, embed_dim), **factory_kwargs)
|
| 132 |
-
)
|
| 133 |
-
self.register_parameter("q_proj_weight", None)
|
| 134 |
-
self.register_parameter("k_proj_weight", None)
|
| 135 |
-
self.register_parameter("v_proj_weight", None)
|
| 136 |
-
|
| 137 |
-
if bias:
|
| 138 |
-
self.in_proj_bias = Parameter(
|
| 139 |
-
torch.empty(3 * embed_dim, **factory_kwargs)
|
| 140 |
-
)
|
| 141 |
-
else:
|
| 142 |
-
self.register_parameter("in_proj_bias", None)
|
| 143 |
-
self.out_proj = NonDynamicallyQuantizableLinear(
|
| 144 |
-
embed_dim, embed_dim, bias=bias, **factory_kwargs
|
| 145 |
-
)
|
| 146 |
-
|
| 147 |
-
self._reset_parameters()
|
| 148 |
-
else:
|
| 149 |
-
if not self._qkv_same_embed_dim:
|
| 150 |
-
raise NotImplementedError
|
| 151 |
-
else:
|
| 152 |
-
self.in_proj_linear = linear1_cls(
|
| 153 |
-
embed_dim, 3 * embed_dim, bias=bias, **factory_kwargs
|
| 154 |
-
)
|
| 155 |
-
self.in_proj_weight = self.in_proj_linear.weight
|
| 156 |
-
|
| 157 |
-
self.register_parameter("q_proj_weight", None)
|
| 158 |
-
self.register_parameter("k_proj_weight", None)
|
| 159 |
-
self.register_parameter("v_proj_weight", None)
|
| 160 |
-
|
| 161 |
-
if bias:
|
| 162 |
-
self.in_proj_bias = self.in_proj_linear.bias
|
| 163 |
-
else:
|
| 164 |
-
self.register_parameter("in_proj_bias", None)
|
| 165 |
-
|
| 166 |
-
self.out_proj = linear2_cls(
|
| 167 |
-
embed_dim, embed_dim, bias=bias, **factory_kwargs
|
| 168 |
-
)
|
| 169 |
-
|
| 170 |
-
if self.bias_k is not None:
|
| 171 |
-
xavier_normal_(self.bias_k)
|
| 172 |
-
if self.bias_v is not None:
|
| 173 |
-
xavier_normal_(self.bias_v)
|
| 174 |
-
|
| 175 |
-
self.add_zero_attn = add_zero_attn
|
| 176 |
-
|
| 177 |
-
def _reset_parameters(self):
|
| 178 |
-
if self._qkv_same_embed_dim:
|
| 179 |
-
xavier_uniform_(self.in_proj_weight)
|
| 180 |
-
else:
|
| 181 |
-
xavier_uniform_(self.q_proj_weight)
|
| 182 |
-
xavier_uniform_(self.k_proj_weight)
|
| 183 |
-
xavier_uniform_(self.v_proj_weight)
|
| 184 |
-
|
| 185 |
-
if self.in_proj_bias is not None:
|
| 186 |
-
constant_(self.in_proj_bias, 0.0)
|
| 187 |
-
constant_(self.out_proj.bias, 0.0)
|
| 188 |
-
|
| 189 |
-
if self.bias_k is not None:
|
| 190 |
-
xavier_normal_(self.bias_k)
|
| 191 |
-
if self.bias_v is not None:
|
| 192 |
-
xavier_normal_(self.bias_v)
|
| 193 |
-
|
| 194 |
-
def __setstate__(self, state):
|
| 195 |
-
# Support loading old MultiheadAttention checkpoints generated by v1.1.0
|
| 196 |
-
if "_qkv_same_embed_dim" not in state:
|
| 197 |
-
state["_qkv_same_embed_dim"] = True
|
| 198 |
-
|
| 199 |
-
super(MultiheadAttention, self).__setstate__(state)
|
| 200 |
-
|
| 201 |
-
def forward(
|
| 202 |
-
self,
|
| 203 |
-
query: Tensor,
|
| 204 |
-
key: Tensor,
|
| 205 |
-
value: Tensor,
|
| 206 |
-
key_padding_mask: Optional[Tensor] = None,
|
| 207 |
-
need_weights: bool = True,
|
| 208 |
-
attn_mask: Optional[Tensor] = None,
|
| 209 |
-
average_attn_weights: bool = True,
|
| 210 |
-
cache=None,
|
| 211 |
-
) -> Tuple[Tensor, Optional[Tensor]]:
|
| 212 |
-
r"""
|
| 213 |
-
Args:
|
| 214 |
-
query: Query embeddings of shape :math:`(L, E_q)` for unbatched input, :math:`(L, N, E_q)` when ``batch_first=False``
|
| 215 |
-
or :math:`(N, L, E_q)` when ``batch_first=True``, where :math:`L` is the target sequence length,
|
| 216 |
-
:math:`N` is the batch size, and :math:`E_q` is the query embedding dimension ``embed_dim``.
|
| 217 |
-
Queries are compared against key-value pairs to produce the output.
|
| 218 |
-
See "Attention Is All You Need" for more details.
|
| 219 |
-
key: Key embeddings of shape :math:`(S, E_k)` for unbatched input, :math:`(S, N, E_k)` when ``batch_first=False``
|
| 220 |
-
or :math:`(N, S, E_k)` when ``batch_first=True``, where :math:`S` is the source sequence length,
|
| 221 |
-
:math:`N` is the batch size, and :math:`E_k` is the key embedding dimension ``kdim``.
|
| 222 |
-
See "Attention Is All You Need" for more details.
|
| 223 |
-
value: Value embeddings of shape :math:`(S, E_v)` for unbatched input, :math:`(S, N, E_v)` when
|
| 224 |
-
``batch_first=False`` or :math:`(N, S, E_v)` when ``batch_first=True``, where :math:`S` is the source
|
| 225 |
-
sequence length, :math:`N` is the batch size, and :math:`E_v` is the value embedding dimension ``vdim``.
|
| 226 |
-
See "Attention Is All You Need" for more details.
|
| 227 |
-
key_padding_mask: If specified, a mask of shape :math:`(N, S)` indicating which elements within ``key``
|
| 228 |
-
to ignore for the purpose of attention (i.e. treat as "padding"). For unbatched `query`, shape should be :math:`(S)`.
|
| 229 |
-
Binary and byte masks are supported.
|
| 230 |
-
For a binary mask, a ``True`` value indicates that the corresponding ``key`` value will be ignored for
|
| 231 |
-
the purpose of attention. For a float mask, it will be directly added to the corresponding ``key`` value.
|
| 232 |
-
need_weights: If specified, returns ``attn_output_weights`` in addition to ``attn_outputs``.
|
| 233 |
-
Default: ``True``.
|
| 234 |
-
attn_mask: If specified, a 2D or 3D mask preventing attention to certain positions. Must be of shape
|
| 235 |
-
:math:`(L, S)` or :math:`(N\cdot\text{num\_heads}, L, S)`, where :math:`N` is the batch size,
|
| 236 |
-
:math:`L` is the target sequence length, and :math:`S` is the source sequence length. A 2D mask will be
|
| 237 |
-
broadcasted across the batch while a 3D mask allows for a different mask for each entry in the batch.
|
| 238 |
-
Binary, byte, and float masks are supported. For a binary mask, a ``True`` value indicates that the
|
| 239 |
-
corresponding position is not allowed to attend. For a byte mask, a non-zero value indicates that the
|
| 240 |
-
corresponding position is not allowed to attend. For a float mask, the mask values will be added to
|
| 241 |
-
the attention weight.
|
| 242 |
-
average_attn_weights: If true, indicates that the returned ``attn_weights`` should be averaged across
|
| 243 |
-
heads. Otherwise, ``attn_weights`` are provided separately per head. Note that this flag only has an
|
| 244 |
-
effect when ``need_weights=True``. Default: ``True`` (i.e. average weights across heads)
|
| 245 |
-
|
| 246 |
-
Outputs:
|
| 247 |
-
- **attn_output** - Attention outputs of shape :math:`(L, E)` when input is unbatched,
|
| 248 |
-
:math:`(L, N, E)` when ``batch_first=False`` or :math:`(N, L, E)` when ``batch_first=True``,
|
| 249 |
-
where :math:`L` is the target sequence length, :math:`N` is the batch size, and :math:`E` is the
|
| 250 |
-
embedding dimension ``embed_dim``.
|
| 251 |
-
- **attn_output_weights** - Only returned when ``need_weights=True``. If ``average_attn_weights=True``,
|
| 252 |
-
returns attention weights averaged across heads of shape :math:`(L, S)` when input is unbatched or
|
| 253 |
-
:math:`(N, L, S)`, where :math:`N` is the batch size, :math:`L` is the target sequence length, and
|
| 254 |
-
:math:`S` is the source sequence length. If ``average_attn_weights=False``, returns attention weights per
|
| 255 |
-
head of shape :math:`(\text{num\_heads}, L, S)` when input is unbatched or :math:`(N, \text{num\_heads}, L, S)`.
|
| 256 |
-
|
| 257 |
-
.. note::
|
| 258 |
-
`batch_first` argument is ignored for unbatched inputs.
|
| 259 |
-
"""
|
| 260 |
-
is_batched = query.dim() == 3
|
| 261 |
-
if key_padding_mask is not None:
|
| 262 |
-
_kpm_dtype = key_padding_mask.dtype
|
| 263 |
-
if _kpm_dtype != torch.bool and not torch.is_floating_point(
|
| 264 |
-
key_padding_mask
|
| 265 |
-
):
|
| 266 |
-
raise AssertionError(
|
| 267 |
-
"only bool and floating types of key_padding_mask are supported"
|
| 268 |
-
)
|
| 269 |
-
why_not_fast_path = ""
|
| 270 |
-
if not is_batched:
|
| 271 |
-
why_not_fast_path = (
|
| 272 |
-
f"input not batched; expected query.dim() of 3 but got {query.dim()}"
|
| 273 |
-
)
|
| 274 |
-
elif query is not key or key is not value:
|
| 275 |
-
# When lifting this restriction, don't forget to either
|
| 276 |
-
# enforce that the dtypes all match or test cases where
|
| 277 |
-
# they don't!
|
| 278 |
-
why_not_fast_path = "non-self attention was used (query, key, and value are not the same Tensor)"
|
| 279 |
-
elif self.in_proj_bias is not None and query.dtype != self.in_proj_bias.dtype:
|
| 280 |
-
why_not_fast_path = f"dtypes of query ({query.dtype}) and self.in_proj_bias ({self.in_proj_bias.dtype}) don't match"
|
| 281 |
-
elif (
|
| 282 |
-
self.in_proj_weight is not None and query.dtype != self.in_proj_weight.dtype
|
| 283 |
-
):
|
| 284 |
-
# this case will fail anyway, but at least they'll get a useful error message.
|
| 285 |
-
why_not_fast_path = f"dtypes of query ({query.dtype}) and self.in_proj_weight ({self.in_proj_weight.dtype}) don't match"
|
| 286 |
-
elif self.training:
|
| 287 |
-
why_not_fast_path = "training is enabled"
|
| 288 |
-
elif not self.batch_first:
|
| 289 |
-
why_not_fast_path = "batch_first was not True"
|
| 290 |
-
elif self.bias_k is not None:
|
| 291 |
-
why_not_fast_path = "self.bias_k was not None"
|
| 292 |
-
elif self.bias_v is not None:
|
| 293 |
-
why_not_fast_path = "self.bias_v was not None"
|
| 294 |
-
elif self.dropout:
|
| 295 |
-
why_not_fast_path = f"dropout was {self.dropout}, required zero"
|
| 296 |
-
elif self.add_zero_attn:
|
| 297 |
-
why_not_fast_path = "add_zero_attn was enabled"
|
| 298 |
-
elif not self._qkv_same_embed_dim:
|
| 299 |
-
why_not_fast_path = "_qkv_same_embed_dim was not True"
|
| 300 |
-
elif attn_mask is not None:
|
| 301 |
-
why_not_fast_path = "attn_mask was not None"
|
| 302 |
-
elif query.is_nested and key_padding_mask is not None:
|
| 303 |
-
why_not_fast_path = (
|
| 304 |
-
"key_padding_mask is not supported with NestedTensor input"
|
| 305 |
-
)
|
| 306 |
-
elif self.num_heads % 2 == 1:
|
| 307 |
-
why_not_fast_path = "num_heads is odd"
|
| 308 |
-
elif torch.is_autocast_enabled():
|
| 309 |
-
why_not_fast_path = "autocast is enabled"
|
| 310 |
-
|
| 311 |
-
if not why_not_fast_path:
|
| 312 |
-
tensor_args = (
|
| 313 |
-
query,
|
| 314 |
-
key,
|
| 315 |
-
value,
|
| 316 |
-
self.in_proj_weight,
|
| 317 |
-
self.in_proj_bias,
|
| 318 |
-
self.out_proj.weight,
|
| 319 |
-
self.out_proj.bias,
|
| 320 |
-
)
|
| 321 |
-
# We have to use list comprehensions below because TorchScript does not support
|
| 322 |
-
# generator expressions.
|
| 323 |
-
if torch.overrides.has_torch_function(tensor_args):
|
| 324 |
-
why_not_fast_path = "some Tensor argument has_torch_function"
|
| 325 |
-
elif not all(
|
| 326 |
-
[
|
| 327 |
-
(x is None or x.is_cuda or "cpu" in str(x.device))
|
| 328 |
-
for x in tensor_args
|
| 329 |
-
]
|
| 330 |
-
):
|
| 331 |
-
why_not_fast_path = "some Tensor argument is neither CUDA nor CPU"
|
| 332 |
-
elif torch.is_grad_enabled() and any(
|
| 333 |
-
[x is not None and x.requires_grad for x in tensor_args]
|
| 334 |
-
):
|
| 335 |
-
why_not_fast_path = (
|
| 336 |
-
"grad is enabled and at least one of query or the "
|
| 337 |
-
"input/output projection weights or biases requires_grad"
|
| 338 |
-
)
|
| 339 |
-
if not why_not_fast_path:
|
| 340 |
-
return torch._native_multi_head_attention(
|
| 341 |
-
query,
|
| 342 |
-
key,
|
| 343 |
-
value,
|
| 344 |
-
self.embed_dim,
|
| 345 |
-
self.num_heads,
|
| 346 |
-
self.in_proj_weight,
|
| 347 |
-
self.in_proj_bias,
|
| 348 |
-
self.out_proj.weight,
|
| 349 |
-
self.out_proj.bias,
|
| 350 |
-
key_padding_mask if key_padding_mask is not None else attn_mask,
|
| 351 |
-
need_weights,
|
| 352 |
-
average_attn_weights,
|
| 353 |
-
1
|
| 354 |
-
if key_padding_mask is not None
|
| 355 |
-
else 0
|
| 356 |
-
if attn_mask is not None
|
| 357 |
-
else None,
|
| 358 |
-
)
|
| 359 |
-
|
| 360 |
-
any_nested = query.is_nested or key.is_nested or value.is_nested
|
| 361 |
-
assert not any_nested, (
|
| 362 |
-
"MultiheadAttention does not support NestedTensor outside of its fast path. "
|
| 363 |
-
+ f"The fast path was not hit because {why_not_fast_path}"
|
| 364 |
-
)
|
| 365 |
-
|
| 366 |
-
if self.batch_first and is_batched:
|
| 367 |
-
# make sure that the transpose op does not affect the "is" property
|
| 368 |
-
if key is value:
|
| 369 |
-
if query is key:
|
| 370 |
-
query = key = value = query.transpose(1, 0)
|
| 371 |
-
else:
|
| 372 |
-
query, key = [x.transpose(1, 0) for x in (query, key)]
|
| 373 |
-
value = key
|
| 374 |
-
else:
|
| 375 |
-
query, key, value = [x.transpose(1, 0) for x in (query, key, value)]
|
| 376 |
-
|
| 377 |
-
if not self._qkv_same_embed_dim:
|
| 378 |
-
attn_output, attn_output_weights = F.multi_head_attention_forward(
|
| 379 |
-
query,
|
| 380 |
-
key,
|
| 381 |
-
value,
|
| 382 |
-
self.embed_dim,
|
| 383 |
-
self.num_heads,
|
| 384 |
-
self.in_proj_weight,
|
| 385 |
-
self.in_proj_bias,
|
| 386 |
-
self.bias_k,
|
| 387 |
-
self.bias_v,
|
| 388 |
-
self.add_zero_attn,
|
| 389 |
-
self.dropout,
|
| 390 |
-
self.out_proj.weight,
|
| 391 |
-
self.out_proj.bias,
|
| 392 |
-
training=self.training,
|
| 393 |
-
key_padding_mask=key_padding_mask,
|
| 394 |
-
need_weights=need_weights,
|
| 395 |
-
attn_mask=attn_mask,
|
| 396 |
-
use_separate_proj_weight=True,
|
| 397 |
-
q_proj_weight=self.q_proj_weight,
|
| 398 |
-
k_proj_weight=self.k_proj_weight,
|
| 399 |
-
v_proj_weight=self.v_proj_weight,
|
| 400 |
-
average_attn_weights=average_attn_weights,
|
| 401 |
-
cache=cache,
|
| 402 |
-
)
|
| 403 |
-
else:
|
| 404 |
-
attn_output, attn_output_weights = F.multi_head_attention_forward(
|
| 405 |
-
query,
|
| 406 |
-
key,
|
| 407 |
-
value,
|
| 408 |
-
self.embed_dim,
|
| 409 |
-
self.num_heads,
|
| 410 |
-
self.in_proj_weight,
|
| 411 |
-
self.in_proj_bias,
|
| 412 |
-
self.bias_k,
|
| 413 |
-
self.bias_v,
|
| 414 |
-
self.add_zero_attn,
|
| 415 |
-
self.dropout,
|
| 416 |
-
self.out_proj.weight,
|
| 417 |
-
self.out_proj.bias,
|
| 418 |
-
training=self.training,
|
| 419 |
-
key_padding_mask=key_padding_mask,
|
| 420 |
-
need_weights=need_weights,
|
| 421 |
-
attn_mask=attn_mask,
|
| 422 |
-
average_attn_weights=average_attn_weights,
|
| 423 |
-
cache=cache,
|
| 424 |
-
)
|
| 425 |
-
if self.batch_first and is_batched:
|
| 426 |
-
return attn_output.transpose(1, 0), attn_output_weights
|
| 427 |
-
else:
|
| 428 |
-
return attn_output, attn_output_weights
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
AR/modules/activation_onnx.py
DELETED
|
@@ -1,178 +0,0 @@
|
|
| 1 |
-
# modified from https://github.com/lifeiteng/vall-e/blob/main/valle/modules/activation.py
|
| 2 |
-
from typing import Optional
|
| 3 |
-
from typing import Tuple
|
| 4 |
-
import torch
|
| 5 |
-
from torch import Tensor
|
| 6 |
-
from torch.nn import Linear
|
| 7 |
-
from torch.nn import Module
|
| 8 |
-
from torch.nn.init import constant_
|
| 9 |
-
from torch.nn.init import xavier_normal_
|
| 10 |
-
from torch.nn.init import xavier_uniform_
|
| 11 |
-
from torch.nn.modules.linear import NonDynamicallyQuantizableLinear
|
| 12 |
-
from torch.nn.parameter import Parameter
|
| 13 |
-
|
| 14 |
-
from torch.nn import functional as F
|
| 15 |
-
from AR.modules.patched_mha_with_cache_onnx import multi_head_attention_forward_patched
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
class MultiheadAttention(Module):
|
| 19 |
-
__constants__ = ["batch_first"]
|
| 20 |
-
bias_k: Optional[torch.Tensor]
|
| 21 |
-
bias_v: Optional[torch.Tensor]
|
| 22 |
-
|
| 23 |
-
def __init__(
|
| 24 |
-
self,
|
| 25 |
-
embed_dim,
|
| 26 |
-
num_heads,
|
| 27 |
-
dropout=0.0,
|
| 28 |
-
bias=True,
|
| 29 |
-
add_bias_kv=False,
|
| 30 |
-
add_zero_attn=False,
|
| 31 |
-
kdim=None,
|
| 32 |
-
vdim=None,
|
| 33 |
-
batch_first=False,
|
| 34 |
-
linear1_cls=Linear,
|
| 35 |
-
linear2_cls=Linear,
|
| 36 |
-
device=None,
|
| 37 |
-
dtype=None,
|
| 38 |
-
) -> None:
|
| 39 |
-
factory_kwargs = {"device": device, "dtype": dtype}
|
| 40 |
-
super(MultiheadAttention, self).__init__()
|
| 41 |
-
self.embed_dim = embed_dim
|
| 42 |
-
self.kdim = kdim if kdim is not None else embed_dim
|
| 43 |
-
self.vdim = vdim if vdim is not None else embed_dim
|
| 44 |
-
self._qkv_same_embed_dim = self.kdim == embed_dim and self.vdim == embed_dim
|
| 45 |
-
|
| 46 |
-
self.num_heads = num_heads
|
| 47 |
-
self.dropout = dropout
|
| 48 |
-
self.batch_first = batch_first
|
| 49 |
-
self.head_dim = embed_dim // num_heads
|
| 50 |
-
assert (
|
| 51 |
-
self.head_dim * num_heads == self.embed_dim
|
| 52 |
-
), "embed_dim must be divisible by num_heads"
|
| 53 |
-
|
| 54 |
-
if add_bias_kv:
|
| 55 |
-
self.bias_k = Parameter(torch.empty((1, 1, embed_dim), **factory_kwargs))
|
| 56 |
-
self.bias_v = Parameter(torch.empty((1, 1, embed_dim), **factory_kwargs))
|
| 57 |
-
else:
|
| 58 |
-
self.bias_k = self.bias_v = None
|
| 59 |
-
|
| 60 |
-
if linear1_cls == Linear:
|
| 61 |
-
if not self._qkv_same_embed_dim:
|
| 62 |
-
self.q_proj_weight = Parameter(
|
| 63 |
-
torch.empty((embed_dim, embed_dim), **factory_kwargs)
|
| 64 |
-
)
|
| 65 |
-
self.k_proj_weight = Parameter(
|
| 66 |
-
torch.empty((embed_dim, self.kdim), **factory_kwargs)
|
| 67 |
-
)
|
| 68 |
-
self.v_proj_weight = Parameter(
|
| 69 |
-
torch.empty((embed_dim, self.vdim), **factory_kwargs)
|
| 70 |
-
)
|
| 71 |
-
self.register_parameter("in_proj_weight", None)
|
| 72 |
-
else:
|
| 73 |
-
self.in_proj_weight = Parameter(
|
| 74 |
-
torch.empty((3 * embed_dim, embed_dim), **factory_kwargs)
|
| 75 |
-
)
|
| 76 |
-
self.register_parameter("q_proj_weight", None)
|
| 77 |
-
self.register_parameter("k_proj_weight", None)
|
| 78 |
-
self.register_parameter("v_proj_weight", None)
|
| 79 |
-
|
| 80 |
-
if bias:
|
| 81 |
-
self.in_proj_bias = Parameter(
|
| 82 |
-
torch.empty(3 * embed_dim, **factory_kwargs)
|
| 83 |
-
)
|
| 84 |
-
else:
|
| 85 |
-
self.register_parameter("in_proj_bias", None)
|
| 86 |
-
self.out_proj = NonDynamicallyQuantizableLinear(
|
| 87 |
-
embed_dim, embed_dim, bias=bias, **factory_kwargs
|
| 88 |
-
)
|
| 89 |
-
|
| 90 |
-
self._reset_parameters()
|
| 91 |
-
else:
|
| 92 |
-
if not self._qkv_same_embed_dim:
|
| 93 |
-
raise NotImplementedError
|
| 94 |
-
else:
|
| 95 |
-
self.in_proj_linear = linear1_cls(
|
| 96 |
-
embed_dim, 3 * embed_dim, bias=bias, **factory_kwargs
|
| 97 |
-
)
|
| 98 |
-
self.in_proj_weight = self.in_proj_linear.weight
|
| 99 |
-
|
| 100 |
-
self.register_parameter("q_proj_weight", None)
|
| 101 |
-
self.register_parameter("k_proj_weight", None)
|
| 102 |
-
self.register_parameter("v_proj_weight", None)
|
| 103 |
-
|
| 104 |
-
if bias:
|
| 105 |
-
self.in_proj_bias = self.in_proj_linear.bias
|
| 106 |
-
else:
|
| 107 |
-
self.register_parameter("in_proj_bias", None)
|
| 108 |
-
|
| 109 |
-
self.out_proj = linear2_cls(
|
| 110 |
-
embed_dim, embed_dim, bias=bias, **factory_kwargs
|
| 111 |
-
)
|
| 112 |
-
|
| 113 |
-
if self.bias_k is not None:
|
| 114 |
-
xavier_normal_(self.bias_k)
|
| 115 |
-
if self.bias_v is not None:
|
| 116 |
-
xavier_normal_(self.bias_v)
|
| 117 |
-
|
| 118 |
-
self.add_zero_attn = add_zero_attn
|
| 119 |
-
|
| 120 |
-
def _reset_parameters(self):
|
| 121 |
-
if self._qkv_same_embed_dim:
|
| 122 |
-
xavier_uniform_(self.in_proj_weight)
|
| 123 |
-
else:
|
| 124 |
-
xavier_uniform_(self.q_proj_weight)
|
| 125 |
-
xavier_uniform_(self.k_proj_weight)
|
| 126 |
-
xavier_uniform_(self.v_proj_weight)
|
| 127 |
-
|
| 128 |
-
if self.in_proj_bias is not None:
|
| 129 |
-
constant_(self.in_proj_bias, 0.0)
|
| 130 |
-
constant_(self.out_proj.bias, 0.0)
|
| 131 |
-
|
| 132 |
-
if self.bias_k is not None:
|
| 133 |
-
xavier_normal_(self.bias_k)
|
| 134 |
-
if self.bias_v is not None:
|
| 135 |
-
xavier_normal_(self.bias_v)
|
| 136 |
-
|
| 137 |
-
def __setstate__(self, state):
|
| 138 |
-
# Support loading old MultiheadAttention checkpoints generated by v1.1.0
|
| 139 |
-
if "_qkv_same_embed_dim" not in state:
|
| 140 |
-
state["_qkv_same_embed_dim"] = True
|
| 141 |
-
|
| 142 |
-
super(MultiheadAttention, self).__setstate__(state)
|
| 143 |
-
|
| 144 |
-
def forward(
|
| 145 |
-
self,
|
| 146 |
-
query: Tensor,
|
| 147 |
-
key: Tensor,
|
| 148 |
-
value: Tensor,
|
| 149 |
-
key_padding_mask: Optional[Tensor] = None,
|
| 150 |
-
need_weights: bool = True,
|
| 151 |
-
attn_mask: Optional[Tensor] = None,
|
| 152 |
-
average_attn_weights: bool = True,
|
| 153 |
-
cache=None,
|
| 154 |
-
) -> Tuple[Tensor, Optional[Tensor]]:
|
| 155 |
-
any_nested = query.is_nested or key.is_nested or value.is_nested
|
| 156 |
-
query = key = value = query.transpose(1, 0)
|
| 157 |
-
attn_output = multi_head_attention_forward_patched(
|
| 158 |
-
query,
|
| 159 |
-
key,
|
| 160 |
-
value,
|
| 161 |
-
self.embed_dim,
|
| 162 |
-
self.num_heads,
|
| 163 |
-
self.in_proj_weight,
|
| 164 |
-
self.in_proj_bias,
|
| 165 |
-
self.bias_k,
|
| 166 |
-
self.bias_v,
|
| 167 |
-
self.add_zero_attn,
|
| 168 |
-
self.dropout,
|
| 169 |
-
self.out_proj.weight,
|
| 170 |
-
self.out_proj.bias,
|
| 171 |
-
training=self.training,
|
| 172 |
-
key_padding_mask=key_padding_mask,
|
| 173 |
-
need_weights=need_weights,
|
| 174 |
-
attn_mask=attn_mask,
|
| 175 |
-
average_attn_weights=average_attn_weights,
|
| 176 |
-
cache=cache,
|
| 177 |
-
)
|
| 178 |
-
return attn_output.transpose(1, 0)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
AR/modules/embedding.py
DELETED
|
@@ -1,81 +0,0 @@
|
|
| 1 |
-
# modified from https://github.com/lifeiteng/vall-e/blob/main/valle/modules/embedding.py
|
| 2 |
-
import math
|
| 3 |
-
|
| 4 |
-
import torch
|
| 5 |
-
from torch import nn
|
| 6 |
-
|
| 7 |
-
|
| 8 |
-
class TokenEmbedding(nn.Module):
|
| 9 |
-
def __init__(
|
| 10 |
-
self,
|
| 11 |
-
embedding_dim: int,
|
| 12 |
-
vocab_size: int,
|
| 13 |
-
dropout: float = 0.0,
|
| 14 |
-
):
|
| 15 |
-
super().__init__()
|
| 16 |
-
|
| 17 |
-
self.vocab_size = vocab_size
|
| 18 |
-
self.embedding_dim = embedding_dim
|
| 19 |
-
|
| 20 |
-
self.dropout = torch.nn.Dropout(p=dropout)
|
| 21 |
-
self.word_embeddings = nn.Embedding(self.vocab_size, self.embedding_dim)
|
| 22 |
-
|
| 23 |
-
@property
|
| 24 |
-
def weight(self) -> torch.Tensor:
|
| 25 |
-
return self.word_embeddings.weight
|
| 26 |
-
|
| 27 |
-
def embedding(self, index: int) -> torch.Tensor:
|
| 28 |
-
return self.word_embeddings.weight[index : index + 1]
|
| 29 |
-
|
| 30 |
-
def forward(self, x: torch.Tensor):
|
| 31 |
-
x = self.word_embeddings(x)
|
| 32 |
-
x = self.dropout(x)
|
| 33 |
-
return x
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
class SinePositionalEmbedding(nn.Module):
|
| 37 |
-
def __init__(
|
| 38 |
-
self,
|
| 39 |
-
embedding_dim: int,
|
| 40 |
-
dropout: float = 0.0,
|
| 41 |
-
scale: bool = False,
|
| 42 |
-
alpha: bool = False,
|
| 43 |
-
):
|
| 44 |
-
super().__init__()
|
| 45 |
-
self.embedding_dim = embedding_dim
|
| 46 |
-
self.x_scale = math.sqrt(embedding_dim) if scale else 1.0
|
| 47 |
-
self.alpha = nn.Parameter(torch.ones(1), requires_grad=alpha)
|
| 48 |
-
self.dropout = torch.nn.Dropout(p=dropout)
|
| 49 |
-
|
| 50 |
-
self.reverse = False
|
| 51 |
-
self.pe = None
|
| 52 |
-
self.extend_pe(torch.tensor(0.0).expand(1, 4000))
|
| 53 |
-
|
| 54 |
-
def extend_pe(self, x):
|
| 55 |
-
"""Reset the positional encodings."""
|
| 56 |
-
if self.pe is not None:
|
| 57 |
-
if self.pe.size(1) >= x.size(1):
|
| 58 |
-
if self.pe.dtype != x.dtype or self.pe.device != x.device:
|
| 59 |
-
self.pe = self.pe.to(dtype=x.dtype, device=x.device)
|
| 60 |
-
return
|
| 61 |
-
pe = torch.zeros(x.size(1), self.embedding_dim)
|
| 62 |
-
if self.reverse:
|
| 63 |
-
position = torch.arange(
|
| 64 |
-
x.size(1) - 1, -1, -1.0, dtype=torch.float32
|
| 65 |
-
).unsqueeze(1)
|
| 66 |
-
else:
|
| 67 |
-
position = torch.arange(0, x.size(1), dtype=torch.float32).unsqueeze(1)
|
| 68 |
-
div_term = torch.exp(
|
| 69 |
-
torch.arange(0, self.embedding_dim, 2, dtype=torch.float32)
|
| 70 |
-
* -(math.log(10000.0) / self.embedding_dim)
|
| 71 |
-
)
|
| 72 |
-
pe[:, 0::2] = torch.sin(position * div_term)
|
| 73 |
-
pe[:, 1::2] = torch.cos(position * div_term)
|
| 74 |
-
pe = pe.unsqueeze(0)
|
| 75 |
-
self.pe = pe.to(device=x.device, dtype=x.dtype).detach()
|
| 76 |
-
|
| 77 |
-
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
| 78 |
-
self.extend_pe(x)
|
| 79 |
-
output = x.unsqueeze(-1) if x.ndim == 2 else x
|
| 80 |
-
output = output * self.x_scale + self.alpha * self.pe[:, : x.size(1)]
|
| 81 |
-
return self.dropout(output)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
AR/modules/embedding_onnx.py
DELETED
|
@@ -1,63 +0,0 @@
|
|
| 1 |
-
# modified from https://github.com/lifeiteng/vall-e/blob/main/valle/modules/embedding.py
|
| 2 |
-
import math
|
| 3 |
-
|
| 4 |
-
import torch
|
| 5 |
-
from torch import nn
|
| 6 |
-
|
| 7 |
-
|
| 8 |
-
class TokenEmbedding(nn.Module):
|
| 9 |
-
def __init__(
|
| 10 |
-
self,
|
| 11 |
-
embedding_dim: int,
|
| 12 |
-
vocab_size: int,
|
| 13 |
-
dropout: float = 0.0,
|
| 14 |
-
):
|
| 15 |
-
super().__init__()
|
| 16 |
-
|
| 17 |
-
self.vocab_size = vocab_size
|
| 18 |
-
self.embedding_dim = embedding_dim
|
| 19 |
-
|
| 20 |
-
self.dropout = torch.nn.Dropout(p=dropout)
|
| 21 |
-
self.word_embeddings = nn.Embedding(self.vocab_size, self.embedding_dim)
|
| 22 |
-
|
| 23 |
-
@property
|
| 24 |
-
def weight(self) -> torch.Tensor:
|
| 25 |
-
return self.word_embeddings.weight
|
| 26 |
-
|
| 27 |
-
def embedding(self, index: int) -> torch.Tensor:
|
| 28 |
-
return self.word_embeddings.weight[index : index + 1]
|
| 29 |
-
|
| 30 |
-
def forward(self, x: torch.Tensor):
|
| 31 |
-
x = self.word_embeddings(x)
|
| 32 |
-
x = self.dropout(x)
|
| 33 |
-
return x
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
class SinePositionalEmbedding(nn.Module):
|
| 37 |
-
def __init__(
|
| 38 |
-
self,
|
| 39 |
-
embedding_dim: int,
|
| 40 |
-
dropout: float = 0.0,
|
| 41 |
-
scale: bool = False,
|
| 42 |
-
alpha: bool = False,
|
| 43 |
-
):
|
| 44 |
-
super().__init__()
|
| 45 |
-
self.embedding_dim = embedding_dim
|
| 46 |
-
self.x_scale = math.sqrt(embedding_dim) if scale else 1.0
|
| 47 |
-
self.alpha = nn.Parameter(torch.ones(1), requires_grad=alpha)
|
| 48 |
-
self.dropout = torch.nn.Dropout(p=dropout)
|
| 49 |
-
self.reverse = False
|
| 50 |
-
self.div_term = torch.exp(torch.arange(0, self.embedding_dim, 2) * -(math.log(10000.0) / self.embedding_dim))
|
| 51 |
-
|
| 52 |
-
def extend_pe(self, x):
|
| 53 |
-
position = torch.cumsum(torch.ones_like(x[:,:,0]), dim=1).transpose(0, 1)
|
| 54 |
-
scpe = (position * self.div_term).unsqueeze(0)
|
| 55 |
-
pe = torch.cat([torch.sin(scpe), torch.cos(scpe)]).permute(1, 2, 0)
|
| 56 |
-
pe = pe.contiguous().view(1, -1, self.embedding_dim)
|
| 57 |
-
return pe
|
| 58 |
-
|
| 59 |
-
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
| 60 |
-
pe = self.extend_pe(x)
|
| 61 |
-
output = x.unsqueeze(-1) if x.ndim == 2 else x
|
| 62 |
-
output = output * self.x_scale + self.alpha * pe
|
| 63 |
-
return self.dropout(output)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
AR/modules/lr_schedulers.py
DELETED
|
@@ -1,83 +0,0 @@
|
|
| 1 |
-
# modified from https://github.com/yangdongchao/SoundStorm/blob/master/soundstorm/s1/AR/modules/lr_schedulers.py
|
| 2 |
-
# reference: https://github.com/lifeiteng/vall-e
|
| 3 |
-
import math
|
| 4 |
-
|
| 5 |
-
import torch
|
| 6 |
-
from matplotlib import pyplot as plt
|
| 7 |
-
from torch import nn
|
| 8 |
-
from torch.optim import Adam
|
| 9 |
-
|
| 10 |
-
|
| 11 |
-
class WarmupCosineLRSchedule(torch.optim.lr_scheduler._LRScheduler):
|
| 12 |
-
"""
|
| 13 |
-
Implements Warmup learning rate schedule until 'warmup_steps', going from 'init_lr' to 'peak_lr' for multiple optimizers.
|
| 14 |
-
"""
|
| 15 |
-
|
| 16 |
-
def __init__(
|
| 17 |
-
self,
|
| 18 |
-
optimizer,
|
| 19 |
-
init_lr,
|
| 20 |
-
peak_lr,
|
| 21 |
-
end_lr,
|
| 22 |
-
warmup_steps=10000,
|
| 23 |
-
total_steps=400000,
|
| 24 |
-
current_step=0,
|
| 25 |
-
):
|
| 26 |
-
self.init_lr = init_lr
|
| 27 |
-
self.peak_lr = peak_lr
|
| 28 |
-
self.end_lr = end_lr
|
| 29 |
-
self.optimizer = optimizer
|
| 30 |
-
self._warmup_rate = (peak_lr - init_lr) / warmup_steps
|
| 31 |
-
self._decay_rate = (end_lr - peak_lr) / (total_steps - warmup_steps)
|
| 32 |
-
self._current_step = current_step
|
| 33 |
-
self.lr = init_lr
|
| 34 |
-
self.warmup_steps = warmup_steps
|
| 35 |
-
self.total_steps = total_steps
|
| 36 |
-
self._last_lr = [self.lr]
|
| 37 |
-
|
| 38 |
-
def set_lr(self, lr):
|
| 39 |
-
self._last_lr = [g["lr"] for g in self.optimizer.param_groups]
|
| 40 |
-
for g in self.optimizer.param_groups:
|
| 41 |
-
# g['lr'] = lr
|
| 42 |
-
g["lr"] = self.end_lr ###锁定用线性
|
| 43 |
-
|
| 44 |
-
def step(self):
|
| 45 |
-
if self._current_step < self.warmup_steps:
|
| 46 |
-
lr = self.init_lr + self._warmup_rate * self._current_step
|
| 47 |
-
|
| 48 |
-
elif self._current_step > self.total_steps:
|
| 49 |
-
lr = self.end_lr
|
| 50 |
-
|
| 51 |
-
else:
|
| 52 |
-
decay_ratio = (self._current_step - self.warmup_steps) / (
|
| 53 |
-
self.total_steps - self.warmup_steps
|
| 54 |
-
)
|
| 55 |
-
if decay_ratio < 0.0 or decay_ratio > 1.0:
|
| 56 |
-
raise RuntimeError(
|
| 57 |
-
"Decay ratio must be in [0.0, 1.0]. Fix LR scheduler settings."
|
| 58 |
-
)
|
| 59 |
-
coeff = 0.5 * (1.0 + math.cos(math.pi * decay_ratio))
|
| 60 |
-
lr = self.end_lr + coeff * (self.peak_lr - self.end_lr)
|
| 61 |
-
|
| 62 |
-
self.lr = lr = self.end_lr = 0.002 ###锁定用线性###不听话,直接锁定!
|
| 63 |
-
self.set_lr(lr)
|
| 64 |
-
self.lr = lr
|
| 65 |
-
self._current_step += 1
|
| 66 |
-
return self.lr
|
| 67 |
-
|
| 68 |
-
|
| 69 |
-
if __name__ == "__main__":
|
| 70 |
-
m = nn.Linear(10, 10)
|
| 71 |
-
opt = Adam(m.parameters(), lr=1e-4)
|
| 72 |
-
s = WarmupCosineLRSchedule(
|
| 73 |
-
opt, 1e-6, 2e-4, 1e-6, warmup_steps=2000, total_steps=20000, current_step=0
|
| 74 |
-
)
|
| 75 |
-
lrs = []
|
| 76 |
-
for i in range(25000):
|
| 77 |
-
s.step()
|
| 78 |
-
lrs.append(s.lr)
|
| 79 |
-
print(s.lr)
|
| 80 |
-
|
| 81 |
-
plt.plot(lrs)
|
| 82 |
-
plt.plot(range(0, 25000), lrs)
|
| 83 |
-
plt.show()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
AR/modules/optim.py
DELETED
|
@@ -1,622 +0,0 @@
|
|
| 1 |
-
# Copyright 2022 Xiaomi Corp. (authors: Daniel Povey)
|
| 2 |
-
#
|
| 3 |
-
# See ../LICENSE for clarification regarding multiple authors
|
| 4 |
-
#
|
| 5 |
-
# Licensed under the Apache License, Version 2.0 (the "License");
|
| 6 |
-
# you may not use this file except in compliance with the License.
|
| 7 |
-
# You may obtain a copy of the License at
|
| 8 |
-
#
|
| 9 |
-
# http://www.apache.org/licenses/LICENSE-2.0
|
| 10 |
-
#
|
| 11 |
-
# Unless required by applicable law or agreed to in writing, software
|
| 12 |
-
# distributed under the License is distributed on an "AS IS" BASIS,
|
| 13 |
-
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 14 |
-
# See the License for the specific language governing permissions and
|
| 15 |
-
# limitations under the License.
|
| 16 |
-
import contextlib
|
| 17 |
-
import logging
|
| 18 |
-
from collections import defaultdict
|
| 19 |
-
from typing import List
|
| 20 |
-
from typing import Tuple
|
| 21 |
-
|
| 22 |
-
import torch
|
| 23 |
-
from torch import Tensor
|
| 24 |
-
from torch.optim import Optimizer
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
class BatchedOptimizer(Optimizer):
|
| 28 |
-
"""
|
| 29 |
-
This class adds to class Optimizer the capability to optimize parameters in batches:
|
| 30 |
-
it will stack the parameters and their grads for you so the optimizer can work
|
| 31 |
-
on tensors with an extra leading dimension. This is intended for speed with GPUs,
|
| 32 |
-
as it reduces the number of kernels launched in the optimizer.
|
| 33 |
-
|
| 34 |
-
Args:
|
| 35 |
-
params:
|
| 36 |
-
"""
|
| 37 |
-
|
| 38 |
-
def __init__(self, params, defaults):
|
| 39 |
-
super(BatchedOptimizer, self).__init__(params, defaults)
|
| 40 |
-
|
| 41 |
-
@contextlib.contextmanager
|
| 42 |
-
def batched_params(self, param_group, group_params_names):
|
| 43 |
-
"""
|
| 44 |
-
This function returns (technically, yields) a list of
|
| 45 |
-
of tuples (p, state), where
|
| 46 |
-
p is a `fake` parameter that is stacked (over axis 0) from real parameters
|
| 47 |
-
that share the same shape, and its gradient is also stacked;
|
| 48 |
-
`state` is the state corresponding to this batch of parameters
|
| 49 |
-
(it will be physically located in the "state" for one of the real
|
| 50 |
-
parameters, the last one that has any particular shape and dtype).
|
| 51 |
-
|
| 52 |
-
This function is decorated as a context manager so that it can
|
| 53 |
-
write parameters back to their "real" locations.
|
| 54 |
-
|
| 55 |
-
The idea is, instead of doing:
|
| 56 |
-
<code>
|
| 57 |
-
for p in group["params"]:
|
| 58 |
-
state = self.state[p]
|
| 59 |
-
...
|
| 60 |
-
</code>
|
| 61 |
-
you can do:
|
| 62 |
-
<code>
|
| 63 |
-
with self.batched_params(group["params"]) as batches:
|
| 64 |
-
for p, state, p_names in batches:
|
| 65 |
-
...
|
| 66 |
-
</code>
|
| 67 |
-
|
| 68 |
-
Args:
|
| 69 |
-
group: a parameter group, which is a list of parameters; should be
|
| 70 |
-
one of self.param_groups.
|
| 71 |
-
group_params_names: name for each parameter in group,
|
| 72 |
-
which is List[str].
|
| 73 |
-
"""
|
| 74 |
-
batches = defaultdict(
|
| 75 |
-
list
|
| 76 |
-
) # `batches` maps from tuple (dtype_as_str,*shape) to list of nn.Parameter
|
| 77 |
-
batches_names = defaultdict(
|
| 78 |
-
list
|
| 79 |
-
) # `batches` maps from tuple (dtype_as_str,*shape) to list of str
|
| 80 |
-
|
| 81 |
-
assert len(param_group) == len(group_params_names)
|
| 82 |
-
for p, named_p in zip(param_group, group_params_names):
|
| 83 |
-
key = (str(p.dtype), *p.shape)
|
| 84 |
-
batches[key].append(p)
|
| 85 |
-
batches_names[key].append(named_p)
|
| 86 |
-
|
| 87 |
-
batches_names_keys = list(batches_names.keys())
|
| 88 |
-
sorted_idx = sorted(
|
| 89 |
-
range(len(batches_names)), key=lambda i: batches_names_keys[i])
|
| 90 |
-
batches_names = [
|
| 91 |
-
batches_names[batches_names_keys[idx]] for idx in sorted_idx
|
| 92 |
-
]
|
| 93 |
-
batches = [batches[batches_names_keys[idx]] for idx in sorted_idx]
|
| 94 |
-
|
| 95 |
-
stacked_params_dict = dict()
|
| 96 |
-
|
| 97 |
-
# turn batches into a list, in deterministic order.
|
| 98 |
-
# tuples will contain tuples of (stacked_param, state, stacked_params_names),
|
| 99 |
-
# one for each batch in `batches`.
|
| 100 |
-
tuples = []
|
| 101 |
-
|
| 102 |
-
for batch, batch_names in zip(batches, batches_names):
|
| 103 |
-
p = batch[0]
|
| 104 |
-
# we arbitrarily store the state in the
|
| 105 |
-
# state corresponding to the 1st parameter in the
|
| 106 |
-
# group. class Optimizer will take care of saving/loading state.
|
| 107 |
-
state = self.state[p]
|
| 108 |
-
p_stacked = torch.stack(batch)
|
| 109 |
-
grad = torch.stack([
|
| 110 |
-
torch.zeros_like(p) if p.grad is None else p.grad for p in batch
|
| 111 |
-
])
|
| 112 |
-
p_stacked.grad = grad
|
| 113 |
-
stacked_params_dict[key] = p_stacked
|
| 114 |
-
tuples.append((p_stacked, state, batch_names))
|
| 115 |
-
|
| 116 |
-
yield tuples # <-- calling code will do the actual optimization here!
|
| 117 |
-
|
| 118 |
-
for ((stacked_params, _state, _names), batch) in zip(tuples, batches):
|
| 119 |
-
for i, p in enumerate(batch): # batch is list of Parameter
|
| 120 |
-
p.copy_(stacked_params[i])
|
| 121 |
-
|
| 122 |
-
|
| 123 |
-
class ScaledAdam(BatchedOptimizer):
|
| 124 |
-
"""
|
| 125 |
-
Implements 'Scaled Adam', a variant of Adam where we scale each parameter's update
|
| 126 |
-
proportional to the norm of that parameter; and also learn the scale of the parameter,
|
| 127 |
-
in log space, subject to upper and lower limits (as if we had factored each parameter as
|
| 128 |
-
param = underlying_param * log_scale.exp())
|
| 129 |
-
|
| 130 |
-
|
| 131 |
-
Args:
|
| 132 |
-
params: The parameters or param_groups to optimize (like other Optimizer subclasses)
|
| 133 |
-
lr: The learning rate. We will typically use a learning rate schedule that starts
|
| 134 |
-
at 0.03 and decreases over time, i.e. much higher than other common
|
| 135 |
-
optimizers.
|
| 136 |
-
clipping_scale: (e.g. 2.0)
|
| 137 |
-
A scale for gradient-clipping: if specified, the normalized gradients
|
| 138 |
-
over the whole model will be clipped to have 2-norm equal to
|
| 139 |
-
`clipping_scale` times the median 2-norm over the most recent period
|
| 140 |
-
of `clipping_update_period` minibatches. By "normalized gradients",
|
| 141 |
-
we mean after multiplying by the rms parameter value for this tensor
|
| 142 |
-
[for non-scalars]; this is appropriate because our update is scaled
|
| 143 |
-
by this quantity.
|
| 144 |
-
betas: beta1,beta2 are momentum constants for regular momentum, and moving sum-sq grad.
|
| 145 |
-
Must satisfy 0 < beta <= beta2 < 1.
|
| 146 |
-
scalar_lr_scale: A scaling factor on the learning rate, that we use to update the
|
| 147 |
-
scale of each parameter tensor and scalar parameters of the mode..
|
| 148 |
-
If each parameter were decomposed
|
| 149 |
-
as p * p_scale.exp(), where (p**2).mean().sqrt() == 1.0, scalar_lr_scale
|
| 150 |
-
would be a the scaling factor on the learning rate of p_scale.
|
| 151 |
-
eps: A general-purpose epsilon to prevent division by zero
|
| 152 |
-
param_min_rms: Minimum root-mean-square value of parameter tensor, for purposes of
|
| 153 |
-
learning the scale on the parameters (we'll constrain the rms of each non-scalar
|
| 154 |
-
parameter tensor to be >= this value)
|
| 155 |
-
param_max_rms: Maximum root-mean-square value of parameter tensor, for purposes of
|
| 156 |
-
learning the scale on the parameters (we'll constrain the rms of each non-scalar
|
| 157 |
-
parameter tensor to be <= this value)
|
| 158 |
-
scalar_max: Maximum absolute value for scalar parameters (applicable if your
|
| 159 |
-
model has any parameters with numel() == 1).
|
| 160 |
-
size_update_period: The periodicity, in steps, with which we update the size (scale)
|
| 161 |
-
of the parameter tensor. This is provided to save a little time
|
| 162 |
-
in the update.
|
| 163 |
-
clipping_update_period: if clipping_scale is specified, this is the period
|
| 164 |
-
"""
|
| 165 |
-
|
| 166 |
-
def __init__(
|
| 167 |
-
self,
|
| 168 |
-
params,
|
| 169 |
-
lr=3e-02,
|
| 170 |
-
clipping_scale=None,
|
| 171 |
-
betas=(0.9, 0.98),
|
| 172 |
-
scalar_lr_scale=0.1,
|
| 173 |
-
eps=1.0e-08,
|
| 174 |
-
param_min_rms=1.0e-05,
|
| 175 |
-
param_max_rms=3.0,
|
| 176 |
-
scalar_max=10.0,
|
| 177 |
-
size_update_period=4,
|
| 178 |
-
clipping_update_period=100,
|
| 179 |
-
parameters_names=None,
|
| 180 |
-
show_dominant_parameters=True, ):
|
| 181 |
-
|
| 182 |
-
assert parameters_names is not None, (
|
| 183 |
-
"Please prepare parameters_names,"
|
| 184 |
-
"which is a List[List[str]]. Each List[str] is for a group"
|
| 185 |
-
"and each str is for a parameter")
|
| 186 |
-
defaults = dict(
|
| 187 |
-
lr=lr,
|
| 188 |
-
clipping_scale=clipping_scale,
|
| 189 |
-
betas=betas,
|
| 190 |
-
scalar_lr_scale=scalar_lr_scale,
|
| 191 |
-
eps=eps,
|
| 192 |
-
param_min_rms=param_min_rms,
|
| 193 |
-
param_max_rms=param_max_rms,
|
| 194 |
-
scalar_max=scalar_max,
|
| 195 |
-
size_update_period=size_update_period,
|
| 196 |
-
clipping_update_period=clipping_update_period, )
|
| 197 |
-
|
| 198 |
-
super(ScaledAdam, self).__init__(params, defaults)
|
| 199 |
-
assert len(self.param_groups) == len(parameters_names)
|
| 200 |
-
self.parameters_names = parameters_names
|
| 201 |
-
self.show_dominant_parameters = show_dominant_parameters
|
| 202 |
-
|
| 203 |
-
def __setstate__(self, state):
|
| 204 |
-
super(ScaledAdam, self).__setstate__(state)
|
| 205 |
-
|
| 206 |
-
@torch.no_grad()
|
| 207 |
-
def step(self, closure=None):
|
| 208 |
-
"""Performs a single optimization step.
|
| 209 |
-
|
| 210 |
-
Arguments:
|
| 211 |
-
closure (callable, optional): A closure that reevaluates the model
|
| 212 |
-
and returns the loss.
|
| 213 |
-
"""
|
| 214 |
-
loss = None
|
| 215 |
-
if closure is not None:
|
| 216 |
-
with torch.enable_grad():
|
| 217 |
-
loss = closure()
|
| 218 |
-
|
| 219 |
-
batch = True
|
| 220 |
-
|
| 221 |
-
for group, group_params_names in zip(self.param_groups,
|
| 222 |
-
self.parameters_names):
|
| 223 |
-
|
| 224 |
-
with self.batched_params(group["params"],
|
| 225 |
-
group_params_names) as batches:
|
| 226 |
-
|
| 227 |
-
# batches is list of pairs (stacked_param, state). stacked_param is like
|
| 228 |
-
# a regular parameter, and will have a .grad, but the 1st dim corresponds to
|
| 229 |
-
# a stacking dim, it is not a real dim.
|
| 230 |
-
|
| 231 |
-
if (len(batches[0][1]) ==
|
| 232 |
-
0): # if len(first state) == 0: not yet initialized
|
| 233 |
-
clipping_scale = 1
|
| 234 |
-
else:
|
| 235 |
-
clipping_scale = self._get_clipping_scale(group, batches)
|
| 236 |
-
|
| 237 |
-
for p, state, _ in batches:
|
| 238 |
-
# Perform optimization step.
|
| 239 |
-
# grad is not going to be None, we handled that when creating the batches.
|
| 240 |
-
grad = p.grad
|
| 241 |
-
if grad.is_sparse:
|
| 242 |
-
raise RuntimeError(
|
| 243 |
-
"ScaledAdam optimizer does not support sparse gradients"
|
| 244 |
-
)
|
| 245 |
-
# State initialization
|
| 246 |
-
if len(state) == 0:
|
| 247 |
-
self._init_state(group, p, state)
|
| 248 |
-
|
| 249 |
-
self._step_one_batch(group, p, state, clipping_scale)
|
| 250 |
-
|
| 251 |
-
return loss
|
| 252 |
-
|
| 253 |
-
def _init_state(self, group: dict, p: Tensor, state: dict):
|
| 254 |
-
"""
|
| 255 |
-
Initializes state dict for parameter 'p'. Assumes that dim 0 of tensor p
|
| 256 |
-
is actually the batch dimension, corresponding to batched-together
|
| 257 |
-
parameters of a given shape.
|
| 258 |
-
|
| 259 |
-
|
| 260 |
-
Args:
|
| 261 |
-
group: Dict to look up configuration values.
|
| 262 |
-
p: The parameter that we are initializing the state for
|
| 263 |
-
state: Dict from string to whatever state we are initializing
|
| 264 |
-
"""
|
| 265 |
-
size_update_period = group["size_update_period"]
|
| 266 |
-
|
| 267 |
-
state["step"] = 0
|
| 268 |
-
|
| 269 |
-
kwargs = {"device": p.device, "dtype": p.dtype}
|
| 270 |
-
|
| 271 |
-
# 'delta' implements conventional momentum. There are
|
| 272 |
-
# several different kinds of update going on, so rather than
|
| 273 |
-
# compute "exp_avg" like in Adam, we store and decay a
|
| 274 |
-
# parameter-change "delta", which combines all forms of
|
| 275 |
-
# update. this is equivalent to how it's done in Adam,
|
| 276 |
-
# except for the first few steps.
|
| 277 |
-
state["delta"] = torch.zeros_like(
|
| 278 |
-
p, memory_format=torch.preserve_format)
|
| 279 |
-
|
| 280 |
-
batch_size = p.shape[0]
|
| 281 |
-
numel = p.numel() // batch_size
|
| 282 |
-
numel = p.numel()
|
| 283 |
-
|
| 284 |
-
if numel > 1:
|
| 285 |
-
# "param_rms" just periodically records the scalar root-mean-square value of
|
| 286 |
-
# the parameter tensor.
|
| 287 |
-
# it has a shape like (batch_size, 1, 1, 1, 1)
|
| 288 |
-
param_rms = (
|
| 289 |
-
(p**2).mean(dim=list(range(1, p.ndim)), keepdim=True).sqrt())
|
| 290 |
-
state["param_rms"] = param_rms
|
| 291 |
-
|
| 292 |
-
state["scale_exp_avg_sq"] = torch.zeros_like(param_rms)
|
| 293 |
-
state["scale_grads"] = torch.zeros(size_update_period,
|
| 294 |
-
*param_rms.shape, **kwargs)
|
| 295 |
-
|
| 296 |
-
# exp_avg_sq is the weighted sum of scaled gradients. as in Adam.
|
| 297 |
-
state["exp_avg_sq"] = torch.zeros_like(
|
| 298 |
-
p, memory_format=torch.preserve_format)
|
| 299 |
-
|
| 300 |
-
def _get_clipping_scale(self,
|
| 301 |
-
group: dict,
|
| 302 |
-
tuples: List[Tuple[Tensor, dict, List[str]]]
|
| 303 |
-
) -> float:
|
| 304 |
-
"""
|
| 305 |
-
Returns a scalar factor <= 1.0 that dictates gradient clipping, i.e. we will scale the gradients
|
| 306 |
-
by this amount before applying the rest of the update.
|
| 307 |
-
|
| 308 |
-
Args:
|
| 309 |
-
group: the parameter group, an item in self.param_groups
|
| 310 |
-
tuples: a list of tuples of (param, state, param_names)
|
| 311 |
-
where param is a batched set of parameters,
|
| 312 |
-
with a .grad (1st dim is batch dim)
|
| 313 |
-
and state is the state-dict where optimization parameters are kept.
|
| 314 |
-
param_names is a List[str] while each str is name for a parameter
|
| 315 |
-
in batched set of parameters "param".
|
| 316 |
-
"""
|
| 317 |
-
assert len(tuples) >= 1
|
| 318 |
-
clipping_scale = group["clipping_scale"]
|
| 319 |
-
(first_p, first_state, _) = tuples[0]
|
| 320 |
-
step = first_state["step"]
|
| 321 |
-
if clipping_scale is None or step == 0:
|
| 322 |
-
# no clipping. return early on step == 0 because the other
|
| 323 |
-
# parameters' state won't have been initialized yet.
|
| 324 |
-
return 1.0
|
| 325 |
-
clipping_update_period = group["clipping_update_period"]
|
| 326 |
-
|
| 327 |
-
tot_sumsq = torch.tensor(0.0, device=first_p.device)
|
| 328 |
-
for (p, state, param_names) in tuples:
|
| 329 |
-
grad = p.grad
|
| 330 |
-
if grad.is_sparse:
|
| 331 |
-
raise RuntimeError(
|
| 332 |
-
"ScaledAdam optimizer does not support sparse gradients")
|
| 333 |
-
if p.numel() == p.shape[0]: # a batch of scalars
|
| 334 |
-
tot_sumsq += (grad**2).sum() # sum() to change shape [1] to []
|
| 335 |
-
else:
|
| 336 |
-
tot_sumsq += ((grad * state["param_rms"])**2).sum()
|
| 337 |
-
|
| 338 |
-
tot_norm = tot_sumsq.sqrt()
|
| 339 |
-
if "model_norms" not in first_state:
|
| 340 |
-
first_state["model_norms"] = torch.zeros(
|
| 341 |
-
clipping_update_period, device=p.device)
|
| 342 |
-
first_state["model_norms"][step % clipping_update_period] = tot_norm
|
| 343 |
-
|
| 344 |
-
if step % clipping_update_period == 0:
|
| 345 |
-
# Print some stats.
|
| 346 |
-
# We don't reach here if step == 0 because we would have returned
|
| 347 |
-
# above.
|
| 348 |
-
sorted_norms = first_state["model_norms"].sort()[0].to("cpu")
|
| 349 |
-
quartiles = []
|
| 350 |
-
for n in range(0, 5):
|
| 351 |
-
index = min(
|
| 352 |
-
clipping_update_period - 1,
|
| 353 |
-
(clipping_update_period // 4) * n, )
|
| 354 |
-
quartiles.append(sorted_norms[index].item())
|
| 355 |
-
|
| 356 |
-
median = quartiles[2]
|
| 357 |
-
threshold = clipping_scale * median
|
| 358 |
-
first_state["model_norm_threshold"] = threshold
|
| 359 |
-
percent_clipped = (first_state["num_clipped"] * 100.0 /
|
| 360 |
-
clipping_update_period
|
| 361 |
-
if "num_clipped" in first_state else 0.0)
|
| 362 |
-
first_state["num_clipped"] = 0
|
| 363 |
-
quartiles = " ".join(["%.3e" % x for x in quartiles])
|
| 364 |
-
logging.info(
|
| 365 |
-
f"Clipping_scale={clipping_scale}, grad-norm quartiles {quartiles}, "
|
| 366 |
-
f"threshold={threshold:.3e}, percent-clipped={percent_clipped:.1f}"
|
| 367 |
-
)
|
| 368 |
-
|
| 369 |
-
if step < clipping_update_period:
|
| 370 |
-
return 1.0 # We have not yet estimated a norm to clip to.
|
| 371 |
-
else:
|
| 372 |
-
try:
|
| 373 |
-
model_norm_threshold = first_state["model_norm_threshold"]
|
| 374 |
-
except KeyError:
|
| 375 |
-
logging.info(
|
| 376 |
-
"Warning: model_norm_threshold not in state: possibly "
|
| 377 |
-
"you changed config when restarting, adding clipping_scale option?"
|
| 378 |
-
)
|
| 379 |
-
return 1.0
|
| 380 |
-
ans = min(1.0, (model_norm_threshold / (tot_norm + 1.0e-20)).item())
|
| 381 |
-
if ans < 1.0:
|
| 382 |
-
first_state["num_clipped"] += 1
|
| 383 |
-
if ans < 0.1:
|
| 384 |
-
logging.warn(
|
| 385 |
-
f"Scaling gradients by {ans}, model_norm_threshold={model_norm_threshold}"
|
| 386 |
-
)
|
| 387 |
-
if self.show_dominant_parameters:
|
| 388 |
-
assert p.shape[0] == len(param_names)
|
| 389 |
-
self._show_gradient_dominating_parameter(tuples, tot_sumsq)
|
| 390 |
-
return ans
|
| 391 |
-
|
| 392 |
-
def _show_gradient_dominating_parameter(
|
| 393 |
-
self, tuples: List[Tuple[Tensor, dict, List[str]]],
|
| 394 |
-
tot_sumsq: Tensor):
|
| 395 |
-
"""
|
| 396 |
-
Show information of parameter wihch dominanting tot_sumsq.
|
| 397 |
-
|
| 398 |
-
Args:
|
| 399 |
-
tuples: a list of tuples of (param, state, param_names)
|
| 400 |
-
where param is a batched set of parameters,
|
| 401 |
-
with a .grad (1st dim is batch dim)
|
| 402 |
-
and state is the state-dict where optimization parameters are kept.
|
| 403 |
-
param_names is a List[str] while each str is name for a parameter
|
| 404 |
-
in batched set of parameters "param".
|
| 405 |
-
tot_sumsq: sumsq of all parameters. Though it's could be calculated
|
| 406 |
-
from tuples, we still pass it to save some time.
|
| 407 |
-
"""
|
| 408 |
-
all_sumsq_orig = {}
|
| 409 |
-
for (p, state, batch_param_names) in tuples:
|
| 410 |
-
# p is a stacked batch parameters.
|
| 411 |
-
batch_grad = p.grad
|
| 412 |
-
if p.numel() == p.shape[0]: # a batch of scalars
|
| 413 |
-
batch_sumsq_orig = batch_grad**2
|
| 414 |
-
# Dummpy values used by following `zip` statement.
|
| 415 |
-
batch_rms_orig = torch.ones(p.shape[0])
|
| 416 |
-
else:
|
| 417 |
-
batch_rms_orig = state["param_rms"]
|
| 418 |
-
batch_sumsq_orig = ((batch_grad * batch_rms_orig)**2).sum(
|
| 419 |
-
dim=list(range(1, batch_grad.ndim)))
|
| 420 |
-
|
| 421 |
-
for name, sumsq_orig, rms, grad in zip(batch_param_names,
|
| 422 |
-
batch_sumsq_orig,
|
| 423 |
-
batch_rms_orig, batch_grad):
|
| 424 |
-
|
| 425 |
-
proportion_orig = sumsq_orig / tot_sumsq
|
| 426 |
-
all_sumsq_orig[name] = (proportion_orig, sumsq_orig, rms, grad)
|
| 427 |
-
|
| 428 |
-
assert torch.isclose(
|
| 429 |
-
sum([value[0] for value in all_sumsq_orig.values()]).cpu(),
|
| 430 |
-
torch.tensor(1.0), )
|
| 431 |
-
sorted_by_proportion = {
|
| 432 |
-
k: v
|
| 433 |
-
for k, v in sorted(
|
| 434 |
-
all_sumsq_orig.items(),
|
| 435 |
-
key=lambda item: item[1][0],
|
| 436 |
-
reverse=True, )
|
| 437 |
-
}
|
| 438 |
-
dominant_param_name = next(iter(sorted_by_proportion))
|
| 439 |
-
(dominant_proportion, dominant_sumsq, dominant_rms,
|
| 440 |
-
dominant_grad, ) = sorted_by_proportion[dominant_param_name]
|
| 441 |
-
logging.info(f"Parameter Dominanting tot_sumsq {dominant_param_name}"
|
| 442 |
-
f" with proportion {dominant_proportion:.2f},"
|
| 443 |
-
f" where dominant_sumsq=(grad_sumsq*orig_rms_sq)"
|
| 444 |
-
f"={dominant_sumsq:.3e},"
|
| 445 |
-
f" grad_sumsq = {(dominant_grad**2).sum():.3e},"
|
| 446 |
-
f" orig_rms_sq={(dominant_rms**2).item():.3e}")
|
| 447 |
-
|
| 448 |
-
def _step_one_batch(self,
|
| 449 |
-
group: dict,
|
| 450 |
-
p: Tensor,
|
| 451 |
-
state: dict,
|
| 452 |
-
clipping_scale: float):
|
| 453 |
-
"""
|
| 454 |
-
Do the step for one parameter, which is actually going to be a batch of
|
| 455 |
-
`real` parameters, with dim 0 as the batch dim.
|
| 456 |
-
Args:
|
| 457 |
-
group: dict to look up configuration values
|
| 458 |
-
p: parameter to update (actually multiple parameters stacked together
|
| 459 |
-
as a batch)
|
| 460 |
-
state: state-dict for p, to look up the optimizer state
|
| 461 |
-
"""
|
| 462 |
-
lr = group["lr"]
|
| 463 |
-
size_update_period = group["size_update_period"]
|
| 464 |
-
beta1 = group["betas"][0]
|
| 465 |
-
|
| 466 |
-
grad = p.grad
|
| 467 |
-
if clipping_scale != 1.0:
|
| 468 |
-
grad = grad * clipping_scale
|
| 469 |
-
step = state["step"]
|
| 470 |
-
delta = state["delta"]
|
| 471 |
-
|
| 472 |
-
delta.mul_(beta1)
|
| 473 |
-
batch_size = p.shape[0]
|
| 474 |
-
numel = p.numel() // batch_size
|
| 475 |
-
if numel > 1:
|
| 476 |
-
# Update the size/scale of p, and set param_rms
|
| 477 |
-
scale_grads = state["scale_grads"]
|
| 478 |
-
scale_grads[step % size_update_period] = (p * grad).sum(
|
| 479 |
-
dim=list(range(1, p.ndim)), keepdim=True)
|
| 480 |
-
if step % size_update_period == size_update_period - 1:
|
| 481 |
-
param_rms = state["param_rms"] # shape: (batch_size, 1, 1, ..)
|
| 482 |
-
param_rms.copy_((p**2)
|
| 483 |
-
.mean(dim=list(range(1, p.ndim)), keepdim=True)
|
| 484 |
-
.sqrt())
|
| 485 |
-
if step > 0:
|
| 486 |
-
# self._size_update() learns the overall scale on the
|
| 487 |
-
# parameter, by shrinking or expanding it.
|
| 488 |
-
self._size_update(group, scale_grads, p, state)
|
| 489 |
-
|
| 490 |
-
if numel == 1:
|
| 491 |
-
# For parameters with 1 element we just use regular Adam.
|
| 492 |
-
# Updates delta.
|
| 493 |
-
self._step_scalar(group, p, state)
|
| 494 |
-
else:
|
| 495 |
-
self._step(group, p, state)
|
| 496 |
-
|
| 497 |
-
state["step"] = step + 1
|
| 498 |
-
|
| 499 |
-
def _size_update(self,
|
| 500 |
-
group: dict,
|
| 501 |
-
scale_grads: Tensor,
|
| 502 |
-
p: Tensor,
|
| 503 |
-
state: dict) -> None:
|
| 504 |
-
"""
|
| 505 |
-
Called only where p.numel() > 1, this updates the scale of the parameter.
|
| 506 |
-
If we imagine: p = underlying_param * scale.exp(), and we are doing
|
| 507 |
-
gradient descent on underlying param and on scale, this function does the update
|
| 508 |
-
on `scale`.
|
| 509 |
-
|
| 510 |
-
Args:
|
| 511 |
-
group: dict to look up configuration values
|
| 512 |
-
scale_grads: a tensor of shape (size_update_period, batch_size, 1, 1,...) containing
|
| 513 |
-
grads w.r.t. the scales.
|
| 514 |
-
p: The parameter to update
|
| 515 |
-
state: The state-dict of p
|
| 516 |
-
"""
|
| 517 |
-
|
| 518 |
-
param_rms = state["param_rms"]
|
| 519 |
-
beta1, beta2 = group["betas"]
|
| 520 |
-
size_lr = group["lr"] * group["scalar_lr_scale"]
|
| 521 |
-
param_min_rms = group["param_min_rms"]
|
| 522 |
-
param_max_rms = group["param_max_rms"]
|
| 523 |
-
eps = group["eps"]
|
| 524 |
-
step = state["step"]
|
| 525 |
-
batch_size = p.shape[0]
|
| 526 |
-
|
| 527 |
-
size_update_period = scale_grads.shape[0]
|
| 528 |
-
# correct beta2 for the size update period: we will have
|
| 529 |
-
# faster decay at this level.
|
| 530 |
-
beta2_corr = beta2**size_update_period
|
| 531 |
-
|
| 532 |
-
scale_exp_avg_sq = state[
|
| 533 |
-
"scale_exp_avg_sq"] # shape: (batch_size, 1, 1, ..)
|
| 534 |
-
scale_exp_avg_sq.mul_(beta2_corr).add_(
|
| 535 |
-
(scale_grads**2).mean(dim=0), # mean over dim `size_update_period`
|
| 536 |
-
alpha=1 - beta2_corr, ) # shape is (batch_size, 1, 1, ...)
|
| 537 |
-
|
| 538 |
-
# The 1st time we reach here is when size_step == 1.
|
| 539 |
-
size_step = (step + 1) // size_update_period
|
| 540 |
-
bias_correction2 = 1 - beta2_corr**size_step
|
| 541 |
-
# we don't bother with bias_correction1; this will help prevent divergence
|
| 542 |
-
# at the start of training.
|
| 543 |
-
|
| 544 |
-
denom = scale_exp_avg_sq.sqrt() + eps
|
| 545 |
-
|
| 546 |
-
scale_step = (-size_lr * (bias_correction2**0.5) *
|
| 547 |
-
scale_grads.sum(dim=0) / denom)
|
| 548 |
-
|
| 549 |
-
is_too_small = param_rms < param_min_rms
|
| 550 |
-
is_too_large = param_rms > param_max_rms
|
| 551 |
-
|
| 552 |
-
# when the param gets too small, just don't shrink it any further.
|
| 553 |
-
scale_step.masked_fill_(is_too_small, 0.0)
|
| 554 |
-
# when it gets too large, stop it from getting any larger.
|
| 555 |
-
scale_step.masked_fill_(is_too_large, -size_lr * size_update_period)
|
| 556 |
-
delta = state["delta"]
|
| 557 |
-
# the factor of (1-beta1) relates to momentum.
|
| 558 |
-
delta.add_(p * scale_step, alpha=(1 - beta1))
|
| 559 |
-
|
| 560 |
-
def _step(self, group: dict, p: Tensor, state: dict):
|
| 561 |
-
"""
|
| 562 |
-
This function does the core update of self.step(), in the case where the members of
|
| 563 |
-
the batch have more than 1 element.
|
| 564 |
-
|
| 565 |
-
Args:
|
| 566 |
-
group: A dict which will be used to look up configuration values
|
| 567 |
-
p: The parameter to be updated
|
| 568 |
-
grad: The grad of p
|
| 569 |
-
state: The state-dict corresponding to parameter p
|
| 570 |
-
|
| 571 |
-
This function modifies p.
|
| 572 |
-
"""
|
| 573 |
-
grad = p.grad
|
| 574 |
-
lr = group["lr"]
|
| 575 |
-
beta1, beta2 = group["betas"]
|
| 576 |
-
eps = group["eps"]
|
| 577 |
-
param_min_rms = group["param_min_rms"]
|
| 578 |
-
step = state["step"]
|
| 579 |
-
|
| 580 |
-
exp_avg_sq = state["exp_avg_sq"]
|
| 581 |
-
exp_avg_sq.mul_(beta2).addcmul_(grad, grad, value=(1 - beta2))
|
| 582 |
-
|
| 583 |
-
this_step = state["step"] - (state["zero_step"]
|
| 584 |
-
if "zero_step" in state else 0)
|
| 585 |
-
bias_correction2 = 1 - beta2**(this_step + 1)
|
| 586 |
-
if bias_correction2 < 0.99:
|
| 587 |
-
# note: not in-place.
|
| 588 |
-
exp_avg_sq = exp_avg_sq * (1.0 / bias_correction2)
|
| 589 |
-
|
| 590 |
-
denom = exp_avg_sq.sqrt()
|
| 591 |
-
denom += eps
|
| 592 |
-
grad = grad / denom
|
| 593 |
-
|
| 594 |
-
alpha = -lr * (1 - beta1) * state["param_rms"].clamp(min=param_min_rms)
|
| 595 |
-
|
| 596 |
-
delta = state["delta"]
|
| 597 |
-
delta.add_(grad * alpha)
|
| 598 |
-
p.add_(delta)
|
| 599 |
-
|
| 600 |
-
def _step_scalar(self, group: dict, p: Tensor, state: dict):
|
| 601 |
-
"""
|
| 602 |
-
A simplified form of the core update for scalar tensors, where we cannot get a good
|
| 603 |
-
estimate of the parameter rms.
|
| 604 |
-
"""
|
| 605 |
-
beta1, beta2 = group["betas"]
|
| 606 |
-
scalar_max = group["scalar_max"]
|
| 607 |
-
eps = group["eps"]
|
| 608 |
-
lr = group["lr"] * group["scalar_lr_scale"]
|
| 609 |
-
grad = p.grad
|
| 610 |
-
|
| 611 |
-
exp_avg_sq = state["exp_avg_sq"] # shape: (batch_size,)
|
| 612 |
-
exp_avg_sq.mul_(beta2).addcmul_(grad, grad, value=1 - beta2)
|
| 613 |
-
|
| 614 |
-
# bias_correction2 is like in Adam. Don't bother with bias_correction1;
|
| 615 |
-
# slower update at the start will help stability anyway.
|
| 616 |
-
bias_correction2 = 1 - beta2**(state["step"] + 1)
|
| 617 |
-
denom = (exp_avg_sq / bias_correction2).sqrt() + eps
|
| 618 |
-
|
| 619 |
-
delta = state["delta"]
|
| 620 |
-
delta.add_(grad / denom, alpha=-lr * (1 - beta1))
|
| 621 |
-
p.clamp_(min=-scalar_max, max=scalar_max)
|
| 622 |
-
p.add_(delta)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
AR/modules/patched_mha_with_cache.py
DELETED
|
@@ -1,465 +0,0 @@
|
|
| 1 |
-
from torch.nn.functional import *
|
| 2 |
-
from torch.nn.functional import (
|
| 3 |
-
_mha_shape_check,
|
| 4 |
-
_canonical_mask,
|
| 5 |
-
_none_or_dtype,
|
| 6 |
-
_in_projection_packed,
|
| 7 |
-
)
|
| 8 |
-
from torch.nn import functional as F
|
| 9 |
-
import torch
|
| 10 |
-
# Tensor = torch.Tensor
|
| 11 |
-
# from typing import Callable, List, Optional, Tuple, Union
|
| 12 |
-
|
| 13 |
-
|
| 14 |
-
def multi_head_attention_forward_patched(
|
| 15 |
-
query: Tensor,
|
| 16 |
-
key: Tensor,
|
| 17 |
-
value: Tensor,
|
| 18 |
-
embed_dim_to_check: int,
|
| 19 |
-
num_heads: int,
|
| 20 |
-
in_proj_weight: Optional[Tensor],
|
| 21 |
-
in_proj_bias: Optional[Tensor],
|
| 22 |
-
bias_k: Optional[Tensor],
|
| 23 |
-
bias_v: Optional[Tensor],
|
| 24 |
-
add_zero_attn: bool,
|
| 25 |
-
dropout_p: float,
|
| 26 |
-
out_proj_weight: Tensor,
|
| 27 |
-
out_proj_bias: Optional[Tensor],
|
| 28 |
-
training: bool = True,
|
| 29 |
-
key_padding_mask: Optional[Tensor] = None,
|
| 30 |
-
need_weights: bool = True,
|
| 31 |
-
attn_mask: Optional[Tensor] = None,
|
| 32 |
-
use_separate_proj_weight: bool = False,
|
| 33 |
-
q_proj_weight: Optional[Tensor] = None,
|
| 34 |
-
k_proj_weight: Optional[Tensor] = None,
|
| 35 |
-
v_proj_weight: Optional[Tensor] = None,
|
| 36 |
-
static_k: Optional[Tensor] = None,
|
| 37 |
-
static_v: Optional[Tensor] = None,
|
| 38 |
-
average_attn_weights: bool = True,
|
| 39 |
-
is_causal: bool = False,
|
| 40 |
-
cache=None,
|
| 41 |
-
) -> Tuple[Tensor, Optional[Tensor]]:
|
| 42 |
-
r"""
|
| 43 |
-
Args:
|
| 44 |
-
query, key, value: map a query and a set of key-value pairs to an output.
|
| 45 |
-
See "Attention Is All You Need" for more details.
|
| 46 |
-
embed_dim_to_check: total dimension of the model.
|
| 47 |
-
num_heads: parallel attention heads.
|
| 48 |
-
in_proj_weight, in_proj_bias: input projection weight and bias.
|
| 49 |
-
bias_k, bias_v: bias of the key and value sequences to be added at dim=0.
|
| 50 |
-
add_zero_attn: add a new batch of zeros to the key and
|
| 51 |
-
value sequences at dim=1.
|
| 52 |
-
dropout_p: probability of an element to be zeroed.
|
| 53 |
-
out_proj_weight, out_proj_bias: the output projection weight and bias.
|
| 54 |
-
training: apply dropout if is ``True``.
|
| 55 |
-
key_padding_mask: if provided, specified padding elements in the key will
|
| 56 |
-
be ignored by the attention. This is an binary mask. When the value is True,
|
| 57 |
-
the corresponding value on the attention layer will be filled with -inf.
|
| 58 |
-
need_weights: output attn_output_weights.
|
| 59 |
-
Default: `True`
|
| 60 |
-
Note: `needs_weight` defaults to `True`, but should be set to `False`
|
| 61 |
-
For best performance when attention weights are not nedeeded.
|
| 62 |
-
*Setting needs_weights to `True`
|
| 63 |
-
leads to a significant performance degradation.*
|
| 64 |
-
attn_mask: 2D or 3D mask that prevents attention to certain positions. A 2D mask will be broadcasted for all
|
| 65 |
-
the batches while a 3D mask allows to specify a different mask for the entries of each batch.
|
| 66 |
-
is_causal: If specified, applies a causal mask as attention mask, and ignores
|
| 67 |
-
attn_mask for computing scaled dot product attention.
|
| 68 |
-
Default: ``False``.
|
| 69 |
-
.. warning::
|
| 70 |
-
is_causal is provides a hint that the attn_mask is the
|
| 71 |
-
causal mask.Providing incorrect hints can result in
|
| 72 |
-
incorrect execution, including forward and backward
|
| 73 |
-
compatibility.
|
| 74 |
-
use_separate_proj_weight: the function accept the proj. weights for query, key,
|
| 75 |
-
and value in different forms. If false, in_proj_weight will be used, which is
|
| 76 |
-
a combination of q_proj_weight, k_proj_weight, v_proj_weight.
|
| 77 |
-
q_proj_weight, k_proj_weight, v_proj_weight, in_proj_bias: input projection weight and bias.
|
| 78 |
-
static_k, static_v: static key and value used for attention operators.
|
| 79 |
-
average_attn_weights: If true, indicates that the returned ``attn_weights`` should be averaged across heads.
|
| 80 |
-
Otherwise, ``attn_weights`` are provided separately per head. Note that this flag only has an effect
|
| 81 |
-
when ``need_weights=True.``. Default: True
|
| 82 |
-
|
| 83 |
-
|
| 84 |
-
Shape:
|
| 85 |
-
Inputs:
|
| 86 |
-
- query: :math:`(L, E)` or :math:`(L, N, E)` where L is the target sequence length, N is the batch size, E is
|
| 87 |
-
the embedding dimension.
|
| 88 |
-
- key: :math:`(S, E)` or :math:`(S, N, E)`, where S is the source sequence length, N is the batch size, E is
|
| 89 |
-
the embedding dimension.
|
| 90 |
-
- value: :math:`(S, E)` or :math:`(S, N, E)` where S is the source sequence length, N is the batch size, E is
|
| 91 |
-
the embedding dimension.
|
| 92 |
-
- key_padding_mask: :math:`(S)` or :math:`(N, S)` where N is the batch size, S is the source sequence length.
|
| 93 |
-
If a FloatTensor is provided, it will be directly added to the value.
|
| 94 |
-
If a BoolTensor is provided, the positions with the
|
| 95 |
-
value of ``True`` will be ignored while the position with the value of ``False`` will be unchanged.
|
| 96 |
-
- attn_mask: 2D mask :math:`(L, S)` where L is the target sequence length, S is the source sequence length.
|
| 97 |
-
3D mask :math:`(N*num_heads, L, S)` where N is the batch size, L is the target sequence length,
|
| 98 |
-
S is the source sequence length. attn_mask ensures that position i is allowed to attend the unmasked
|
| 99 |
-
positions. If a BoolTensor is provided, positions with ``True``
|
| 100 |
-
are not allowed to attend while ``False`` values will be unchanged. If a FloatTensor
|
| 101 |
-
is provided, it will be added to the attention weight.
|
| 102 |
-
- static_k: :math:`(N*num_heads, S, E/num_heads)`, where S is the source sequence length,
|
| 103 |
-
N is the batch size, E is the embedding dimension. E/num_heads is the head dimension.
|
| 104 |
-
- static_v: :math:`(N*num_heads, S, E/num_heads)`, where S is the source sequence length,
|
| 105 |
-
N is the batch size, E is the embedding dimension. E/num_heads is the head dimension.
|
| 106 |
-
|
| 107 |
-
Outputs:
|
| 108 |
-
- attn_output: :math:`(L, E)` or :math:`(L, N, E)` where L is the target sequence length, N is the batch size,
|
| 109 |
-
E is the embedding dimension.
|
| 110 |
-
- attn_output_weights: Only returned when ``need_weights=True``. If ``average_attn_weights=True``, returns
|
| 111 |
-
attention weights averaged across heads of shape :math:`(L, S)` when input is unbatched or
|
| 112 |
-
:math:`(N, L, S)`, where :math:`N` is the batch size, :math:`L` is the target sequence length, and
|
| 113 |
-
:math:`S` is the source sequence length. If ``average_attn_weights=False``, returns attention weights per
|
| 114 |
-
head of shape :math:`(num_heads, L, S)` when input is unbatched or :math:`(N, num_heads, L, S)`.
|
| 115 |
-
"""
|
| 116 |
-
tens_ops = (
|
| 117 |
-
query,
|
| 118 |
-
key,
|
| 119 |
-
value,
|
| 120 |
-
in_proj_weight,
|
| 121 |
-
in_proj_bias,
|
| 122 |
-
bias_k,
|
| 123 |
-
bias_v,
|
| 124 |
-
out_proj_weight,
|
| 125 |
-
out_proj_bias,
|
| 126 |
-
)
|
| 127 |
-
if has_torch_function(tens_ops):
|
| 128 |
-
return handle_torch_function(
|
| 129 |
-
multi_head_attention_forward,
|
| 130 |
-
tens_ops,
|
| 131 |
-
query,
|
| 132 |
-
key,
|
| 133 |
-
value,
|
| 134 |
-
embed_dim_to_check,
|
| 135 |
-
num_heads,
|
| 136 |
-
in_proj_weight,
|
| 137 |
-
in_proj_bias,
|
| 138 |
-
bias_k,
|
| 139 |
-
bias_v,
|
| 140 |
-
add_zero_attn,
|
| 141 |
-
dropout_p,
|
| 142 |
-
out_proj_weight,
|
| 143 |
-
out_proj_bias,
|
| 144 |
-
training=training,
|
| 145 |
-
key_padding_mask=key_padding_mask,
|
| 146 |
-
need_weights=need_weights,
|
| 147 |
-
attn_mask=attn_mask,
|
| 148 |
-
is_causal=is_causal,
|
| 149 |
-
use_separate_proj_weight=use_separate_proj_weight,
|
| 150 |
-
q_proj_weight=q_proj_weight,
|
| 151 |
-
k_proj_weight=k_proj_weight,
|
| 152 |
-
v_proj_weight=v_proj_weight,
|
| 153 |
-
static_k=static_k,
|
| 154 |
-
static_v=static_v,
|
| 155 |
-
average_attn_weights=average_attn_weights,
|
| 156 |
-
cache=cache,
|
| 157 |
-
)
|
| 158 |
-
|
| 159 |
-
is_batched = _mha_shape_check(
|
| 160 |
-
query, key, value, key_padding_mask, attn_mask, num_heads
|
| 161 |
-
)
|
| 162 |
-
|
| 163 |
-
# For unbatched input, we unsqueeze at the expected batch-dim to pretend that the input
|
| 164 |
-
# is batched, run the computation and before returning squeeze the
|
| 165 |
-
# batch dimension so that the output doesn't carry this temporary batch dimension.
|
| 166 |
-
if not is_batched:
|
| 167 |
-
# unsqueeze if the input is unbatched
|
| 168 |
-
query = query.unsqueeze(1)
|
| 169 |
-
key = key.unsqueeze(1)
|
| 170 |
-
value = value.unsqueeze(1)
|
| 171 |
-
if key_padding_mask is not None:
|
| 172 |
-
key_padding_mask = key_padding_mask.unsqueeze(0)
|
| 173 |
-
|
| 174 |
-
# set up shape vars
|
| 175 |
-
tgt_len, bsz, embed_dim = query.shape
|
| 176 |
-
src_len, _, _ = key.shape
|
| 177 |
-
|
| 178 |
-
key_padding_mask = _canonical_mask(
|
| 179 |
-
mask=key_padding_mask,
|
| 180 |
-
mask_name="key_padding_mask",
|
| 181 |
-
other_type=_none_or_dtype(attn_mask),
|
| 182 |
-
other_name="attn_mask",
|
| 183 |
-
target_type=query.dtype,
|
| 184 |
-
)
|
| 185 |
-
|
| 186 |
-
if is_causal and attn_mask is None:
|
| 187 |
-
raise RuntimeError(
|
| 188 |
-
"Need attn_mask if specifying the is_causal hint. "
|
| 189 |
-
"You may use the Transformer module method "
|
| 190 |
-
"`generate_square_subsequent_mask` to create this mask."
|
| 191 |
-
)
|
| 192 |
-
|
| 193 |
-
if is_causal and key_padding_mask is None and not need_weights:
|
| 194 |
-
# when we have a kpm or need weights, we need attn_mask
|
| 195 |
-
# Otherwise, we use the is_causal hint go as is_causal
|
| 196 |
-
# indicator to SDPA.
|
| 197 |
-
attn_mask = None
|
| 198 |
-
else:
|
| 199 |
-
attn_mask = _canonical_mask(
|
| 200 |
-
mask=attn_mask,
|
| 201 |
-
mask_name="attn_mask",
|
| 202 |
-
other_type=None,
|
| 203 |
-
other_name="",
|
| 204 |
-
target_type=query.dtype,
|
| 205 |
-
check_other=False,
|
| 206 |
-
)
|
| 207 |
-
|
| 208 |
-
if key_padding_mask is not None:
|
| 209 |
-
# We have the attn_mask, and use that to merge kpm into it.
|
| 210 |
-
# Turn off use of is_causal hint, as the merged mask is no
|
| 211 |
-
# longer causal.
|
| 212 |
-
is_causal = False
|
| 213 |
-
|
| 214 |
-
assert (
|
| 215 |
-
embed_dim == embed_dim_to_check
|
| 216 |
-
), f"was expecting embedding dimension of {embed_dim_to_check}, but got {embed_dim}"
|
| 217 |
-
if isinstance(embed_dim, torch.Tensor):
|
| 218 |
-
# embed_dim can be a tensor when JIT tracing
|
| 219 |
-
head_dim = embed_dim.div(num_heads, rounding_mode="trunc")
|
| 220 |
-
else:
|
| 221 |
-
head_dim = embed_dim // num_heads
|
| 222 |
-
assert (
|
| 223 |
-
head_dim * num_heads == embed_dim
|
| 224 |
-
), f"embed_dim {embed_dim} not divisible by num_heads {num_heads}"
|
| 225 |
-
if use_separate_proj_weight:
|
| 226 |
-
# allow MHA to have different embedding dimensions when separate projection weights are used
|
| 227 |
-
assert (
|
| 228 |
-
key.shape[:2] == value.shape[:2]
|
| 229 |
-
), f"key's sequence and batch dims {key.shape[:2]} do not match value's {value.shape[:2]}"
|
| 230 |
-
else:
|
| 231 |
-
assert (
|
| 232 |
-
key.shape == value.shape
|
| 233 |
-
), f"key shape {key.shape} does not match value shape {value.shape}"
|
| 234 |
-
|
| 235 |
-
#
|
| 236 |
-
# compute in-projection
|
| 237 |
-
#
|
| 238 |
-
if not use_separate_proj_weight:
|
| 239 |
-
assert (
|
| 240 |
-
in_proj_weight is not None
|
| 241 |
-
), "use_separate_proj_weight is False but in_proj_weight is None"
|
| 242 |
-
q, k, v = _in_projection_packed(query, key, value, in_proj_weight, in_proj_bias)
|
| 243 |
-
else:
|
| 244 |
-
assert (
|
| 245 |
-
q_proj_weight is not None
|
| 246 |
-
), "use_separate_proj_weight is True but q_proj_weight is None"
|
| 247 |
-
assert (
|
| 248 |
-
k_proj_weight is not None
|
| 249 |
-
), "use_separate_proj_weight is True but k_proj_weight is None"
|
| 250 |
-
assert (
|
| 251 |
-
v_proj_weight is not None
|
| 252 |
-
), "use_separate_proj_weight is True but v_proj_weight is None"
|
| 253 |
-
if in_proj_bias is None:
|
| 254 |
-
b_q = b_k = b_v = None
|
| 255 |
-
else:
|
| 256 |
-
b_q, b_k, b_v = in_proj_bias.chunk(3)
|
| 257 |
-
q, k, v = _in_projection(
|
| 258 |
-
query,
|
| 259 |
-
key,
|
| 260 |
-
value,
|
| 261 |
-
q_proj_weight,
|
| 262 |
-
k_proj_weight,
|
| 263 |
-
v_proj_weight,
|
| 264 |
-
b_q,
|
| 265 |
-
b_k,
|
| 266 |
-
b_v,
|
| 267 |
-
)
|
| 268 |
-
if cache != None:
|
| 269 |
-
if cache["first_infer"] == 1:
|
| 270 |
-
cache["k"][cache["stage"]] = k
|
| 271 |
-
# print(0,cache["k"].shape)
|
| 272 |
-
cache["v"][cache["stage"]] = v
|
| 273 |
-
else: ###12个layer每个都要留自己的cache_kv
|
| 274 |
-
# print(1,cache["k"].shape)
|
| 275 |
-
cache["k"][cache["stage"]] = torch.cat(
|
| 276 |
-
[cache["k"][cache["stage"]], k], 0
|
| 277 |
-
) ##本来时序是1,但是proj的时候可能transpose了所以时序到0维了
|
| 278 |
-
cache["v"][cache["stage"]] = torch.cat([cache["v"][cache["stage"]], v], 0)
|
| 279 |
-
# print(2, cache["k"].shape)
|
| 280 |
-
src_len = cache["k"][cache["stage"]].shape[0]
|
| 281 |
-
k = cache["k"][cache["stage"]]
|
| 282 |
-
v = cache["v"][cache["stage"]]
|
| 283 |
-
# if attn_mask is not None:
|
| 284 |
-
# attn_mask=attn_mask[-1:,]
|
| 285 |
-
# print(attn_mask.shape,attn_mask)
|
| 286 |
-
cache["stage"] = (cache["stage"] + 1) % cache["all_stage"]
|
| 287 |
-
# print(2333,cache)
|
| 288 |
-
# prep attention mask
|
| 289 |
-
|
| 290 |
-
attn_mask = _canonical_mask(
|
| 291 |
-
mask=attn_mask,
|
| 292 |
-
mask_name="attn_mask",
|
| 293 |
-
other_type=None,
|
| 294 |
-
other_name="",
|
| 295 |
-
target_type=q.dtype,
|
| 296 |
-
check_other=False,
|
| 297 |
-
)
|
| 298 |
-
|
| 299 |
-
if attn_mask is not None:
|
| 300 |
-
# ensure attn_mask's dim is 3
|
| 301 |
-
if attn_mask.dim() == 2:
|
| 302 |
-
correct_2d_size = (tgt_len, src_len)
|
| 303 |
-
if attn_mask.shape != correct_2d_size:
|
| 304 |
-
raise RuntimeError(
|
| 305 |
-
f"The shape of the 2D attn_mask is {attn_mask.shape}, but should be {correct_2d_size}."
|
| 306 |
-
)
|
| 307 |
-
attn_mask = attn_mask.unsqueeze(0)
|
| 308 |
-
elif attn_mask.dim() == 3:
|
| 309 |
-
correct_3d_size = (bsz * num_heads, tgt_len, src_len)
|
| 310 |
-
if attn_mask.shape != correct_3d_size:
|
| 311 |
-
raise RuntimeError(
|
| 312 |
-
f"The shape of the 3D attn_mask is {attn_mask.shape}, but should be {correct_3d_size}."
|
| 313 |
-
)
|
| 314 |
-
else:
|
| 315 |
-
raise RuntimeError(
|
| 316 |
-
f"attn_mask's dimension {attn_mask.dim()} is not supported"
|
| 317 |
-
)
|
| 318 |
-
|
| 319 |
-
# add bias along batch dimension (currently second)
|
| 320 |
-
if bias_k is not None and bias_v is not None:
|
| 321 |
-
assert static_k is None, "bias cannot be added to static key."
|
| 322 |
-
assert static_v is None, "bias cannot be added to static value."
|
| 323 |
-
k = torch.cat([k, bias_k.repeat(1, bsz, 1)])
|
| 324 |
-
v = torch.cat([v, bias_v.repeat(1, bsz, 1)])
|
| 325 |
-
if attn_mask is not None:
|
| 326 |
-
attn_mask = pad(attn_mask, (0, 1))
|
| 327 |
-
if key_padding_mask is not None:
|
| 328 |
-
key_padding_mask = pad(key_padding_mask, (0, 1))
|
| 329 |
-
else:
|
| 330 |
-
assert bias_k is None
|
| 331 |
-
assert bias_v is None
|
| 332 |
-
|
| 333 |
-
#
|
| 334 |
-
# reshape q, k, v for multihead attention and make em batch first
|
| 335 |
-
#
|
| 336 |
-
q = q.view(tgt_len, bsz * num_heads, head_dim).transpose(0, 1)
|
| 337 |
-
if static_k is None:
|
| 338 |
-
k = k.view(k.shape[0], bsz * num_heads, head_dim).transpose(0, 1)
|
| 339 |
-
else:
|
| 340 |
-
# TODO finish disentangling control flow so we don't do in-projections when statics are passed
|
| 341 |
-
assert (
|
| 342 |
-
static_k.size(0) == bsz * num_heads
|
| 343 |
-
), f"expecting static_k.size(0) of {bsz * num_heads}, but got {static_k.size(0)}"
|
| 344 |
-
assert (
|
| 345 |
-
static_k.size(2) == head_dim
|
| 346 |
-
), f"expecting static_k.size(2) of {head_dim}, but got {static_k.size(2)}"
|
| 347 |
-
k = static_k
|
| 348 |
-
if static_v is None:
|
| 349 |
-
v = v.view(v.shape[0], bsz * num_heads, head_dim).transpose(0, 1)
|
| 350 |
-
else:
|
| 351 |
-
# TODO finish disentangling control flow so we don't do in-projections when statics are passed
|
| 352 |
-
assert (
|
| 353 |
-
static_v.size(0) == bsz * num_heads
|
| 354 |
-
), f"expecting static_v.size(0) of {bsz * num_heads}, but got {static_v.size(0)}"
|
| 355 |
-
assert (
|
| 356 |
-
static_v.size(2) == head_dim
|
| 357 |
-
), f"expecting static_v.size(2) of {head_dim}, but got {static_v.size(2)}"
|
| 358 |
-
v = static_v
|
| 359 |
-
|
| 360 |
-
# add zero attention along batch dimension (now first)
|
| 361 |
-
if add_zero_attn:
|
| 362 |
-
zero_attn_shape = (bsz * num_heads, 1, head_dim)
|
| 363 |
-
k = torch.cat(
|
| 364 |
-
[k, torch.zeros(zero_attn_shape, dtype=k.dtype, device=k.device)], dim=1
|
| 365 |
-
)
|
| 366 |
-
v = torch.cat(
|
| 367 |
-
[v, torch.zeros(zero_attn_shape, dtype=v.dtype, device=v.device)], dim=1
|
| 368 |
-
)
|
| 369 |
-
if attn_mask is not None:
|
| 370 |
-
attn_mask = pad(attn_mask, (0, 1))
|
| 371 |
-
if key_padding_mask is not None:
|
| 372 |
-
key_padding_mask = pad(key_padding_mask, (0, 1))
|
| 373 |
-
|
| 374 |
-
# update source sequence length after adjustments
|
| 375 |
-
src_len = k.size(1)
|
| 376 |
-
|
| 377 |
-
# merge key padding and attention masks
|
| 378 |
-
if key_padding_mask is not None:
|
| 379 |
-
assert key_padding_mask.shape == (
|
| 380 |
-
bsz,
|
| 381 |
-
src_len,
|
| 382 |
-
), f"expecting key_padding_mask shape of {(bsz, src_len)}, but got {key_padding_mask.shape}"
|
| 383 |
-
key_padding_mask = (
|
| 384 |
-
key_padding_mask.view(bsz, 1, 1, src_len)
|
| 385 |
-
.expand(-1, num_heads, -1, -1)
|
| 386 |
-
.reshape(bsz * num_heads, 1, src_len)
|
| 387 |
-
)
|
| 388 |
-
if attn_mask is None:
|
| 389 |
-
attn_mask = key_padding_mask
|
| 390 |
-
else:
|
| 391 |
-
attn_mask = attn_mask + key_padding_mask
|
| 392 |
-
|
| 393 |
-
# adjust dropout probability
|
| 394 |
-
if not training:
|
| 395 |
-
dropout_p = 0.0
|
| 396 |
-
|
| 397 |
-
#
|
| 398 |
-
# (deep breath) calculate attention and out projection
|
| 399 |
-
#
|
| 400 |
-
|
| 401 |
-
if need_weights:
|
| 402 |
-
B, Nt, E = q.shape
|
| 403 |
-
q_scaled = q / math.sqrt(E)
|
| 404 |
-
|
| 405 |
-
assert not (
|
| 406 |
-
is_causal and attn_mask is None
|
| 407 |
-
), "FIXME: is_causal not implemented for need_weights"
|
| 408 |
-
|
| 409 |
-
if attn_mask is not None:
|
| 410 |
-
attn_output_weights = torch.baddbmm(
|
| 411 |
-
attn_mask, q_scaled, k.transpose(-2, -1)
|
| 412 |
-
)
|
| 413 |
-
else:
|
| 414 |
-
attn_output_weights = torch.bmm(q_scaled, k.transpose(-2, -1))
|
| 415 |
-
attn_output_weights = softmax(attn_output_weights, dim=-1)
|
| 416 |
-
if dropout_p > 0.0:
|
| 417 |
-
attn_output_weights = dropout(attn_output_weights, p=dropout_p)
|
| 418 |
-
|
| 419 |
-
attn_output = torch.bmm(attn_output_weights, v)
|
| 420 |
-
|
| 421 |
-
attn_output = (
|
| 422 |
-
attn_output.transpose(0, 1).contiguous().view(tgt_len * bsz, embed_dim)
|
| 423 |
-
)
|
| 424 |
-
attn_output = linear(attn_output, out_proj_weight, out_proj_bias)
|
| 425 |
-
attn_output = attn_output.view(tgt_len, bsz, attn_output.size(1))
|
| 426 |
-
|
| 427 |
-
# optionally average attention weights over heads
|
| 428 |
-
attn_output_weights = attn_output_weights.view(bsz, num_heads, tgt_len, src_len)
|
| 429 |
-
if average_attn_weights:
|
| 430 |
-
attn_output_weights = attn_output_weights.mean(dim=1)
|
| 431 |
-
|
| 432 |
-
if not is_batched:
|
| 433 |
-
# squeeze the output if input was unbatched
|
| 434 |
-
attn_output = attn_output.squeeze(1)
|
| 435 |
-
attn_output_weights = attn_output_weights.squeeze(0)
|
| 436 |
-
return attn_output, attn_output_weights
|
| 437 |
-
else:
|
| 438 |
-
# attn_mask can be either (L,S) or (N*num_heads, L, S)
|
| 439 |
-
# if attn_mask's shape is (1, L, S) we need to unsqueeze to (1, 1, L, S)
|
| 440 |
-
# in order to match the input for SDPA of (N, num_heads, L, S)
|
| 441 |
-
if attn_mask is not None:
|
| 442 |
-
if attn_mask.size(0) == 1 and attn_mask.dim() == 3:
|
| 443 |
-
attn_mask = attn_mask.unsqueeze(0)
|
| 444 |
-
else:
|
| 445 |
-
attn_mask = attn_mask.view(bsz, num_heads, -1, src_len)
|
| 446 |
-
|
| 447 |
-
q = q.view(bsz, num_heads, tgt_len, head_dim)
|
| 448 |
-
k = k.view(bsz, num_heads, src_len, head_dim)
|
| 449 |
-
v = v.view(bsz, num_heads, src_len, head_dim)
|
| 450 |
-
|
| 451 |
-
# with torch.backends.cuda.sdp_kernel(enable_flash=True, enable_math=True, enable_mem_efficient=True):
|
| 452 |
-
attn_output = scaled_dot_product_attention(
|
| 453 |
-
q, k, v, attn_mask, dropout_p, is_causal
|
| 454 |
-
)
|
| 455 |
-
|
| 456 |
-
attn_output = (
|
| 457 |
-
attn_output.permute(2, 0, 1, 3).contiguous().view(bsz * tgt_len, embed_dim)
|
| 458 |
-
)
|
| 459 |
-
|
| 460 |
-
attn_output = linear(attn_output, out_proj_weight, out_proj_bias)
|
| 461 |
-
attn_output = attn_output.view(tgt_len, bsz, attn_output.size(1))
|
| 462 |
-
if not is_batched:
|
| 463 |
-
# squeeze the output if input was unbatched
|
| 464 |
-
attn_output = attn_output.squeeze(1)
|
| 465 |
-
return attn_output, None
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
AR/modules/patched_mha_with_cache_onnx.py
DELETED
|
@@ -1,92 +0,0 @@
|
|
| 1 |
-
from torch.nn.functional import *
|
| 2 |
-
from torch.nn.functional import (
|
| 3 |
-
_mha_shape_check,
|
| 4 |
-
_canonical_mask,
|
| 5 |
-
_none_or_dtype,
|
| 6 |
-
_in_projection_packed,
|
| 7 |
-
)
|
| 8 |
-
|
| 9 |
-
def multi_head_attention_forward_patched(
|
| 10 |
-
query,
|
| 11 |
-
key,
|
| 12 |
-
value,
|
| 13 |
-
embed_dim_to_check: int,
|
| 14 |
-
num_heads: int,
|
| 15 |
-
in_proj_weight,
|
| 16 |
-
in_proj_bias: Optional[Tensor],
|
| 17 |
-
bias_k: Optional[Tensor],
|
| 18 |
-
bias_v: Optional[Tensor],
|
| 19 |
-
add_zero_attn: bool,
|
| 20 |
-
dropout_p: float,
|
| 21 |
-
out_proj_weight: Tensor,
|
| 22 |
-
out_proj_bias: Optional[Tensor],
|
| 23 |
-
training: bool = True,
|
| 24 |
-
key_padding_mask: Optional[Tensor] = None,
|
| 25 |
-
need_weights: bool = True,
|
| 26 |
-
attn_mask: Optional[Tensor] = None,
|
| 27 |
-
use_separate_proj_weight: bool = False,
|
| 28 |
-
q_proj_weight: Optional[Tensor] = None,
|
| 29 |
-
k_proj_weight: Optional[Tensor] = None,
|
| 30 |
-
v_proj_weight: Optional[Tensor] = None,
|
| 31 |
-
static_k: Optional[Tensor] = None,
|
| 32 |
-
static_v: Optional[Tensor] = None,
|
| 33 |
-
average_attn_weights: bool = True,
|
| 34 |
-
is_causal: bool = False,
|
| 35 |
-
cache=None,
|
| 36 |
-
) -> Tuple[Tensor, Optional[Tensor]]:
|
| 37 |
-
|
| 38 |
-
# set up shape vars
|
| 39 |
-
_, _, embed_dim = query.shape
|
| 40 |
-
attn_mask = _canonical_mask(
|
| 41 |
-
mask=attn_mask,
|
| 42 |
-
mask_name="attn_mask",
|
| 43 |
-
other_type=None,
|
| 44 |
-
other_name="",
|
| 45 |
-
target_type=query.dtype,
|
| 46 |
-
check_other=False,
|
| 47 |
-
)
|
| 48 |
-
head_dim = embed_dim // num_heads
|
| 49 |
-
|
| 50 |
-
proj_qkv = linear(query, in_proj_weight, in_proj_bias)
|
| 51 |
-
proj_qkv = proj_qkv.unflatten(-1, (3, query.size(-1))).unsqueeze(0).transpose(0, -2).squeeze(-2).contiguous()
|
| 52 |
-
q, k, v = proj_qkv[0], proj_qkv[1], proj_qkv[2]
|
| 53 |
-
|
| 54 |
-
if cache["first_infer"] == 1:
|
| 55 |
-
cache["k"][cache["stage"]] = k
|
| 56 |
-
cache["v"][cache["stage"]] = v
|
| 57 |
-
else:
|
| 58 |
-
cache["k"][cache["stage"]] = torch.cat([cache["k"][cache["stage"]][:-1], k], 0)
|
| 59 |
-
cache["v"][cache["stage"]] = torch.cat([cache["v"][cache["stage"]][:-1], v], 0)
|
| 60 |
-
k = cache["k"][cache["stage"]]
|
| 61 |
-
v = cache["v"][cache["stage"]]
|
| 62 |
-
cache["stage"] = (cache["stage"] + 1) % cache["all_stage"]
|
| 63 |
-
|
| 64 |
-
attn_mask = _canonical_mask(
|
| 65 |
-
mask=attn_mask,
|
| 66 |
-
mask_name="attn_mask",
|
| 67 |
-
other_type=None,
|
| 68 |
-
other_name="",
|
| 69 |
-
target_type=q.dtype,
|
| 70 |
-
check_other=False,
|
| 71 |
-
)
|
| 72 |
-
attn_mask = attn_mask.unsqueeze(0)
|
| 73 |
-
|
| 74 |
-
q = q.view(-1, num_heads, head_dim).transpose(0, 1)
|
| 75 |
-
k = k.view(-1, num_heads, head_dim).transpose(0, 1)
|
| 76 |
-
v = v.view(-1, num_heads, head_dim).transpose(0, 1)
|
| 77 |
-
|
| 78 |
-
dropout_p = 0.0
|
| 79 |
-
attn_mask = attn_mask.unsqueeze(0)
|
| 80 |
-
q = q.view(num_heads, -1, head_dim).unsqueeze(0)
|
| 81 |
-
k = k.view(num_heads, -1, head_dim).unsqueeze(0)
|
| 82 |
-
v = v.view(num_heads, -1, head_dim).unsqueeze(0)
|
| 83 |
-
attn_output = scaled_dot_product_attention(
|
| 84 |
-
q, k, v, attn_mask, dropout_p, is_causal
|
| 85 |
-
)
|
| 86 |
-
attn_output = (
|
| 87 |
-
attn_output.permute(2, 0, 1, 3).contiguous().view(-1, embed_dim)
|
| 88 |
-
)
|
| 89 |
-
attn_output = linear(attn_output, out_proj_weight, out_proj_bias)
|
| 90 |
-
attn_output = attn_output.view(-1, 1, attn_output.size(1))
|
| 91 |
-
|
| 92 |
-
return attn_output
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
AR/modules/scaling.py
DELETED
|
@@ -1,335 +0,0 @@
|
|
| 1 |
-
# Copyright 2022 Xiaomi Corp. (authors: Daniel Povey)
|
| 2 |
-
#
|
| 3 |
-
# See ../../../../LICENSE for clarification regarding multiple authors
|
| 4 |
-
#
|
| 5 |
-
# Licensed under the Apache License, Version 2.0 (the "License");
|
| 6 |
-
# you may not use this file except in compliance with the License.
|
| 7 |
-
# You may obtain a copy of the License at
|
| 8 |
-
#
|
| 9 |
-
# http://www.apache.org/licenses/LICENSE-2.0
|
| 10 |
-
#
|
| 11 |
-
# Unless required by applicable law or agreed to in writing, software
|
| 12 |
-
# distributed under the License is distributed on an "AS IS" BASIS,
|
| 13 |
-
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 14 |
-
# See the License for the specific language governing permissions and
|
| 15 |
-
# limitations under the License.
|
| 16 |
-
import logging
|
| 17 |
-
import math
|
| 18 |
-
import random
|
| 19 |
-
from typing import Optional
|
| 20 |
-
from typing import Tuple
|
| 21 |
-
from typing import Union
|
| 22 |
-
|
| 23 |
-
import torch
|
| 24 |
-
import torch.nn as nn
|
| 25 |
-
from torch import Tensor
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
class DoubleSwishFunction(torch.autograd.Function):
|
| 29 |
-
"""
|
| 30 |
-
double_swish(x) = x * torch.sigmoid(x-1)
|
| 31 |
-
This is a definition, originally motivated by its close numerical
|
| 32 |
-
similarity to swish(swish(x)), where swish(x) = x * sigmoid(x).
|
| 33 |
-
|
| 34 |
-
Memory-efficient derivative computation:
|
| 35 |
-
double_swish(x) = x * s, where s(x) = torch.sigmoid(x-1)
|
| 36 |
-
double_swish'(x) = d/dx double_swish(x) = x * s'(x) + x' * s(x) = x * s'(x) + s(x).
|
| 37 |
-
Now, s'(x) = s(x) * (1-s(x)).
|
| 38 |
-
double_swish'(x) = x * s'(x) + s(x).
|
| 39 |
-
= x * s(x) * (1-s(x)) + s(x).
|
| 40 |
-
= double_swish(x) * (1-s(x)) + s(x)
|
| 41 |
-
... so we just need to remember s(x) but not x itself.
|
| 42 |
-
"""
|
| 43 |
-
|
| 44 |
-
@staticmethod
|
| 45 |
-
def forward(ctx, x: Tensor) -> Tensor:
|
| 46 |
-
requires_grad = x.requires_grad
|
| 47 |
-
x_dtype = x.dtype
|
| 48 |
-
if x.dtype == torch.float16:
|
| 49 |
-
x = x.to(torch.float32)
|
| 50 |
-
|
| 51 |
-
s = torch.sigmoid(x - 1.0)
|
| 52 |
-
y = x * s
|
| 53 |
-
|
| 54 |
-
if requires_grad:
|
| 55 |
-
deriv = y * (1 - s) + s
|
| 56 |
-
# notes on derivative of x * sigmoid(x - 1):
|
| 57 |
-
# https://www.wolframalpha.com/input?i=d%2Fdx+%28x+*+sigmoid%28x-1%29%29
|
| 58 |
-
# min \simeq -0.043638. Take floor as -0.043637 so it's a lower bund
|
| 59 |
-
# max \simeq 1.1990. Take ceil to be 1.2 so it's an upper bound.
|
| 60 |
-
# the combination of "+ torch.rand_like(deriv)" and casting to torch.uint8 (which
|
| 61 |
-
# floors), should be expectation-preserving.
|
| 62 |
-
floor = -0.043637
|
| 63 |
-
ceil = 1.2
|
| 64 |
-
d_scaled = (deriv - floor) * (255.0 / (ceil - floor)) + torch.rand_like(
|
| 65 |
-
deriv
|
| 66 |
-
)
|
| 67 |
-
if __name__ == "__main__":
|
| 68 |
-
# for self-testing only.
|
| 69 |
-
assert d_scaled.min() >= 0.0
|
| 70 |
-
assert d_scaled.max() < 256.0
|
| 71 |
-
d_int = d_scaled.to(torch.uint8)
|
| 72 |
-
ctx.save_for_backward(d_int)
|
| 73 |
-
if x.dtype == torch.float16 or torch.is_autocast_enabled():
|
| 74 |
-
y = y.to(torch.float16)
|
| 75 |
-
return y
|
| 76 |
-
|
| 77 |
-
@staticmethod
|
| 78 |
-
def backward(ctx, y_grad: Tensor) -> Tensor:
|
| 79 |
-
(d,) = ctx.saved_tensors
|
| 80 |
-
# the same constants as used in forward pass.
|
| 81 |
-
floor = -0.043637
|
| 82 |
-
ceil = 1.2
|
| 83 |
-
d = d * ((ceil - floor) / 255.0) + floor
|
| 84 |
-
return y_grad * d
|
| 85 |
-
|
| 86 |
-
|
| 87 |
-
class DoubleSwish(torch.nn.Module):
|
| 88 |
-
def forward(self, x: Tensor) -> Tensor:
|
| 89 |
-
"""Return double-swish activation function which is an approximation to Swish(Swish(x)),
|
| 90 |
-
that we approximate closely with x * sigmoid(x-1).
|
| 91 |
-
"""
|
| 92 |
-
if torch.jit.is_scripting() or torch.jit.is_tracing():
|
| 93 |
-
return x * torch.sigmoid(x - 1.0)
|
| 94 |
-
return DoubleSwishFunction.apply(x)
|
| 95 |
-
|
| 96 |
-
|
| 97 |
-
class ActivationBalancerFunction(torch.autograd.Function):
|
| 98 |
-
@staticmethod
|
| 99 |
-
def forward(
|
| 100 |
-
ctx,
|
| 101 |
-
x: Tensor,
|
| 102 |
-
scale_factor: Tensor,
|
| 103 |
-
sign_factor: Optional[Tensor],
|
| 104 |
-
channel_dim: int,
|
| 105 |
-
) -> Tensor:
|
| 106 |
-
if channel_dim < 0:
|
| 107 |
-
channel_dim += x.ndim
|
| 108 |
-
ctx.channel_dim = channel_dim
|
| 109 |
-
xgt0 = x > 0
|
| 110 |
-
if sign_factor is None:
|
| 111 |
-
ctx.save_for_backward(xgt0, scale_factor)
|
| 112 |
-
else:
|
| 113 |
-
ctx.save_for_backward(xgt0, scale_factor, sign_factor)
|
| 114 |
-
return x
|
| 115 |
-
|
| 116 |
-
@staticmethod
|
| 117 |
-
def backward(ctx, x_grad: Tensor) -> Tuple[Tensor, None, None, None]:
|
| 118 |
-
if len(ctx.saved_tensors) == 3:
|
| 119 |
-
xgt0, scale_factor, sign_factor = ctx.saved_tensors
|
| 120 |
-
for _ in range(ctx.channel_dim, x_grad.ndim - 1):
|
| 121 |
-
scale_factor = scale_factor.unsqueeze(-1)
|
| 122 |
-
sign_factor = sign_factor.unsqueeze(-1)
|
| 123 |
-
factor = sign_factor + scale_factor * (xgt0.to(x_grad.dtype) - 0.5)
|
| 124 |
-
else:
|
| 125 |
-
xgt0, scale_factor = ctx.saved_tensors
|
| 126 |
-
for _ in range(ctx.channel_dim, x_grad.ndim - 1):
|
| 127 |
-
scale_factor = scale_factor.unsqueeze(-1)
|
| 128 |
-
factor = scale_factor * (xgt0.to(x_grad.dtype) - 0.5)
|
| 129 |
-
neg_delta_grad = x_grad.abs() * factor
|
| 130 |
-
return (
|
| 131 |
-
x_grad - neg_delta_grad,
|
| 132 |
-
None,
|
| 133 |
-
None,
|
| 134 |
-
None,
|
| 135 |
-
)
|
| 136 |
-
|
| 137 |
-
|
| 138 |
-
def _compute_scale_factor(
|
| 139 |
-
x: Tensor,
|
| 140 |
-
channel_dim: int,
|
| 141 |
-
min_abs: float,
|
| 142 |
-
max_abs: float,
|
| 143 |
-
gain_factor: float,
|
| 144 |
-
max_factor: float,
|
| 145 |
-
) -> Tensor:
|
| 146 |
-
if channel_dim < 0:
|
| 147 |
-
channel_dim += x.ndim
|
| 148 |
-
sum_dims = [d for d in range(x.ndim) if d != channel_dim]
|
| 149 |
-
x_abs_mean = torch.mean(x.abs(), dim=sum_dims).to(torch.float32)
|
| 150 |
-
|
| 151 |
-
if min_abs == 0.0:
|
| 152 |
-
below_threshold = 0.0
|
| 153 |
-
else:
|
| 154 |
-
# below_threshold is 0 if x_abs_mean > min_abs, can be at most max_factor if
|
| 155 |
-
# x_abs)_mean , min_abs.
|
| 156 |
-
below_threshold = ((min_abs - x_abs_mean) * (gain_factor / min_abs)).clamp(
|
| 157 |
-
min=0, max=max_factor
|
| 158 |
-
)
|
| 159 |
-
|
| 160 |
-
above_threshold = ((x_abs_mean - max_abs) * (gain_factor / max_abs)).clamp(
|
| 161 |
-
min=0, max=max_factor
|
| 162 |
-
)
|
| 163 |
-
|
| 164 |
-
return below_threshold - above_threshold
|
| 165 |
-
|
| 166 |
-
|
| 167 |
-
def _compute_sign_factor(
|
| 168 |
-
x: Tensor,
|
| 169 |
-
channel_dim: int,
|
| 170 |
-
min_positive: float,
|
| 171 |
-
max_positive: float,
|
| 172 |
-
gain_factor: float,
|
| 173 |
-
max_factor: float,
|
| 174 |
-
) -> Tensor:
|
| 175 |
-
if channel_dim < 0:
|
| 176 |
-
channel_dim += x.ndim
|
| 177 |
-
sum_dims = [d for d in range(x.ndim) if d != channel_dim]
|
| 178 |
-
proportion_positive = torch.mean((x > 0).to(torch.float32), dim=sum_dims)
|
| 179 |
-
if min_positive == 0.0:
|
| 180 |
-
factor1 = 0.0
|
| 181 |
-
else:
|
| 182 |
-
# 0 if proportion_positive >= min_positive, else can be
|
| 183 |
-
# as large as max_factor.
|
| 184 |
-
factor1 = (
|
| 185 |
-
(min_positive - proportion_positive) * (gain_factor / min_positive)
|
| 186 |
-
).clamp_(min=0, max=max_factor)
|
| 187 |
-
|
| 188 |
-
if max_positive == 1.0:
|
| 189 |
-
factor2 = 0.0
|
| 190 |
-
else:
|
| 191 |
-
# 0 if self.proportion_positive <= max_positive, else can be
|
| 192 |
-
# as large as -max_factor.
|
| 193 |
-
factor2 = (
|
| 194 |
-
(proportion_positive - max_positive) * (gain_factor / (1.0 - max_positive))
|
| 195 |
-
).clamp_(min=0, max=max_factor)
|
| 196 |
-
sign_factor = factor1 - factor2
|
| 197 |
-
# require min_positive != 0 or max_positive != 1:
|
| 198 |
-
assert not isinstance(sign_factor, float)
|
| 199 |
-
return sign_factor
|
| 200 |
-
|
| 201 |
-
|
| 202 |
-
class ActivationBalancer(torch.nn.Module):
|
| 203 |
-
"""
|
| 204 |
-
Modifies the backpropped derivatives of a function to try to encourage, for
|
| 205 |
-
each channel, that it is positive at least a proportion `threshold` of the
|
| 206 |
-
time. It does this by multiplying negative derivative values by up to
|
| 207 |
-
(1+max_factor), and positive derivative values by up to (1-max_factor),
|
| 208 |
-
interpolated from 1 at the threshold to those extremal values when none
|
| 209 |
-
of the inputs are positive.
|
| 210 |
-
|
| 211 |
-
Args:
|
| 212 |
-
num_channels: the number of channels
|
| 213 |
-
channel_dim: the dimension/axis corresponding to the channel, e.g.
|
| 214 |
-
-1, 0, 1, 2; will be interpreted as an offset from x.ndim if negative.
|
| 215 |
-
min_positive: the minimum, per channel, of the proportion of the time
|
| 216 |
-
that (x > 0), below which we start to modify the derivatives.
|
| 217 |
-
max_positive: the maximum, per channel, of the proportion of the time
|
| 218 |
-
that (x > 0), above which we start to modify the derivatives.
|
| 219 |
-
max_factor: the maximum factor by which we modify the derivatives for
|
| 220 |
-
either the sign constraint or the magnitude constraint;
|
| 221 |
-
e.g. with max_factor=0.02, the the derivatives would be multiplied by
|
| 222 |
-
values in the range [0.98..1.02].
|
| 223 |
-
sign_gain_factor: determines the 'gain' with which we increase the
|
| 224 |
-
change in gradient once the constraints on min_positive and max_positive
|
| 225 |
-
are violated.
|
| 226 |
-
scale_gain_factor: determines the 'gain' with which we increase the
|
| 227 |
-
change in gradient once the constraints on min_abs and max_abs
|
| 228 |
-
are violated.
|
| 229 |
-
min_abs: the minimum average-absolute-value difference from the mean
|
| 230 |
-
value per channel, which we allow, before we start to modify
|
| 231 |
-
the derivatives to prevent this.
|
| 232 |
-
max_abs: the maximum average-absolute-value difference from the mean
|
| 233 |
-
value per channel, which we allow, before we start to modify
|
| 234 |
-
the derivatives to prevent this.
|
| 235 |
-
min_prob: determines the minimum probability with which we modify the
|
| 236 |
-
gradients for the {min,max}_positive and {min,max}_abs constraints,
|
| 237 |
-
on each forward(). This is done randomly to prevent all layers
|
| 238 |
-
from doing it at the same time. Early in training we may use
|
| 239 |
-
higher probabilities than this; it will decay to this value.
|
| 240 |
-
"""
|
| 241 |
-
|
| 242 |
-
def __init__(
|
| 243 |
-
self,
|
| 244 |
-
num_channels: int,
|
| 245 |
-
channel_dim: int,
|
| 246 |
-
min_positive: float = 0.05,
|
| 247 |
-
max_positive: float = 0.95,
|
| 248 |
-
max_factor: float = 0.04,
|
| 249 |
-
sign_gain_factor: float = 0.01,
|
| 250 |
-
scale_gain_factor: float = 0.02,
|
| 251 |
-
min_abs: float = 0.2,
|
| 252 |
-
max_abs: float = 100.0,
|
| 253 |
-
min_prob: float = 0.1,
|
| 254 |
-
):
|
| 255 |
-
super(ActivationBalancer, self).__init__()
|
| 256 |
-
self.num_channels = num_channels
|
| 257 |
-
self.channel_dim = channel_dim
|
| 258 |
-
self.min_positive = min_positive
|
| 259 |
-
self.max_positive = max_positive
|
| 260 |
-
self.max_factor = max_factor
|
| 261 |
-
self.min_abs = min_abs
|
| 262 |
-
self.max_abs = max_abs
|
| 263 |
-
self.min_prob = min_prob
|
| 264 |
-
self.sign_gain_factor = sign_gain_factor
|
| 265 |
-
self.scale_gain_factor = scale_gain_factor
|
| 266 |
-
|
| 267 |
-
# count measures how many times the forward() function has been called.
|
| 268 |
-
# We occasionally sync this to a tensor called `count`, that exists to
|
| 269 |
-
# make sure it is synced to disk when we load and save the model.
|
| 270 |
-
self.cpu_count = 0
|
| 271 |
-
self.register_buffer("count", torch.tensor(0, dtype=torch.int64))
|
| 272 |
-
|
| 273 |
-
def forward(self, x: Tensor) -> Tensor:
|
| 274 |
-
if torch.jit.is_scripting() or not x.requires_grad or torch.jit.is_tracing():
|
| 275 |
-
return _no_op(x)
|
| 276 |
-
|
| 277 |
-
count = self.cpu_count
|
| 278 |
-
self.cpu_count += 1
|
| 279 |
-
|
| 280 |
-
if random.random() < 0.01:
|
| 281 |
-
# Occasionally sync self.cpu_count with self.count.
|
| 282 |
-
# count affects the decay of 'prob'. don't do this on every iter,
|
| 283 |
-
# because syncing with the GPU is slow.
|
| 284 |
-
self.cpu_count = max(self.cpu_count, self.count.item())
|
| 285 |
-
self.count.fill_(self.cpu_count)
|
| 286 |
-
|
| 287 |
-
# the prob of doing some work exponentially decreases from 0.5 till it hits
|
| 288 |
-
# a floor at min_prob (==0.1, by default)
|
| 289 |
-
prob = max(self.min_prob, 0.5 ** (1 + (count / 4000.0)))
|
| 290 |
-
|
| 291 |
-
if random.random() < prob:
|
| 292 |
-
sign_gain_factor = 0.5
|
| 293 |
-
if self.min_positive != 0.0 or self.max_positive != 1.0:
|
| 294 |
-
sign_factor = _compute_sign_factor(
|
| 295 |
-
x,
|
| 296 |
-
self.channel_dim,
|
| 297 |
-
self.min_positive,
|
| 298 |
-
self.max_positive,
|
| 299 |
-
gain_factor=self.sign_gain_factor / prob,
|
| 300 |
-
max_factor=self.max_factor,
|
| 301 |
-
)
|
| 302 |
-
else:
|
| 303 |
-
sign_factor = None
|
| 304 |
-
|
| 305 |
-
scale_factor = _compute_scale_factor(
|
| 306 |
-
x.detach(),
|
| 307 |
-
self.channel_dim,
|
| 308 |
-
min_abs=self.min_abs,
|
| 309 |
-
max_abs=self.max_abs,
|
| 310 |
-
gain_factor=self.scale_gain_factor / prob,
|
| 311 |
-
max_factor=self.max_factor,
|
| 312 |
-
)
|
| 313 |
-
return ActivationBalancerFunction.apply(
|
| 314 |
-
x,
|
| 315 |
-
scale_factor,
|
| 316 |
-
sign_factor,
|
| 317 |
-
self.channel_dim,
|
| 318 |
-
)
|
| 319 |
-
else:
|
| 320 |
-
return _no_op(x)
|
| 321 |
-
|
| 322 |
-
|
| 323 |
-
def BalancedDoubleSwish(
|
| 324 |
-
d_model, channel_dim=-1, max_abs=10.0, min_prob=0.25
|
| 325 |
-
) -> nn.Sequential:
|
| 326 |
-
"""
|
| 327 |
-
ActivationBalancer -> DoubleSwish
|
| 328 |
-
"""
|
| 329 |
-
balancer = ActivationBalancer(
|
| 330 |
-
d_model, channel_dim=channel_dim, max_abs=max_abs, min_prob=min_prob
|
| 331 |
-
)
|
| 332 |
-
return nn.Sequential(
|
| 333 |
-
balancer,
|
| 334 |
-
DoubleSwish(),
|
| 335 |
-
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
AR/modules/transformer.py
DELETED
|
@@ -1,378 +0,0 @@
|
|
| 1 |
-
# modified from https://github.com/lifeiteng/vall-e/blob/main/valle/modules/transformer.py
|
| 2 |
-
import copy
|
| 3 |
-
import numbers
|
| 4 |
-
from functools import partial
|
| 5 |
-
from typing import Any
|
| 6 |
-
from typing import Callable
|
| 7 |
-
from typing import List
|
| 8 |
-
from typing import Optional
|
| 9 |
-
from typing import Tuple
|
| 10 |
-
from typing import Union
|
| 11 |
-
|
| 12 |
-
import torch
|
| 13 |
-
from AR.modules.activation import MultiheadAttention
|
| 14 |
-
from AR.modules.scaling import BalancedDoubleSwish
|
| 15 |
-
from torch import nn
|
| 16 |
-
from torch import Tensor
|
| 17 |
-
from torch.nn import functional as F
|
| 18 |
-
|
| 19 |
-
_shape_t = Union[int, List[int], torch.Size]
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
class LayerNorm(nn.Module):
|
| 23 |
-
__constants__ = ["normalized_shape", "eps", "elementwise_affine"]
|
| 24 |
-
normalized_shape: Tuple[int, ...]
|
| 25 |
-
eps: float
|
| 26 |
-
elementwise_affine: bool
|
| 27 |
-
|
| 28 |
-
def __init__(
|
| 29 |
-
self,
|
| 30 |
-
normalized_shape: _shape_t,
|
| 31 |
-
eps: float = 1e-5,
|
| 32 |
-
elementwise_affine: bool = True,
|
| 33 |
-
device=None,
|
| 34 |
-
dtype=None,
|
| 35 |
-
) -> None:
|
| 36 |
-
factory_kwargs = {"device": device, "dtype": dtype}
|
| 37 |
-
super(LayerNorm, self).__init__()
|
| 38 |
-
if isinstance(normalized_shape, numbers.Integral):
|
| 39 |
-
# mypy error: incompatible types in assignment
|
| 40 |
-
normalized_shape = (normalized_shape,) # type: ignore[assignment]
|
| 41 |
-
self.normalized_shape = tuple(normalized_shape) # type: ignore[arg-type]
|
| 42 |
-
self.eps = eps
|
| 43 |
-
self.elementwise_affine = elementwise_affine
|
| 44 |
-
if self.elementwise_affine:
|
| 45 |
-
self.weight = nn.Parameter(
|
| 46 |
-
torch.empty(self.normalized_shape, **factory_kwargs)
|
| 47 |
-
)
|
| 48 |
-
self.bias = nn.Parameter(
|
| 49 |
-
torch.empty(self.normalized_shape, **factory_kwargs)
|
| 50 |
-
)
|
| 51 |
-
else:
|
| 52 |
-
self.register_parameter("weight", None)
|
| 53 |
-
self.register_parameter("bias", None)
|
| 54 |
-
|
| 55 |
-
self.reset_parameters()
|
| 56 |
-
|
| 57 |
-
def reset_parameters(self) -> None:
|
| 58 |
-
if self.elementwise_affine:
|
| 59 |
-
nn.init.ones_(self.weight)
|
| 60 |
-
nn.init.zeros_(self.bias)
|
| 61 |
-
|
| 62 |
-
def forward(self, input: Tensor, embedding: Any = None) -> Tensor:
|
| 63 |
-
if isinstance(input, tuple):
|
| 64 |
-
input, embedding = input
|
| 65 |
-
return (
|
| 66 |
-
F.layer_norm(
|
| 67 |
-
input,
|
| 68 |
-
self.normalized_shape,
|
| 69 |
-
self.weight,
|
| 70 |
-
self.bias,
|
| 71 |
-
self.eps,
|
| 72 |
-
),
|
| 73 |
-
embedding,
|
| 74 |
-
)
|
| 75 |
-
|
| 76 |
-
assert embedding is None
|
| 77 |
-
return F.layer_norm(
|
| 78 |
-
input, self.normalized_shape, self.weight, self.bias, self.eps
|
| 79 |
-
)
|
| 80 |
-
|
| 81 |
-
def extra_repr(self) -> str:
|
| 82 |
-
return (
|
| 83 |
-
"{normalized_shape}, eps={eps}, "
|
| 84 |
-
"elementwise_affine={elementwise_affine}".format(**self.__dict__)
|
| 85 |
-
)
|
| 86 |
-
|
| 87 |
-
|
| 88 |
-
class IdentityNorm(nn.Module):
|
| 89 |
-
def __init__(
|
| 90 |
-
self,
|
| 91 |
-
d_model: int,
|
| 92 |
-
eps: float = 1e-5,
|
| 93 |
-
device=None,
|
| 94 |
-
dtype=None,
|
| 95 |
-
) -> None:
|
| 96 |
-
super(IdentityNorm, self).__init__()
|
| 97 |
-
|
| 98 |
-
def forward(self, input: Tensor, embedding: Any = None) -> Tensor:
|
| 99 |
-
if isinstance(input, tuple):
|
| 100 |
-
return input
|
| 101 |
-
|
| 102 |
-
assert embedding is None
|
| 103 |
-
return input
|
| 104 |
-
|
| 105 |
-
|
| 106 |
-
class TransformerEncoder(nn.Module):
|
| 107 |
-
r"""TransformerEncoder is a stack of N encoder layers. Users can build the
|
| 108 |
-
BERT(https://arxiv.org/abs/1810.04805) model with corresponding parameters.
|
| 109 |
-
|
| 110 |
-
Args:
|
| 111 |
-
encoder_layer: an instance of the TransformerEncoderLayer() class (required).
|
| 112 |
-
num_layers: the number of sub-encoder-layers in the encoder (required).
|
| 113 |
-
norm: the layer normalization component (optional).
|
| 114 |
-
enable_nested_tensor: if True, input will automatically convert to nested tensor
|
| 115 |
-
(and convert back on output). This will improve the overall performance of
|
| 116 |
-
TransformerEncoder when padding rate is high. Default: ``True`` (enabled).
|
| 117 |
-
|
| 118 |
-
Examples::
|
| 119 |
-
>>> encoder_layer = TransformerEncoderLayer(d_model=512, nhead=8)
|
| 120 |
-
>>> transformer_encoder = TransformerEncoder(encoder_layer, num_layers=6)
|
| 121 |
-
>>> src = torch.rand(10, 32, 512)
|
| 122 |
-
>>> out = transformer_encoder(src)
|
| 123 |
-
"""
|
| 124 |
-
__constants__ = ["norm"]
|
| 125 |
-
|
| 126 |
-
def __init__(self, encoder_layer, num_layers, norm=None):
|
| 127 |
-
super(TransformerEncoder, self).__init__()
|
| 128 |
-
self.layers = _get_clones(encoder_layer, num_layers)
|
| 129 |
-
self.num_layers = num_layers
|
| 130 |
-
self.norm = norm
|
| 131 |
-
|
| 132 |
-
def forward(
|
| 133 |
-
self,
|
| 134 |
-
src: Tensor,
|
| 135 |
-
mask: Optional[Tensor] = None,
|
| 136 |
-
src_key_padding_mask: Optional[Tensor] = None,
|
| 137 |
-
return_layer_states: bool = False,
|
| 138 |
-
cache=None,
|
| 139 |
-
) -> Tensor:
|
| 140 |
-
r"""Pass the input through the encoder layers in turn.
|
| 141 |
-
|
| 142 |
-
Args:
|
| 143 |
-
src: the sequence to the encoder (required).
|
| 144 |
-
mask: the mask for the src sequence (optional).
|
| 145 |
-
src_key_padding_mask: the mask for the src keys per batch (optional).
|
| 146 |
-
return_layer_states: return layers' state (optional).
|
| 147 |
-
|
| 148 |
-
Shape:
|
| 149 |
-
see the docs in Transformer class.
|
| 150 |
-
"""
|
| 151 |
-
if return_layer_states:
|
| 152 |
-
layer_states = [] # layers' output
|
| 153 |
-
output = src
|
| 154 |
-
for mod in self.layers:
|
| 155 |
-
output = mod(
|
| 156 |
-
output,
|
| 157 |
-
src_mask=mask,
|
| 158 |
-
src_key_padding_mask=src_key_padding_mask,
|
| 159 |
-
cache=cache,
|
| 160 |
-
)
|
| 161 |
-
layer_states.append(output[0])
|
| 162 |
-
|
| 163 |
-
if self.norm is not None:
|
| 164 |
-
output = self.norm(output)
|
| 165 |
-
|
| 166 |
-
return layer_states, output
|
| 167 |
-
|
| 168 |
-
output = src
|
| 169 |
-
for mod in self.layers:
|
| 170 |
-
output = mod(
|
| 171 |
-
output,
|
| 172 |
-
src_mask=mask,
|
| 173 |
-
src_key_padding_mask=src_key_padding_mask,
|
| 174 |
-
cache=cache,
|
| 175 |
-
)
|
| 176 |
-
|
| 177 |
-
if self.norm is not None:
|
| 178 |
-
output = self.norm(output)
|
| 179 |
-
|
| 180 |
-
return output
|
| 181 |
-
|
| 182 |
-
|
| 183 |
-
class TransformerEncoderLayer(nn.Module):
|
| 184 |
-
__constants__ = ["batch_first", "norm_first"]
|
| 185 |
-
|
| 186 |
-
def __init__(
|
| 187 |
-
self,
|
| 188 |
-
d_model: int,
|
| 189 |
-
nhead: int,
|
| 190 |
-
dim_feedforward: int = 2048,
|
| 191 |
-
dropout: float = 0.1,
|
| 192 |
-
activation: Union[str, Callable[[Tensor], Tensor]] = F.relu,
|
| 193 |
-
batch_first: bool = False,
|
| 194 |
-
norm_first: bool = False,
|
| 195 |
-
device=None,
|
| 196 |
-
dtype=None,
|
| 197 |
-
linear1_self_attention_cls: nn.Module = nn.Linear,
|
| 198 |
-
linear2_self_attention_cls: nn.Module = nn.Linear,
|
| 199 |
-
linear1_feedforward_cls: nn.Module = nn.Linear,
|
| 200 |
-
linear2_feedforward_cls: nn.Module = nn.Linear,
|
| 201 |
-
layer_norm_cls: nn.Module = LayerNorm,
|
| 202 |
-
layer_norm_eps: float = 1e-5,
|
| 203 |
-
adaptive_layer_norm=False,
|
| 204 |
-
) -> None:
|
| 205 |
-
factory_kwargs = {"device": device, "dtype": dtype}
|
| 206 |
-
super(TransformerEncoderLayer, self).__init__()
|
| 207 |
-
# print(233333333333,d_model,nhead)
|
| 208 |
-
# import os
|
| 209 |
-
# os._exit(2333333)
|
| 210 |
-
self.self_attn = MultiheadAttention(
|
| 211 |
-
d_model, # 512 16
|
| 212 |
-
nhead,
|
| 213 |
-
dropout=dropout,
|
| 214 |
-
batch_first=batch_first,
|
| 215 |
-
linear1_cls=linear1_self_attention_cls,
|
| 216 |
-
linear2_cls=linear2_self_attention_cls,
|
| 217 |
-
**factory_kwargs,
|
| 218 |
-
)
|
| 219 |
-
|
| 220 |
-
# Implementation of Feedforward model
|
| 221 |
-
self.linear1 = linear1_feedforward_cls(
|
| 222 |
-
d_model, dim_feedforward, **factory_kwargs
|
| 223 |
-
)
|
| 224 |
-
self.dropout = nn.Dropout(dropout)
|
| 225 |
-
self.linear2 = linear2_feedforward_cls(
|
| 226 |
-
dim_feedforward, d_model, **factory_kwargs
|
| 227 |
-
)
|
| 228 |
-
|
| 229 |
-
self.norm_first = norm_first
|
| 230 |
-
self.dropout1 = nn.Dropout(dropout)
|
| 231 |
-
self.dropout2 = nn.Dropout(dropout)
|
| 232 |
-
|
| 233 |
-
# Legacy string support for activation function.
|
| 234 |
-
if isinstance(activation, str):
|
| 235 |
-
activation = _get_activation_fn(activation)
|
| 236 |
-
elif isinstance(activation, partial):
|
| 237 |
-
activation = activation(d_model)
|
| 238 |
-
elif activation == BalancedDoubleSwish:
|
| 239 |
-
activation = BalancedDoubleSwish(d_model)
|
| 240 |
-
|
| 241 |
-
# # We can't test self.activation in forward() in TorchScript,
|
| 242 |
-
# # so stash some information about it instead.
|
| 243 |
-
# if activation is F.relu or isinstance(activation, torch.nn.ReLU):
|
| 244 |
-
# self.activation_relu_or_gelu = 1
|
| 245 |
-
# elif activation is F.gelu or isinstance(activation, torch.nn.GELU):
|
| 246 |
-
# self.activation_relu_or_gelu = 2
|
| 247 |
-
# else:
|
| 248 |
-
# self.activation_relu_or_gelu = 0
|
| 249 |
-
self.activation = activation
|
| 250 |
-
|
| 251 |
-
norm1 = layer_norm_cls(d_model, eps=layer_norm_eps, **factory_kwargs)
|
| 252 |
-
if layer_norm_cls == IdentityNorm:
|
| 253 |
-
norm2 = BalancedBasicNorm(d_model, eps=layer_norm_eps, **factory_kwargs)
|
| 254 |
-
else:
|
| 255 |
-
norm2 = layer_norm_cls(d_model, eps=layer_norm_eps, **factory_kwargs)
|
| 256 |
-
|
| 257 |
-
if adaptive_layer_norm:
|
| 258 |
-
self.norm1 = AdaptiveLayerNorm(d_model, norm1)
|
| 259 |
-
self.norm2 = AdaptiveLayerNorm(d_model, norm2)
|
| 260 |
-
else:
|
| 261 |
-
self.norm1 = norm1
|
| 262 |
-
self.norm2 = norm2
|
| 263 |
-
|
| 264 |
-
def __setstate__(self, state):
|
| 265 |
-
super(TransformerEncoderLayer, self).__setstate__(state)
|
| 266 |
-
if not hasattr(self, "activation"):
|
| 267 |
-
self.activation = F.relu
|
| 268 |
-
|
| 269 |
-
def forward(
|
| 270 |
-
self,
|
| 271 |
-
src: Tensor,
|
| 272 |
-
src_mask: Optional[Tensor] = None,
|
| 273 |
-
src_key_padding_mask: Optional[Tensor] = None,
|
| 274 |
-
cache=None,
|
| 275 |
-
) -> Tensor:
|
| 276 |
-
r"""Pass the input through the encoder layer.
|
| 277 |
-
|
| 278 |
-
Args:
|
| 279 |
-
src: the sequence to the encoder layer (required).
|
| 280 |
-
src_mask: the mask for the src sequence (optional).
|
| 281 |
-
src_key_padding_mask: the mask for the src keys per batch (optional).
|
| 282 |
-
|
| 283 |
-
Shape:
|
| 284 |
-
see the docs in Transformer class.
|
| 285 |
-
"""
|
| 286 |
-
x, stage_embedding = src, None
|
| 287 |
-
is_src_tuple = False
|
| 288 |
-
if isinstance(src, tuple):
|
| 289 |
-
x, stage_embedding = src
|
| 290 |
-
is_src_tuple = True
|
| 291 |
-
|
| 292 |
-
if src_key_padding_mask is not None:
|
| 293 |
-
_skpm_dtype = src_key_padding_mask.dtype
|
| 294 |
-
if _skpm_dtype != torch.bool and not torch.is_floating_point(
|
| 295 |
-
src_key_padding_mask
|
| 296 |
-
):
|
| 297 |
-
raise AssertionError(
|
| 298 |
-
"only bool and floating types of key_padding_mask are supported"
|
| 299 |
-
)
|
| 300 |
-
|
| 301 |
-
if self.norm_first:
|
| 302 |
-
x = x + self._sa_block(
|
| 303 |
-
self.norm1(x, stage_embedding),
|
| 304 |
-
src_mask,
|
| 305 |
-
src_key_padding_mask,
|
| 306 |
-
cache=cache,
|
| 307 |
-
)
|
| 308 |
-
x = x + self._ff_block(self.norm2(x, stage_embedding))
|
| 309 |
-
else:
|
| 310 |
-
x = self.norm1(
|
| 311 |
-
x + self._sa_block(x, src_mask, src_key_padding_mask, cache=cache),
|
| 312 |
-
stage_embedding,
|
| 313 |
-
)
|
| 314 |
-
x = self.norm2(x + self._ff_block(x), stage_embedding)
|
| 315 |
-
|
| 316 |
-
if is_src_tuple:
|
| 317 |
-
return (x, stage_embedding)
|
| 318 |
-
return x
|
| 319 |
-
|
| 320 |
-
# self-attention block
|
| 321 |
-
def _sa_block(
|
| 322 |
-
self,
|
| 323 |
-
x: Tensor,
|
| 324 |
-
attn_mask: Optional[Tensor],
|
| 325 |
-
key_padding_mask: Optional[Tensor],
|
| 326 |
-
cache=None,
|
| 327 |
-
) -> Tensor:
|
| 328 |
-
# print(x.shape,attn_mask.shape,key_padding_mask)
|
| 329 |
-
# torch.Size([1, 188, 512]) torch.Size([188, 188]) None
|
| 330 |
-
# import os
|
| 331 |
-
# os._exit(23333)
|
| 332 |
-
x = self.self_attn(
|
| 333 |
-
x,
|
| 334 |
-
x,
|
| 335 |
-
x,
|
| 336 |
-
attn_mask=attn_mask,
|
| 337 |
-
key_padding_mask=key_padding_mask,
|
| 338 |
-
need_weights=False,
|
| 339 |
-
cache=cache,
|
| 340 |
-
)[0]
|
| 341 |
-
return self.dropout1(x)
|
| 342 |
-
|
| 343 |
-
# feed forward block
|
| 344 |
-
def _ff_block(self, x: Tensor) -> Tensor:
|
| 345 |
-
x = self.linear2(self.dropout(self.activation(self.linear1(x))))
|
| 346 |
-
return self.dropout2(x)
|
| 347 |
-
|
| 348 |
-
|
| 349 |
-
class AdaptiveLayerNorm(nn.Module):
|
| 350 |
-
r"""Adaptive Layer Normalization"""
|
| 351 |
-
|
| 352 |
-
def __init__(self, d_model, norm) -> None:
|
| 353 |
-
super(AdaptiveLayerNorm, self).__init__()
|
| 354 |
-
self.project_layer = nn.Linear(d_model, 2 * d_model)
|
| 355 |
-
self.norm = norm
|
| 356 |
-
self.d_model = d_model
|
| 357 |
-
self.eps = self.norm.eps
|
| 358 |
-
|
| 359 |
-
def forward(self, input: Tensor, embedding: Tensor = None) -> Tensor:
|
| 360 |
-
if isinstance(input, tuple):
|
| 361 |
-
input, embedding = input
|
| 362 |
-
weight, bias = torch.split(
|
| 363 |
-
self.project_layer(embedding),
|
| 364 |
-
split_size_or_sections=self.d_model,
|
| 365 |
-
dim=-1,
|
| 366 |
-
)
|
| 367 |
-
return (weight * self.norm(input) + bias, embedding)
|
| 368 |
-
|
| 369 |
-
weight, bias = torch.split(
|
| 370 |
-
self.project_layer(embedding),
|
| 371 |
-
split_size_or_sections=self.d_model,
|
| 372 |
-
dim=-1,
|
| 373 |
-
)
|
| 374 |
-
return weight * self.norm(input) + bias
|
| 375 |
-
|
| 376 |
-
|
| 377 |
-
def _get_clones(module, N):
|
| 378 |
-
return nn.ModuleList([copy.deepcopy(module) for i in range(N)])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
AR/modules/transformer_onnx.py
DELETED
|
@@ -1,292 +0,0 @@
|
|
| 1 |
-
# modified from https://github.com/lifeiteng/vall-e/blob/main/valle/modules/transformer.py
|
| 2 |
-
import copy
|
| 3 |
-
import numbers
|
| 4 |
-
from functools import partial
|
| 5 |
-
from typing import Any
|
| 6 |
-
from typing import Callable
|
| 7 |
-
from typing import List
|
| 8 |
-
from typing import Optional
|
| 9 |
-
from typing import Tuple
|
| 10 |
-
from typing import Union
|
| 11 |
-
|
| 12 |
-
import torch
|
| 13 |
-
from AR.modules.activation_onnx import MultiheadAttention
|
| 14 |
-
from AR.modules.scaling import BalancedDoubleSwish
|
| 15 |
-
from torch import nn
|
| 16 |
-
from torch import Tensor
|
| 17 |
-
from torch.nn import functional as F
|
| 18 |
-
|
| 19 |
-
_shape_t = Union[int, List[int], torch.Size]
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
class LayerNorm(nn.Module):
|
| 23 |
-
__constants__ = ["normalized_shape", "eps", "elementwise_affine"]
|
| 24 |
-
normalized_shape: Tuple[int, ...]
|
| 25 |
-
eps: float
|
| 26 |
-
elementwise_affine: bool
|
| 27 |
-
|
| 28 |
-
def __init__(
|
| 29 |
-
self,
|
| 30 |
-
normalized_shape: _shape_t,
|
| 31 |
-
eps: float = 1e-5,
|
| 32 |
-
elementwise_affine: bool = True,
|
| 33 |
-
device=None,
|
| 34 |
-
dtype=None,
|
| 35 |
-
) -> None:
|
| 36 |
-
factory_kwargs = {"device": device, "dtype": dtype}
|
| 37 |
-
super(LayerNorm, self).__init__()
|
| 38 |
-
if isinstance(normalized_shape, numbers.Integral):
|
| 39 |
-
# mypy error: incompatible types in assignment
|
| 40 |
-
normalized_shape = (normalized_shape,) # type: ignore[assignment]
|
| 41 |
-
self.normalized_shape = tuple(normalized_shape) # type: ignore[arg-type]
|
| 42 |
-
self.eps = eps
|
| 43 |
-
self.elementwise_affine = elementwise_affine
|
| 44 |
-
if self.elementwise_affine:
|
| 45 |
-
self.weight = nn.Parameter(
|
| 46 |
-
torch.empty(self.normalized_shape, **factory_kwargs)
|
| 47 |
-
)
|
| 48 |
-
self.bias = nn.Parameter(
|
| 49 |
-
torch.empty(self.normalized_shape, **factory_kwargs)
|
| 50 |
-
)
|
| 51 |
-
else:
|
| 52 |
-
self.register_parameter("weight", None)
|
| 53 |
-
self.register_parameter("bias", None)
|
| 54 |
-
|
| 55 |
-
self.reset_parameters()
|
| 56 |
-
|
| 57 |
-
def reset_parameters(self) -> None:
|
| 58 |
-
if self.elementwise_affine:
|
| 59 |
-
nn.init.ones_(self.weight)
|
| 60 |
-
nn.init.zeros_(self.bias)
|
| 61 |
-
|
| 62 |
-
def forward(self, input: Tensor, embedding: Any = None) -> Tensor:
|
| 63 |
-
if isinstance(input, tuple):
|
| 64 |
-
input, embedding = input
|
| 65 |
-
return (
|
| 66 |
-
F.layer_norm(
|
| 67 |
-
input,
|
| 68 |
-
self.normalized_shape,
|
| 69 |
-
self.weight,
|
| 70 |
-
self.bias,
|
| 71 |
-
self.eps,
|
| 72 |
-
),
|
| 73 |
-
embedding,
|
| 74 |
-
)
|
| 75 |
-
|
| 76 |
-
assert embedding is None
|
| 77 |
-
return F.layer_norm(
|
| 78 |
-
input, self.normalized_shape, self.weight, self.bias, self.eps
|
| 79 |
-
)
|
| 80 |
-
|
| 81 |
-
def extra_repr(self) -> str:
|
| 82 |
-
return (
|
| 83 |
-
"{normalized_shape}, eps={eps}, "
|
| 84 |
-
"elementwise_affine={elementwise_affine}".format(**self.__dict__)
|
| 85 |
-
)
|
| 86 |
-
|
| 87 |
-
|
| 88 |
-
class IdentityNorm(nn.Module):
|
| 89 |
-
def __init__(
|
| 90 |
-
self,
|
| 91 |
-
d_model: int,
|
| 92 |
-
eps: float = 1e-5,
|
| 93 |
-
device=None,
|
| 94 |
-
dtype=None,
|
| 95 |
-
) -> None:
|
| 96 |
-
super(IdentityNorm, self).__init__()
|
| 97 |
-
|
| 98 |
-
def forward(self, input: Tensor, embedding: Any = None) -> Tensor:
|
| 99 |
-
if isinstance(input, tuple):
|
| 100 |
-
return input
|
| 101 |
-
|
| 102 |
-
assert embedding is None
|
| 103 |
-
return input
|
| 104 |
-
|
| 105 |
-
|
| 106 |
-
class TransformerEncoder(nn.Module):
|
| 107 |
-
r"""TransformerEncoder is a stack of N encoder layers. Users can build the
|
| 108 |
-
BERT(https://arxiv.org/abs/1810.04805) model with corresponding parameters.
|
| 109 |
-
|
| 110 |
-
Args:
|
| 111 |
-
encoder_layer: an instance of the TransformerEncoderLayer() class (required).
|
| 112 |
-
num_layers: the number of sub-encoder-layers in the encoder (required).
|
| 113 |
-
norm: the layer normalization component (optional).
|
| 114 |
-
enable_nested_tensor: if True, input will automatically convert to nested tensor
|
| 115 |
-
(and convert back on output). This will improve the overall performance of
|
| 116 |
-
TransformerEncoder when padding rate is high. Default: ``True`` (enabled).
|
| 117 |
-
|
| 118 |
-
Examples::
|
| 119 |
-
>>> encoder_layer = TransformerEncoderLayer(d_model=512, nhead=8)
|
| 120 |
-
>>> transformer_encoder = TransformerEncoder(encoder_layer, num_layers=6)
|
| 121 |
-
>>> src = torch.rand(10, 32, 512)
|
| 122 |
-
>>> out = transformer_encoder(src)
|
| 123 |
-
"""
|
| 124 |
-
__constants__ = ["norm"]
|
| 125 |
-
|
| 126 |
-
def __init__(self, encoder_layer, num_layers, norm=None):
|
| 127 |
-
super(TransformerEncoder, self).__init__()
|
| 128 |
-
self.layers = _get_clones(encoder_layer, num_layers)
|
| 129 |
-
self.num_layers = num_layers
|
| 130 |
-
self.norm = norm
|
| 131 |
-
|
| 132 |
-
def forward(
|
| 133 |
-
self,
|
| 134 |
-
src: Tensor,
|
| 135 |
-
mask: Optional[Tensor] = None,
|
| 136 |
-
src_key_padding_mask: Optional[Tensor] = None,
|
| 137 |
-
return_layer_states: bool = False,
|
| 138 |
-
cache=None,
|
| 139 |
-
) -> Tensor:
|
| 140 |
-
output = src
|
| 141 |
-
for mod in self.layers:
|
| 142 |
-
output = mod(
|
| 143 |
-
output,
|
| 144 |
-
src_mask=mask,
|
| 145 |
-
src_key_padding_mask=src_key_padding_mask,
|
| 146 |
-
cache=cache,
|
| 147 |
-
)
|
| 148 |
-
|
| 149 |
-
if self.norm is not None:
|
| 150 |
-
output = self.norm(output)
|
| 151 |
-
|
| 152 |
-
return output
|
| 153 |
-
|
| 154 |
-
|
| 155 |
-
class TransformerEncoderLayer(nn.Module):
|
| 156 |
-
__constants__ = ["batch_first", "norm_first"]
|
| 157 |
-
def __init__(
|
| 158 |
-
self,
|
| 159 |
-
d_model: int,
|
| 160 |
-
nhead: int,
|
| 161 |
-
dim_feedforward: int = 2048,
|
| 162 |
-
dropout: float = 0.1,
|
| 163 |
-
activation: Union[str, Callable[[Tensor], Tensor]] = F.relu,
|
| 164 |
-
batch_first: bool = False,
|
| 165 |
-
norm_first: bool = False,
|
| 166 |
-
device=None,
|
| 167 |
-
dtype=None,
|
| 168 |
-
linear1_self_attention_cls: nn.Module = nn.Linear,
|
| 169 |
-
linear2_self_attention_cls: nn.Module = nn.Linear,
|
| 170 |
-
linear1_feedforward_cls: nn.Module = nn.Linear,
|
| 171 |
-
linear2_feedforward_cls: nn.Module = nn.Linear,
|
| 172 |
-
layer_norm_cls: nn.Module = LayerNorm,
|
| 173 |
-
layer_norm_eps: float = 1e-5,
|
| 174 |
-
adaptive_layer_norm=False,
|
| 175 |
-
) -> None:
|
| 176 |
-
factory_kwargs = {"device": device, "dtype": dtype}
|
| 177 |
-
super(TransformerEncoderLayer, self).__init__()
|
| 178 |
-
self.self_attn = MultiheadAttention(
|
| 179 |
-
d_model, # 512 16
|
| 180 |
-
nhead,
|
| 181 |
-
dropout=dropout,
|
| 182 |
-
batch_first=batch_first,
|
| 183 |
-
linear1_cls=linear1_self_attention_cls,
|
| 184 |
-
linear2_cls=linear2_self_attention_cls,
|
| 185 |
-
**factory_kwargs,
|
| 186 |
-
)
|
| 187 |
-
self.linear1 = linear1_feedforward_cls(
|
| 188 |
-
d_model, dim_feedforward, **factory_kwargs
|
| 189 |
-
)
|
| 190 |
-
self.dropout = nn.Dropout(dropout)
|
| 191 |
-
self.linear2 = linear2_feedforward_cls(
|
| 192 |
-
dim_feedforward, d_model, **factory_kwargs
|
| 193 |
-
)
|
| 194 |
-
self.norm_first = norm_first
|
| 195 |
-
self.dropout1 = nn.Dropout(dropout)
|
| 196 |
-
self.dropout2 = nn.Dropout(dropout)
|
| 197 |
-
if isinstance(activation, str):
|
| 198 |
-
activation = _get_activation_fn(activation)
|
| 199 |
-
elif isinstance(activation, partial):
|
| 200 |
-
activation = activation(d_model)
|
| 201 |
-
elif activation == BalancedDoubleSwish:
|
| 202 |
-
activation = BalancedDoubleSwish(d_model)
|
| 203 |
-
self.activation = activation
|
| 204 |
-
|
| 205 |
-
norm1 = layer_norm_cls(d_model, eps=layer_norm_eps, **factory_kwargs)
|
| 206 |
-
if layer_norm_cls == IdentityNorm:
|
| 207 |
-
norm2 = BalancedBasicNorm(d_model, eps=layer_norm_eps, **factory_kwargs)
|
| 208 |
-
else:
|
| 209 |
-
norm2 = layer_norm_cls(d_model, eps=layer_norm_eps, **factory_kwargs)
|
| 210 |
-
|
| 211 |
-
if adaptive_layer_norm:
|
| 212 |
-
self.norm1 = AdaptiveLayerNorm(d_model, norm1)
|
| 213 |
-
self.norm2 = AdaptiveLayerNorm(d_model, norm2)
|
| 214 |
-
else:
|
| 215 |
-
self.norm1 = norm1
|
| 216 |
-
self.norm2 = norm2
|
| 217 |
-
|
| 218 |
-
def __setstate__(self, state):
|
| 219 |
-
super(TransformerEncoderLayer, self).__setstate__(state)
|
| 220 |
-
if not hasattr(self, "activation"):
|
| 221 |
-
self.activation = F.relu
|
| 222 |
-
|
| 223 |
-
def forward(
|
| 224 |
-
self,
|
| 225 |
-
src: Tensor,
|
| 226 |
-
src_mask: Optional[Tensor] = None,
|
| 227 |
-
src_key_padding_mask: Optional[Tensor] = None,
|
| 228 |
-
cache=None,
|
| 229 |
-
) -> Tensor:
|
| 230 |
-
x = src
|
| 231 |
-
stage_embedding = None
|
| 232 |
-
x = self.norm1(
|
| 233 |
-
x + self._sa_block(x, src_mask, src_key_padding_mask, cache=cache),
|
| 234 |
-
stage_embedding,
|
| 235 |
-
)
|
| 236 |
-
x = self.norm2(x + self._ff_block(x), stage_embedding)
|
| 237 |
-
|
| 238 |
-
return x
|
| 239 |
-
|
| 240 |
-
def _sa_block(
|
| 241 |
-
self,
|
| 242 |
-
x: Tensor,
|
| 243 |
-
attn_mask: Optional[Tensor],
|
| 244 |
-
key_padding_mask: Optional[Tensor],
|
| 245 |
-
cache=None,
|
| 246 |
-
) -> Tensor:
|
| 247 |
-
x = self.self_attn(
|
| 248 |
-
x,
|
| 249 |
-
x,
|
| 250 |
-
x,
|
| 251 |
-
attn_mask=attn_mask,
|
| 252 |
-
key_padding_mask=key_padding_mask,
|
| 253 |
-
need_weights=False,
|
| 254 |
-
cache=cache,
|
| 255 |
-
)
|
| 256 |
-
return self.dropout1(x)
|
| 257 |
-
|
| 258 |
-
def _ff_block(self, x: Tensor) -> Tensor:
|
| 259 |
-
x = self.linear2(self.dropout(self.activation(self.linear1(x))))
|
| 260 |
-
return self.dropout2(x)
|
| 261 |
-
|
| 262 |
-
|
| 263 |
-
class AdaptiveLayerNorm(nn.Module):
|
| 264 |
-
r"""Adaptive Layer Normalization"""
|
| 265 |
-
|
| 266 |
-
def __init__(self, d_model, norm) -> None:
|
| 267 |
-
super(AdaptiveLayerNorm, self).__init__()
|
| 268 |
-
self.project_layer = nn.Linear(d_model, 2 * d_model)
|
| 269 |
-
self.norm = norm
|
| 270 |
-
self.d_model = d_model
|
| 271 |
-
self.eps = self.norm.eps
|
| 272 |
-
|
| 273 |
-
def forward(self, input: Tensor, embedding: Tensor = None) -> Tensor:
|
| 274 |
-
if isinstance(input, tuple):
|
| 275 |
-
input, embedding = input
|
| 276 |
-
weight, bias = torch.split(
|
| 277 |
-
self.project_layer(embedding),
|
| 278 |
-
split_size_or_sections=self.d_model,
|
| 279 |
-
dim=-1,
|
| 280 |
-
)
|
| 281 |
-
return (weight * self.norm(input) + bias, embedding)
|
| 282 |
-
|
| 283 |
-
weight, bias = torch.split(
|
| 284 |
-
self.project_layer(embedding),
|
| 285 |
-
split_size_or_sections=self.d_model,
|
| 286 |
-
dim=-1,
|
| 287 |
-
)
|
| 288 |
-
return weight * self.norm(input) + bias
|
| 289 |
-
|
| 290 |
-
|
| 291 |
-
def _get_clones(module, N):
|
| 292 |
-
return nn.ModuleList([copy.deepcopy(module) for i in range(N)])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
AR/text_processing/__init__.py
DELETED
|
File without changes
|
AR/text_processing/phonemizer.py
DELETED
|
@@ -1,79 +0,0 @@
|
|
| 1 |
-
# modified from https://github.com/yangdongchao/SoundStorm/blob/master/soundstorm/s1/AR/text_processing/phonemizer.py
|
| 2 |
-
# reference: https://github.com/lifeiteng/vall-e
|
| 3 |
-
import itertools
|
| 4 |
-
import re
|
| 5 |
-
from typing import Dict
|
| 6 |
-
from typing import List
|
| 7 |
-
|
| 8 |
-
import regex
|
| 9 |
-
from gruut import sentences
|
| 10 |
-
from gruut.const import Sentence
|
| 11 |
-
from gruut.const import Word
|
| 12 |
-
from AR.text_processing.symbols import SYMBOL_TO_ID
|
| 13 |
-
|
| 14 |
-
|
| 15 |
-
class GruutPhonemizer:
|
| 16 |
-
def __init__(self, language: str):
|
| 17 |
-
self._phonemizer = sentences
|
| 18 |
-
self.lang = language
|
| 19 |
-
self.symbol_to_id = SYMBOL_TO_ID
|
| 20 |
-
self._special_cases_dict: Dict[str] = {
|
| 21 |
-
r"\.\.\.": "... ",
|
| 22 |
-
";": "; ",
|
| 23 |
-
":": ": ",
|
| 24 |
-
",": ", ",
|
| 25 |
-
r"\.": ". ",
|
| 26 |
-
"!": "! ",
|
| 27 |
-
r"\?": "? ",
|
| 28 |
-
"—": "—",
|
| 29 |
-
"…": "… ",
|
| 30 |
-
"«": "«",
|
| 31 |
-
"»": "»",
|
| 32 |
-
}
|
| 33 |
-
self._punctuation_regexp: str = (
|
| 34 |
-
rf"([{''.join(self._special_cases_dict.keys())}])"
|
| 35 |
-
)
|
| 36 |
-
|
| 37 |
-
def _normalize_punctuation(self, text: str) -> str:
|
| 38 |
-
text = regex.sub(rf"\pZ+{self._punctuation_regexp}", r"\1", text)
|
| 39 |
-
text = regex.sub(rf"{self._punctuation_regexp}(\pL)", r"\1 \2", text)
|
| 40 |
-
text = regex.sub(r"\pZ+", r" ", text)
|
| 41 |
-
return text.strip()
|
| 42 |
-
|
| 43 |
-
def _convert_punctuation(self, word: Word) -> str:
|
| 44 |
-
if not word.phonemes:
|
| 45 |
-
return ""
|
| 46 |
-
if word.phonemes[0] in ["‖", "|"]:
|
| 47 |
-
return word.text.strip()
|
| 48 |
-
|
| 49 |
-
phonemes = "".join(word.phonemes)
|
| 50 |
-
# remove modifier characters ˈˌː with regex
|
| 51 |
-
phonemes = re.sub(r"[ˈˌː͡]", "", phonemes)
|
| 52 |
-
return phonemes.strip()
|
| 53 |
-
|
| 54 |
-
def phonemize(self, text: str, espeak: bool = False) -> str:
|
| 55 |
-
text_to_phonemize: str = self._normalize_punctuation(text)
|
| 56 |
-
sents: List[Sentence] = [
|
| 57 |
-
sent
|
| 58 |
-
for sent in self._phonemizer(text_to_phonemize, lang="en-us", espeak=espeak)
|
| 59 |
-
]
|
| 60 |
-
words: List[str] = [
|
| 61 |
-
self._convert_punctuation(word) for word in itertools.chain(*sents)
|
| 62 |
-
]
|
| 63 |
-
return " ".join(words)
|
| 64 |
-
|
| 65 |
-
def transform(self, phonemes):
|
| 66 |
-
# convert phonemes to ids
|
| 67 |
-
# dictionary is in symbols.py
|
| 68 |
-
return [self.symbol_to_id[p] for p in phonemes if p in self.symbol_to_id.keys()]
|
| 69 |
-
|
| 70 |
-
|
| 71 |
-
if __name__ == "__main__":
|
| 72 |
-
phonemizer = GruutPhonemizer("en-us")
|
| 73 |
-
# text -> IPA
|
| 74 |
-
phonemes = phonemizer.phonemize("Hello, wor-ld ?")
|
| 75 |
-
print("phonemes:", phonemes)
|
| 76 |
-
print("len(phonemes):", len(phonemes))
|
| 77 |
-
phoneme_ids = phonemizer.transform(phonemes)
|
| 78 |
-
print("phoneme_ids:", phoneme_ids)
|
| 79 |
-
print("len(phoneme_ids):", len(phoneme_ids))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
AR/text_processing/symbols.py
DELETED
|
@@ -1,10 +0,0 @@
|
|
| 1 |
-
# modified from https://github.com/yangdongchao/SoundStorm/blob/master/soundstorm/s1/AR/text_processing/symbols.py
|
| 2 |
-
# reference: https://github.com/lifeiteng/vall-e
|
| 3 |
-
PAD = "_"
|
| 4 |
-
PUNCTUATION = ';:,.!?¡¿—…"«»“” '
|
| 5 |
-
LETTERS = "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz"
|
| 6 |
-
IPA_LETTERS = "ɑɐɒæɓʙβɔɕçɗɖðʤəɘɚɛɜɝɞɟʄɡɠɢʛɦɧħɥʜɨɪʝɭɬɫɮʟɱɯɰŋɳɲɴøɵɸθœɶʘɹɺɾɻʀʁɽʂʃʈʧʉʊʋⱱʌɣɤʍχʎʏʑʐʒʔʡʕʢǀǁǂǃˈˌːˑʼʴʰʱʲʷˠˤ˞↓↑→↗↘'̩'ᵻ"
|
| 7 |
-
SYMBOLS = [PAD] + list(PUNCTUATION) + list(LETTERS) + list(IPA_LETTERS)
|
| 8 |
-
SPACE_ID = SYMBOLS.index(" ")
|
| 9 |
-
SYMBOL_TO_ID = {s: i for i, s in enumerate(SYMBOLS)}
|
| 10 |
-
ID_TO_SYMBOL = {i: s for i, s in enumerate(SYMBOLS)}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
AR/utils/__init__.py
DELETED
|
@@ -1,37 +0,0 @@
|
|
| 1 |
-
import re
|
| 2 |
-
|
| 3 |
-
|
| 4 |
-
def str2bool(str):
|
| 5 |
-
return True if str.lower() == 'true' else False
|
| 6 |
-
|
| 7 |
-
|
| 8 |
-
def get_newest_ckpt(string_list):
|
| 9 |
-
# 定义一个正则表达式模式,用于匹配字符串中的数字
|
| 10 |
-
pattern = r'epoch=(\d+)-step=(\d+)\.ckpt'
|
| 11 |
-
|
| 12 |
-
# 使用正则表达式提取每个字符串中的数字信息,并创建一个包含元组的列表
|
| 13 |
-
extracted_info = []
|
| 14 |
-
for string in string_list:
|
| 15 |
-
match = re.match(pattern, string)
|
| 16 |
-
if match:
|
| 17 |
-
epoch = int(match.group(1))
|
| 18 |
-
step = int(match.group(2))
|
| 19 |
-
extracted_info.append((epoch, step, string))
|
| 20 |
-
# 按照 epoch 后面的数字和 step 后面的数字进行排序
|
| 21 |
-
sorted_info = sorted(
|
| 22 |
-
extracted_info, key=lambda x: (x[0], x[1]), reverse=True)
|
| 23 |
-
# 获取最新的 ckpt 文件名
|
| 24 |
-
newest_ckpt = sorted_info[0][2]
|
| 25 |
-
return newest_ckpt
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
# 文本存在且不为空时 return True
|
| 29 |
-
def check_txt_file(file_path):
|
| 30 |
-
try:
|
| 31 |
-
with open(file_path, 'r') as file:
|
| 32 |
-
text = file.readline().strip()
|
| 33 |
-
assert text.strip() != ''
|
| 34 |
-
return text
|
| 35 |
-
except Exception:
|
| 36 |
-
return False
|
| 37 |
-
return False
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
AR/utils/initialize.py
DELETED
|
@@ -1,38 +0,0 @@
|
|
| 1 |
-
#!/usr/bin/env python3
|
| 2 |
-
"""Initialize modules for espnet2 neural networks."""
|
| 3 |
-
import torch
|
| 4 |
-
from typeguard import check_argument_types
|
| 5 |
-
|
| 6 |
-
|
| 7 |
-
def initialize(model: torch.nn.Module, init: str):
|
| 8 |
-
"""Initialize weights of a neural network module.
|
| 9 |
-
|
| 10 |
-
Parameters are initialized using the given method or distribution.
|
| 11 |
-
|
| 12 |
-
Custom initialization routines can be implemented into submodules
|
| 13 |
-
as function `espnet_initialization_fn` within the custom module.
|
| 14 |
-
|
| 15 |
-
Args:
|
| 16 |
-
model: Target.
|
| 17 |
-
init: Method of initialization.
|
| 18 |
-
"""
|
| 19 |
-
assert check_argument_types()
|
| 20 |
-
print("init with", init)
|
| 21 |
-
|
| 22 |
-
# weight init
|
| 23 |
-
for p in model.parameters():
|
| 24 |
-
if p.dim() > 1:
|
| 25 |
-
if init == "xavier_uniform":
|
| 26 |
-
torch.nn.init.xavier_uniform_(p.data)
|
| 27 |
-
elif init == "xavier_normal":
|
| 28 |
-
torch.nn.init.xavier_normal_(p.data)
|
| 29 |
-
elif init == "kaiming_uniform":
|
| 30 |
-
torch.nn.init.kaiming_uniform_(p.data, nonlinearity="relu")
|
| 31 |
-
elif init == "kaiming_normal":
|
| 32 |
-
torch.nn.init.kaiming_normal_(p.data, nonlinearity="relu")
|
| 33 |
-
else:
|
| 34 |
-
raise ValueError("Unknown initialization: " + init)
|
| 35 |
-
# bias init
|
| 36 |
-
for name, p in model.named_parameters():
|
| 37 |
-
if ".bias" in name and p.dim() == 1:
|
| 38 |
-
p.data.zero_()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
AR/utils/io.py
DELETED
|
@@ -1,34 +0,0 @@
|
|
| 1 |
-
import sys
|
| 2 |
-
|
| 3 |
-
import torch
|
| 4 |
-
import yaml
|
| 5 |
-
|
| 6 |
-
|
| 7 |
-
def load_yaml_config(path):
|
| 8 |
-
with open(path) as f:
|
| 9 |
-
config = yaml.full_load(f)
|
| 10 |
-
return config
|
| 11 |
-
|
| 12 |
-
|
| 13 |
-
def save_config_to_yaml(config, path):
|
| 14 |
-
assert path.endswith(".yaml")
|
| 15 |
-
with open(path, "w") as f:
|
| 16 |
-
f.write(yaml.dump(config))
|
| 17 |
-
f.close()
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
def write_args(args, path):
|
| 21 |
-
args_dict = dict(
|
| 22 |
-
(name, getattr(args, name)) for name in dir(args) if not name.startswith("_")
|
| 23 |
-
)
|
| 24 |
-
with open(path, "a") as args_file:
|
| 25 |
-
args_file.write("==> torch version: {}\n".format(torch.__version__))
|
| 26 |
-
args_file.write(
|
| 27 |
-
"==> cudnn version: {}\n".format(torch.backends.cudnn.version())
|
| 28 |
-
)
|
| 29 |
-
args_file.write("==> Cmd:\n")
|
| 30 |
-
args_file.write(str(sys.argv))
|
| 31 |
-
args_file.write("\n==> args:\n")
|
| 32 |
-
for k, v in sorted(args_dict.items()):
|
| 33 |
-
args_file.write(" %s: %s\n" % (str(k), str(v)))
|
| 34 |
-
args_file.close()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
README.md
DELETED
|
@@ -1,12 +0,0 @@
|
|
| 1 |
-
---
|
| 2 |
-
title: Gpt Sovits
|
| 3 |
-
emoji: 📉
|
| 4 |
-
colorFrom: red
|
| 5 |
-
colorTo: pink
|
| 6 |
-
sdk: gradio
|
| 7 |
-
sdk_version: 3.38.0
|
| 8 |
-
app_file: app.py
|
| 9 |
-
pinned: false
|
| 10 |
-
---
|
| 11 |
-
|
| 12 |
-
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
__pycache__/utils.cpython-39.pyc
DELETED
|
Binary file (11.3 kB)
|
|
|
app.py
DELETED
|
@@ -1,678 +0,0 @@
|
|
| 1 |
-
'''
|
| 2 |
-
按中英混合识别
|
| 3 |
-
按日英混合识别
|
| 4 |
-
多语种启动切分识别语种
|
| 5 |
-
全部按中文识别
|
| 6 |
-
全部按英文识别
|
| 7 |
-
全部按日文识别
|
| 8 |
-
'''
|
| 9 |
-
import os, re, logging
|
| 10 |
-
import LangSegment
|
| 11 |
-
logging.getLogger("markdown_it").setLevel(logging.ERROR)
|
| 12 |
-
logging.getLogger("urllib3").setLevel(logging.ERROR)
|
| 13 |
-
logging.getLogger("httpcore").setLevel(logging.ERROR)
|
| 14 |
-
logging.getLogger("httpx").setLevel(logging.ERROR)
|
| 15 |
-
logging.getLogger("asyncio").setLevel(logging.ERROR)
|
| 16 |
-
logging.getLogger("charset_normalizer").setLevel(logging.ERROR)
|
| 17 |
-
logging.getLogger("torchaudio._extension").setLevel(logging.ERROR)
|
| 18 |
-
import pdb
|
| 19 |
-
|
| 20 |
-
if os.path.exists("./gweight.txt"):
|
| 21 |
-
with open("./gweight.txt", 'r', encoding="utf-8") as file:
|
| 22 |
-
gweight_data = file.read()
|
| 23 |
-
gpt_path = os.environ.get(
|
| 24 |
-
"gpt_path", gweight_data)
|
| 25 |
-
else:
|
| 26 |
-
gpt_path = os.environ.get(
|
| 27 |
-
"gpt_path", "GPT_SoVITS/pretrained_models/s1bert25hz-2kh-longer-epoch=68e-step=50232.ckpt")
|
| 28 |
-
|
| 29 |
-
if os.path.exists("./sweight.txt"):
|
| 30 |
-
with open("./sweight.txt", 'r', encoding="utf-8") as file:
|
| 31 |
-
sweight_data = file.read()
|
| 32 |
-
sovits_path = os.environ.get("sovits_path", sweight_data)
|
| 33 |
-
else:
|
| 34 |
-
sovits_path = os.environ.get("sovits_path", "GPT_SoVITS/pretrained_models/s2G488k.pth")
|
| 35 |
-
# gpt_path = os.environ.get(
|
| 36 |
-
# "gpt_path", "pretrained_models/s1bert25hz-2kh-longer-epoch=68e-step=50232.ckpt"
|
| 37 |
-
# )
|
| 38 |
-
# sovits_path = os.environ.get("sovits_path", "pretrained_models/s2G488k.pth")
|
| 39 |
-
cnhubert_base_path = os.environ.get(
|
| 40 |
-
"cnhubert_base_path", "GPT_SoVITS/pretrained_models/chinese-hubert-base"
|
| 41 |
-
)
|
| 42 |
-
bert_path = os.environ.get(
|
| 43 |
-
"bert_path", "GPT_SoVITS/pretrained_models/chinese-roberta-wwm-ext-large"
|
| 44 |
-
)
|
| 45 |
-
infer_ttswebui = os.environ.get("infer_ttswebui", 9872)
|
| 46 |
-
infer_ttswebui = int(infer_ttswebui)
|
| 47 |
-
is_share = os.environ.get("is_share", "False")
|
| 48 |
-
is_share = eval(is_share)
|
| 49 |
-
if "_CUDA_VISIBLE_DEVICES" in os.environ:
|
| 50 |
-
os.environ["CUDA_VISIBLE_DEVICES"] = os.environ["_CUDA_VISIBLE_DEVICES"]
|
| 51 |
-
is_half = eval(os.environ.get("is_half", "True"))
|
| 52 |
-
import gradio as gr
|
| 53 |
-
from transformers import AutoModelForMaskedLM, AutoTokenizer
|
| 54 |
-
import numpy as np
|
| 55 |
-
import librosa, torch
|
| 56 |
-
from feature_extractor import cnhubert
|
| 57 |
-
|
| 58 |
-
cnhubert.cnhubert_base_path = cnhubert_base_path
|
| 59 |
-
|
| 60 |
-
from module.models import SynthesizerTrn
|
| 61 |
-
from AR.models.t2s_lightning_module import Text2SemanticLightningModule
|
| 62 |
-
from text import cleaned_text_to_sequence
|
| 63 |
-
from text.cleaner import clean_text
|
| 64 |
-
from time import time as ttime
|
| 65 |
-
from module.mel_processing import spectrogram_torch
|
| 66 |
-
from my_utils import load_audio
|
| 67 |
-
from tools.i18n.i18n import I18nAuto
|
| 68 |
-
|
| 69 |
-
i18n = I18nAuto()
|
| 70 |
-
|
| 71 |
-
os.environ['PYTORCH_ENABLE_MPS_FALLBACK'] = '1' # 确保直接启动推理UI时也能够设置。
|
| 72 |
-
|
| 73 |
-
if torch.cuda.is_available():
|
| 74 |
-
device = "cuda"
|
| 75 |
-
elif torch.backends.mps.is_available():
|
| 76 |
-
device = "mps"
|
| 77 |
-
else:
|
| 78 |
-
device = "cpu"
|
| 79 |
-
|
| 80 |
-
tokenizer = AutoTokenizer.from_pretrained(bert_path)
|
| 81 |
-
bert_model = AutoModelForMaskedLM.from_pretrained(bert_path)
|
| 82 |
-
if is_half == True:
|
| 83 |
-
bert_model = bert_model.half().to(device)
|
| 84 |
-
else:
|
| 85 |
-
bert_model = bert_model.to(device)
|
| 86 |
-
|
| 87 |
-
|
| 88 |
-
def get_bert_feature(text, word2ph):
|
| 89 |
-
with torch.no_grad():
|
| 90 |
-
inputs = tokenizer(text, return_tensors="pt")
|
| 91 |
-
for i in inputs:
|
| 92 |
-
inputs[i] = inputs[i].to(device)
|
| 93 |
-
res = bert_model(**inputs, output_hidden_states=True)
|
| 94 |
-
res = torch.cat(res["hidden_states"][-3:-2], -1)[0].cpu()[1:-1]
|
| 95 |
-
assert len(word2ph) == len(text)
|
| 96 |
-
phone_level_feature = []
|
| 97 |
-
for i in range(len(word2ph)):
|
| 98 |
-
repeat_feature = res[i].repeat(word2ph[i], 1)
|
| 99 |
-
phone_level_feature.append(repeat_feature)
|
| 100 |
-
phone_level_feature = torch.cat(phone_level_feature, dim=0)
|
| 101 |
-
return phone_level_feature.T
|
| 102 |
-
|
| 103 |
-
|
| 104 |
-
class DictToAttrRecursive(dict):
|
| 105 |
-
def __init__(self, input_dict):
|
| 106 |
-
super().__init__(input_dict)
|
| 107 |
-
for key, value in input_dict.items():
|
| 108 |
-
if isinstance(value, dict):
|
| 109 |
-
value = DictToAttrRecursive(value)
|
| 110 |
-
self[key] = value
|
| 111 |
-
setattr(self, key, value)
|
| 112 |
-
|
| 113 |
-
def __getattr__(self, item):
|
| 114 |
-
try:
|
| 115 |
-
return self[item]
|
| 116 |
-
except KeyError:
|
| 117 |
-
raise AttributeError(f"Attribute {item} not found")
|
| 118 |
-
|
| 119 |
-
def __setattr__(self, key, value):
|
| 120 |
-
if isinstance(value, dict):
|
| 121 |
-
value = DictToAttrRecursive(value)
|
| 122 |
-
super(DictToAttrRecursive, self).__setitem__(key, value)
|
| 123 |
-
super().__setattr__(key, value)
|
| 124 |
-
|
| 125 |
-
def __delattr__(self, item):
|
| 126 |
-
try:
|
| 127 |
-
del self[item]
|
| 128 |
-
except KeyError:
|
| 129 |
-
raise AttributeError(f"Attribute {item} not found")
|
| 130 |
-
|
| 131 |
-
|
| 132 |
-
ssl_model = cnhubert.get_model()
|
| 133 |
-
if is_half == True:
|
| 134 |
-
ssl_model = ssl_model.half().to(device)
|
| 135 |
-
else:
|
| 136 |
-
ssl_model = ssl_model.to(device)
|
| 137 |
-
|
| 138 |
-
|
| 139 |
-
def change_sovits_weights(sovits_path):
|
| 140 |
-
global vq_model, hps
|
| 141 |
-
dict_s2 = torch.load(sovits_path, map_location="cpu")
|
| 142 |
-
hps = dict_s2["config"]
|
| 143 |
-
hps = DictToAttrRecursive(hps)
|
| 144 |
-
hps.model.semantic_frame_rate = "25hz"
|
| 145 |
-
vq_model = SynthesizerTrn(
|
| 146 |
-
hps.data.filter_length // 2 + 1,
|
| 147 |
-
hps.train.segment_size // hps.data.hop_length,
|
| 148 |
-
n_speakers=hps.data.n_speakers,
|
| 149 |
-
**hps.model
|
| 150 |
-
)
|
| 151 |
-
if ("pretrained" not in sovits_path):
|
| 152 |
-
del vq_model.enc_q
|
| 153 |
-
if is_half == True:
|
| 154 |
-
vq_model = vq_model.half().to(device)
|
| 155 |
-
else:
|
| 156 |
-
vq_model = vq_model.to(device)
|
| 157 |
-
vq_model.eval()
|
| 158 |
-
print(vq_model.load_state_dict(dict_s2["weight"], strict=False))
|
| 159 |
-
with open("./sweight.txt", "w", encoding="utf-8") as f:
|
| 160 |
-
f.write(sovits_path)
|
| 161 |
-
|
| 162 |
-
|
| 163 |
-
change_sovits_weights(sovits_path)
|
| 164 |
-
|
| 165 |
-
|
| 166 |
-
def change_gpt_weights(gpt_path):
|
| 167 |
-
global hz, max_sec, t2s_model, config
|
| 168 |
-
hz = 50
|
| 169 |
-
dict_s1 = torch.load(gpt_path, map_location="cpu")
|
| 170 |
-
config = dict_s1["config"]
|
| 171 |
-
max_sec = config["data"]["max_sec"]
|
| 172 |
-
t2s_model = Text2SemanticLightningModule(config, "****", is_train=False)
|
| 173 |
-
t2s_model.load_state_dict(dict_s1["weight"])
|
| 174 |
-
if is_half == True:
|
| 175 |
-
t2s_model = t2s_model.half()
|
| 176 |
-
t2s_model = t2s_model.to(device)
|
| 177 |
-
t2s_model.eval()
|
| 178 |
-
total = sum([param.nelement() for param in t2s_model.parameters()])
|
| 179 |
-
print("Number of parameter: %.2fM" % (total / 1e6))
|
| 180 |
-
with open("./gweight.txt", "w", encoding="utf-8") as f: f.write(gpt_path)
|
| 181 |
-
|
| 182 |
-
|
| 183 |
-
change_gpt_weights(gpt_path)
|
| 184 |
-
|
| 185 |
-
|
| 186 |
-
def get_spepc(hps, filename):
|
| 187 |
-
audio = load_audio(filename, int(hps.data.sampling_rate))
|
| 188 |
-
audio = torch.FloatTensor(audio)
|
| 189 |
-
audio_norm = audio
|
| 190 |
-
audio_norm = audio_norm.unsqueeze(0)
|
| 191 |
-
spec = spectrogram_torch(
|
| 192 |
-
audio_norm,
|
| 193 |
-
hps.data.filter_length,
|
| 194 |
-
hps.data.sampling_rate,
|
| 195 |
-
hps.data.hop_length,
|
| 196 |
-
hps.data.win_length,
|
| 197 |
-
center=False,
|
| 198 |
-
)
|
| 199 |
-
return spec
|
| 200 |
-
|
| 201 |
-
|
| 202 |
-
dict_language = {
|
| 203 |
-
i18n("中文"): "all_zh",#全部按中文识别
|
| 204 |
-
i18n("英文"): "en",#全部按英文识别#######不变
|
| 205 |
-
i18n("日文"): "all_ja",#全部按日文识别
|
| 206 |
-
i18n("中英混合"): "zh",#按中英混合识别####不变
|
| 207 |
-
i18n("日英混合"): "ja",#按日英混合识别####不变
|
| 208 |
-
i18n("多语种混合"): "auto",#多语种启动切分识别语种
|
| 209 |
-
}
|
| 210 |
-
|
| 211 |
-
|
| 212 |
-
def splite_en_inf(sentence, language):
|
| 213 |
-
pattern = re.compile(r'[a-zA-Z ]+')
|
| 214 |
-
textlist = []
|
| 215 |
-
langlist = []
|
| 216 |
-
pos = 0
|
| 217 |
-
for match in pattern.finditer(sentence):
|
| 218 |
-
start, end = match.span()
|
| 219 |
-
if start > pos:
|
| 220 |
-
textlist.append(sentence[pos:start])
|
| 221 |
-
langlist.append(language)
|
| 222 |
-
textlist.append(sentence[start:end])
|
| 223 |
-
langlist.append("en")
|
| 224 |
-
pos = end
|
| 225 |
-
if pos < len(sentence):
|
| 226 |
-
textlist.append(sentence[pos:])
|
| 227 |
-
langlist.append(language)
|
| 228 |
-
# Merge punctuation into previous word
|
| 229 |
-
for i in range(len(textlist)-1, 0, -1):
|
| 230 |
-
if re.match(r'^[\W_]+$', textlist[i]):
|
| 231 |
-
textlist[i-1] += textlist[i]
|
| 232 |
-
del textlist[i]
|
| 233 |
-
del langlist[i]
|
| 234 |
-
# Merge consecutive words with the same language tag
|
| 235 |
-
i = 0
|
| 236 |
-
while i < len(langlist) - 1:
|
| 237 |
-
if langlist[i] == langlist[i+1]:
|
| 238 |
-
textlist[i] += textlist[i+1]
|
| 239 |
-
del textlist[i+1]
|
| 240 |
-
del langlist[i+1]
|
| 241 |
-
else:
|
| 242 |
-
i += 1
|
| 243 |
-
|
| 244 |
-
return textlist, langlist
|
| 245 |
-
|
| 246 |
-
|
| 247 |
-
def clean_text_inf(text, language):
|
| 248 |
-
formattext = ""
|
| 249 |
-
language = language.replace("all_","")
|
| 250 |
-
for tmp in LangSegment.getTexts(text):
|
| 251 |
-
if language == "ja":
|
| 252 |
-
if tmp["lang"] == language or tmp["lang"] == "zh":
|
| 253 |
-
formattext += tmp["text"] + " "
|
| 254 |
-
continue
|
| 255 |
-
if tmp["lang"] == language:
|
| 256 |
-
formattext += tmp["text"] + " "
|
| 257 |
-
while " " in formattext:
|
| 258 |
-
formattext = formattext.replace(" ", " ")
|
| 259 |
-
phones, word2ph, norm_text = clean_text(formattext, language)
|
| 260 |
-
phones = cleaned_text_to_sequence(phones)
|
| 261 |
-
return phones, word2ph, norm_text
|
| 262 |
-
|
| 263 |
-
dtype=torch.float16 if is_half == True else torch.float32
|
| 264 |
-
def get_bert_inf(phones, word2ph, norm_text, language):
|
| 265 |
-
language=language.replace("all_","")
|
| 266 |
-
if language == "zh":
|
| 267 |
-
bert = get_bert_feature(norm_text, word2ph).to(device)#.to(dtype)
|
| 268 |
-
else:
|
| 269 |
-
bert = torch.zeros(
|
| 270 |
-
(1024, len(phones)),
|
| 271 |
-
dtype=torch.float16 if is_half == True else torch.float32,
|
| 272 |
-
).to(device)
|
| 273 |
-
|
| 274 |
-
return bert
|
| 275 |
-
|
| 276 |
-
|
| 277 |
-
def nonen_clean_text_inf(text, language):
|
| 278 |
-
if(language!="auto"):
|
| 279 |
-
textlist, langlist = splite_en_inf(text, language)
|
| 280 |
-
else:
|
| 281 |
-
textlist=[]
|
| 282 |
-
langlist=[]
|
| 283 |
-
for tmp in LangSegment.getTexts(text):
|
| 284 |
-
langlist.append(tmp["lang"])
|
| 285 |
-
textlist.append(tmp["text"])
|
| 286 |
-
phones_list = []
|
| 287 |
-
word2ph_list = []
|
| 288 |
-
norm_text_list = []
|
| 289 |
-
for i in range(len(textlist)):
|
| 290 |
-
lang = langlist[i]
|
| 291 |
-
phones, word2ph, norm_text = clean_text_inf(textlist[i], lang)
|
| 292 |
-
phones_list.append(phones)
|
| 293 |
-
if lang == "zh":
|
| 294 |
-
word2ph_list.append(word2ph)
|
| 295 |
-
norm_text_list.append(norm_text)
|
| 296 |
-
print(word2ph_list)
|
| 297 |
-
phones = sum(phones_list, [])
|
| 298 |
-
word2ph = sum(word2ph_list, [])
|
| 299 |
-
norm_text = ' '.join(norm_text_list)
|
| 300 |
-
|
| 301 |
-
return phones, word2ph, norm_text
|
| 302 |
-
|
| 303 |
-
|
| 304 |
-
def nonen_get_bert_inf(text, language):
|
| 305 |
-
if(language!="auto"):
|
| 306 |
-
textlist, langlist = splite_en_inf(text, language)
|
| 307 |
-
else:
|
| 308 |
-
textlist=[]
|
| 309 |
-
langlist=[]
|
| 310 |
-
for tmp in LangSegment.getTexts(text):
|
| 311 |
-
langlist.append(tmp["lang"])
|
| 312 |
-
textlist.append(tmp["text"])
|
| 313 |
-
print(textlist)
|
| 314 |
-
print(langlist)
|
| 315 |
-
bert_list = []
|
| 316 |
-
for i in range(len(textlist)):
|
| 317 |
-
lang = langlist[i]
|
| 318 |
-
phones, word2ph, norm_text = clean_text_inf(textlist[i], lang)
|
| 319 |
-
bert = get_bert_inf(phones, word2ph, norm_text, lang)
|
| 320 |
-
bert_list.append(bert)
|
| 321 |
-
bert = torch.cat(bert_list, dim=1)
|
| 322 |
-
|
| 323 |
-
return bert
|
| 324 |
-
|
| 325 |
-
|
| 326 |
-
splits = {",", "。", "?", "!", ",", ".", "?", "!", "~", ":", ":", "—", "…", }
|
| 327 |
-
|
| 328 |
-
|
| 329 |
-
def get_first(text):
|
| 330 |
-
pattern = "[" + "".join(re.escape(sep) for sep in splits) + "]"
|
| 331 |
-
text = re.split(pattern, text)[0].strip()
|
| 332 |
-
return text
|
| 333 |
-
|
| 334 |
-
|
| 335 |
-
def get_cleaned_text_final(text,language):
|
| 336 |
-
if language in {"en","all_zh","all_ja"}:
|
| 337 |
-
phones, word2ph, norm_text = clean_text_inf(text, language)
|
| 338 |
-
elif language in {"zh", "ja","auto"}:
|
| 339 |
-
phones, word2ph, norm_text = nonen_clean_text_inf(text, language)
|
| 340 |
-
return phones, word2ph, norm_text
|
| 341 |
-
|
| 342 |
-
def get_bert_final(phones, word2ph, text,language,device):
|
| 343 |
-
if language == "en":
|
| 344 |
-
bert = get_bert_inf(phones, word2ph, text, language)
|
| 345 |
-
elif language in {"zh", "ja","auto"}:
|
| 346 |
-
bert = nonen_get_bert_inf(text, language)
|
| 347 |
-
elif language == "all_zh":
|
| 348 |
-
bert = get_bert_feature(text, word2ph).to(device)
|
| 349 |
-
else:
|
| 350 |
-
bert = torch.zeros((1024, len(phones))).to(device)
|
| 351 |
-
return bert
|
| 352 |
-
|
| 353 |
-
def merge_short_text_in_array(texts, threshold):
|
| 354 |
-
if (len(texts)) < 2:
|
| 355 |
-
return texts
|
| 356 |
-
result = []
|
| 357 |
-
text = ""
|
| 358 |
-
for ele in texts:
|
| 359 |
-
text += ele
|
| 360 |
-
if len(text) >= threshold:
|
| 361 |
-
result.append(text)
|
| 362 |
-
text = ""
|
| 363 |
-
if (len(text) > 0):
|
| 364 |
-
if len(result) == 0:
|
| 365 |
-
result.append(text)
|
| 366 |
-
else:
|
| 367 |
-
result[len(result) - 1] += text
|
| 368 |
-
return result
|
| 369 |
-
|
| 370 |
-
def get_tts_wav(ref_wav_path, prompt_text, prompt_language, text, text_language, how_to_cut=i18n("不切"), top_k=20, top_p=0.6, temperature=0.6, ref_free = False):
|
| 371 |
-
if prompt_text is None or len(prompt_text) == 0:
|
| 372 |
-
ref_free = True
|
| 373 |
-
t0 = ttime()
|
| 374 |
-
prompt_language = dict_language[prompt_language]
|
| 375 |
-
text_language = dict_language[text_language]
|
| 376 |
-
if not ref_free:
|
| 377 |
-
prompt_text = prompt_text.strip("\n")
|
| 378 |
-
if (prompt_text[-1] not in splits): prompt_text += "。" if prompt_language != "en" else "."
|
| 379 |
-
print(i18n("实际输入的参考文本:"), prompt_text)
|
| 380 |
-
text = text.strip("\n")
|
| 381 |
-
if (text[0] not in splits and len(get_first(text)) < 4): text = "。" + text if text_language != "en" else "." + text
|
| 382 |
-
|
| 383 |
-
print(i18n("实际输入的目标文本:"), text)
|
| 384 |
-
zero_wav = np.zeros(
|
| 385 |
-
int(hps.data.sampling_rate * 0.3),
|
| 386 |
-
dtype=np.float16 if is_half == True else np.float32,
|
| 387 |
-
)
|
| 388 |
-
with torch.no_grad():
|
| 389 |
-
wav16k, sr = librosa.load(ref_wav_path, sr=16000)
|
| 390 |
-
if (wav16k.shape[0] > 160000 or wav16k.shape[0] < 48000):
|
| 391 |
-
raise OSError(i18n("参考音频在3~10秒范围外,请更换!"))
|
| 392 |
-
wav16k = torch.from_numpy(wav16k)
|
| 393 |
-
zero_wav_torch = torch.from_numpy(zero_wav)
|
| 394 |
-
if is_half == True:
|
| 395 |
-
wav16k = wav16k.half().to(device)
|
| 396 |
-
zero_wav_torch = zero_wav_torch.half().to(device)
|
| 397 |
-
else:
|
| 398 |
-
wav16k = wav16k.to(device)
|
| 399 |
-
zero_wav_torch = zero_wav_torch.to(device)
|
| 400 |
-
wav16k = torch.cat([wav16k, zero_wav_torch])
|
| 401 |
-
ssl_content = ssl_model.model(wav16k.unsqueeze(0))[
|
| 402 |
-
"last_hidden_state"
|
| 403 |
-
].transpose(
|
| 404 |
-
1, 2
|
| 405 |
-
) # .float()
|
| 406 |
-
codes = vq_model.extract_latent(ssl_content)
|
| 407 |
-
|
| 408 |
-
prompt_semantic = codes[0, 0]
|
| 409 |
-
t1 = ttime()
|
| 410 |
-
|
| 411 |
-
if (how_to_cut == i18n("凑四句一切")):
|
| 412 |
-
text = cut1(text)
|
| 413 |
-
elif (how_to_cut == i18n("凑50字一切")):
|
| 414 |
-
text = cut2(text)
|
| 415 |
-
elif (how_to_cut == i18n("按中文句号。切")):
|
| 416 |
-
text = cut3(text)
|
| 417 |
-
elif (how_to_cut == i18n("按英文句号.切")):
|
| 418 |
-
text = cut4(text)
|
| 419 |
-
elif (how_to_cut == i18n("按标点符号切")):
|
| 420 |
-
text = cut5(text)
|
| 421 |
-
while "\n\n" in text:
|
| 422 |
-
text = text.replace("\n\n", "\n")
|
| 423 |
-
print(i18n("实际输入的目标文本(切句后):"), text)
|
| 424 |
-
texts = text.split("\n")
|
| 425 |
-
texts = merge_short_text_in_array(texts, 5)
|
| 426 |
-
audio_opt = []
|
| 427 |
-
if not ref_free:
|
| 428 |
-
phones1, word2ph1, norm_text1=get_cleaned_text_final(prompt_text, prompt_language)
|
| 429 |
-
print("前端处理后的参考文本:%s"%norm_text1)
|
| 430 |
-
bert1=get_bert_final(phones1, word2ph1, norm_text1,prompt_language,device).to(dtype)
|
| 431 |
-
|
| 432 |
-
for text in texts:
|
| 433 |
-
# 解决输入目标文本的空行导致报错的问题
|
| 434 |
-
if (len(text.strip()) == 0):
|
| 435 |
-
continue
|
| 436 |
-
if (text[-1] not in splits): text += "。" if text_language != "en" else "."
|
| 437 |
-
print(i18n("实际输入的目标文本(每句):"), text)
|
| 438 |
-
phones2, word2ph2, norm_text2 = get_cleaned_text_final(text, text_language)
|
| 439 |
-
print(i18n("前端处理后的文本(每句):"), norm_text2)
|
| 440 |
-
bert2 = get_bert_final(phones2, word2ph2, norm_text2, text_language, device).to(dtype)
|
| 441 |
-
if not ref_free:
|
| 442 |
-
bert = torch.cat([bert1, bert2], 1)
|
| 443 |
-
all_phoneme_ids = torch.LongTensor(phones1+phones2).to(device).unsqueeze(0)
|
| 444 |
-
else:
|
| 445 |
-
bert = bert2
|
| 446 |
-
all_phoneme_ids = torch.LongTensor(phones2).to(device).unsqueeze(0)
|
| 447 |
-
|
| 448 |
-
bert = bert.to(device).unsqueeze(0)
|
| 449 |
-
all_phoneme_len = torch.tensor([all_phoneme_ids.shape[-1]]).to(device)
|
| 450 |
-
prompt = prompt_semantic.unsqueeze(0).to(device)
|
| 451 |
-
t2 = ttime()
|
| 452 |
-
with torch.no_grad():
|
| 453 |
-
# pred_semantic = t2s_model.model.infer(
|
| 454 |
-
pred_semantic, idx = t2s_model.model.infer_panel(
|
| 455 |
-
all_phoneme_ids,
|
| 456 |
-
all_phoneme_len,
|
| 457 |
-
None if ref_free else prompt,
|
| 458 |
-
bert,
|
| 459 |
-
# prompt_phone_len=ph_offset,
|
| 460 |
-
top_k=top_k,
|
| 461 |
-
top_p=top_p,
|
| 462 |
-
temperature=temperature,
|
| 463 |
-
early_stop_num=hz * max_sec,
|
| 464 |
-
)
|
| 465 |
-
t3 = ttime()
|
| 466 |
-
# print(pred_semantic.shape,idx)
|
| 467 |
-
pred_semantic = pred_semantic[:, -idx:].unsqueeze(
|
| 468 |
-
0
|
| 469 |
-
) # .unsqueeze(0)#mq要多unsqueeze一次
|
| 470 |
-
refer = get_spepc(hps, ref_wav_path) # .to(device)
|
| 471 |
-
if is_half == True:
|
| 472 |
-
refer = refer.half().to(device)
|
| 473 |
-
else:
|
| 474 |
-
refer = refer.to(device)
|
| 475 |
-
# audio = vq_model.decode(pred_semantic, all_phoneme_ids, refer).detach().cpu().numpy()[0, 0]
|
| 476 |
-
audio = (
|
| 477 |
-
vq_model.decode(
|
| 478 |
-
pred_semantic, torch.LongTensor(phones2).to(device).unsqueeze(0), refer
|
| 479 |
-
)
|
| 480 |
-
.detach()
|
| 481 |
-
.cpu()
|
| 482 |
-
.numpy()[0, 0]
|
| 483 |
-
) ###试试重建不带上prompt部分
|
| 484 |
-
max_audio=np.abs(audio).max()#简单防止16bit爆音
|
| 485 |
-
if max_audio>1:audio/=max_audio
|
| 486 |
-
audio_opt.append(audio)
|
| 487 |
-
audio_opt.append(zero_wav)
|
| 488 |
-
t4 = ttime()
|
| 489 |
-
print("%.3f\t%.3f\t%.3f\t%.3f" % (t1 - t0, t2 - t1, t3 - t2, t4 - t3))
|
| 490 |
-
yield hps.data.sampling_rate, (np.concatenate(audio_opt, 0) * 32768).astype(
|
| 491 |
-
np.int16
|
| 492 |
-
)
|
| 493 |
-
|
| 494 |
-
|
| 495 |
-
def split(todo_text):
|
| 496 |
-
todo_text = todo_text.replace("……", "。").replace("——", ",")
|
| 497 |
-
if todo_text[-1] not in splits:
|
| 498 |
-
todo_text += "。"
|
| 499 |
-
i_split_head = i_split_tail = 0
|
| 500 |
-
len_text = len(todo_text)
|
| 501 |
-
todo_texts = []
|
| 502 |
-
while 1:
|
| 503 |
-
if i_split_head >= len_text:
|
| 504 |
-
break # 结尾一定有标点,所以直接跳出即可,最后一段在上次已加入
|
| 505 |
-
if todo_text[i_split_head] in splits:
|
| 506 |
-
i_split_head += 1
|
| 507 |
-
todo_texts.append(todo_text[i_split_tail:i_split_head])
|
| 508 |
-
i_split_tail = i_split_head
|
| 509 |
-
else:
|
| 510 |
-
i_split_head += 1
|
| 511 |
-
return todo_texts
|
| 512 |
-
|
| 513 |
-
|
| 514 |
-
def cut1(inp):
|
| 515 |
-
inp = inp.strip("\n")
|
| 516 |
-
inps = split(inp)
|
| 517 |
-
split_idx = list(range(0, len(inps), 4))
|
| 518 |
-
split_idx[-1] = None
|
| 519 |
-
if len(split_idx) > 1:
|
| 520 |
-
opts = []
|
| 521 |
-
for idx in range(len(split_idx) - 1):
|
| 522 |
-
opts.append("".join(inps[split_idx[idx]: split_idx[idx + 1]]))
|
| 523 |
-
else:
|
| 524 |
-
opts = [inp]
|
| 525 |
-
return "\n".join(opts)
|
| 526 |
-
|
| 527 |
-
|
| 528 |
-
def cut2(inp):
|
| 529 |
-
inp = inp.strip("\n")
|
| 530 |
-
inps = split(inp)
|
| 531 |
-
if len(inps) < 2:
|
| 532 |
-
return inp
|
| 533 |
-
opts = []
|
| 534 |
-
summ = 0
|
| 535 |
-
tmp_str = ""
|
| 536 |
-
for i in range(len(inps)):
|
| 537 |
-
summ += len(inps[i])
|
| 538 |
-
tmp_str += inps[i]
|
| 539 |
-
if summ > 50:
|
| 540 |
-
summ = 0
|
| 541 |
-
opts.append(tmp_str)
|
| 542 |
-
tmp_str = ""
|
| 543 |
-
if tmp_str != "":
|
| 544 |
-
opts.append(tmp_str)
|
| 545 |
-
# print(opts)
|
| 546 |
-
if len(opts) > 1 and len(opts[-1]) < 50: ##如果最后一个太短了,和前一个合一起
|
| 547 |
-
opts[-2] = opts[-2] + opts[-1]
|
| 548 |
-
opts = opts[:-1]
|
| 549 |
-
return "\n".join(opts)
|
| 550 |
-
|
| 551 |
-
|
| 552 |
-
def cut3(inp):
|
| 553 |
-
inp = inp.strip("\n")
|
| 554 |
-
return "\n".join(["%s" % item for item in inp.strip("。").split("。")])
|
| 555 |
-
|
| 556 |
-
|
| 557 |
-
def cut4(inp):
|
| 558 |
-
inp = inp.strip("\n")
|
| 559 |
-
return "\n".join(["%s" % item for item in inp.strip(".").split(".")])
|
| 560 |
-
|
| 561 |
-
|
| 562 |
-
# contributed by https://github.com/AI-Hobbyist/GPT-SoVITS/blob/main/GPT_SoVITS/inference_webui.py
|
| 563 |
-
def cut5(inp):
|
| 564 |
-
# if not re.search(r'[^\w\s]', inp[-1]):
|
| 565 |
-
# inp += '。'
|
| 566 |
-
inp = inp.strip("\n")
|
| 567 |
-
punds = r'[,.;?!、,。?!;:]'
|
| 568 |
-
items = re.split(f'({punds})', inp)
|
| 569 |
-
items = ["".join(group) for group in zip(items[::2], items[1::2])]
|
| 570 |
-
opt = "\n".join(items)
|
| 571 |
-
return opt
|
| 572 |
-
|
| 573 |
-
|
| 574 |
-
def custom_sort_key(s):
|
| 575 |
-
# 使用正则表达式提取字符串中的数字部分和非数字部分
|
| 576 |
-
parts = re.split('(\d+)', s)
|
| 577 |
-
# 将数字部分转换为整数,非数字部分保持不变
|
| 578 |
-
parts = [int(part) if part.isdigit() else part for part in parts]
|
| 579 |
-
return parts
|
| 580 |
-
|
| 581 |
-
|
| 582 |
-
def change_choices():
|
| 583 |
-
SoVITS_names, GPT_names = get_weights_names()
|
| 584 |
-
return {"choices": sorted(SoVITS_names, key=custom_sort_key), "__type__": "update"}, {"choices": sorted(GPT_names, key=custom_sort_key), "__type__": "update"}
|
| 585 |
-
|
| 586 |
-
|
| 587 |
-
pretrained_sovits_name = "GPT_SoVITS/pretrained_models/s2G488k.pth"
|
| 588 |
-
pretrained_gpt_name = "GPT_SoVITS/pretrained_models/s1bert25hz-2kh-longer-epoch=68e-step=50232.ckpt"
|
| 589 |
-
SoVITS_weight_root = "SoVITS_weights"
|
| 590 |
-
GPT_weight_root = "GPT_weights"
|
| 591 |
-
os.makedirs(SoVITS_weight_root, exist_ok=True)
|
| 592 |
-
os.makedirs(GPT_weight_root, exist_ok=True)
|
| 593 |
-
|
| 594 |
-
|
| 595 |
-
def get_weights_names():
|
| 596 |
-
SoVITS_names = [pretrained_sovits_name]
|
| 597 |
-
for name in os.listdir(SoVITS_weight_root):
|
| 598 |
-
if name.endswith(".pth"): SoVITS_names.append("%s/%s" % (SoVITS_weight_root, name))
|
| 599 |
-
GPT_names = [pretrained_gpt_name]
|
| 600 |
-
for name in os.listdir(GPT_weight_root):
|
| 601 |
-
if name.endswith(".ckpt"): GPT_names.append("%s/%s" % (GPT_weight_root, name))
|
| 602 |
-
return SoVITS_names, GPT_names
|
| 603 |
-
|
| 604 |
-
|
| 605 |
-
SoVITS_names, GPT_names = get_weights_names()
|
| 606 |
-
|
| 607 |
-
with gr.Blocks(title="GPT-SoVITS WebUI") as app:
|
| 608 |
-
gr.Markdown(
|
| 609 |
-
value=i18n("本软件以MIT协议开源, 作者不对软件具备任何控制力, 使用软件者、传播软件导出的声音者自负全责. <br>如不认可该条款, 则不能使用或引用软件包内任何代码和文件. 详见根目录<b>LICENSE</b>.")
|
| 610 |
-
)
|
| 611 |
-
with gr.Group():
|
| 612 |
-
gr.Markdown(value=i18n("模型切换"))
|
| 613 |
-
with gr.Row():
|
| 614 |
-
GPT_dropdown = gr.Dropdown(label=i18n("GPT模型列表"), choices=sorted(GPT_names, key=custom_sort_key), value=gpt_path, interactive=True)
|
| 615 |
-
SoVITS_dropdown = gr.Dropdown(label=i18n("SoVITS模型列表"), choices=sorted(SoVITS_names, key=custom_sort_key), value=sovits_path, interactive=True)
|
| 616 |
-
refresh_button = gr.Button(i18n("刷新模型路径"), variant="primary")
|
| 617 |
-
refresh_button.click(fn=change_choices, inputs=[], outputs=[SoVITS_dropdown, GPT_dropdown])
|
| 618 |
-
SoVITS_dropdown.change(change_sovits_weights, [SoVITS_dropdown], [])
|
| 619 |
-
GPT_dropdown.change(change_gpt_weights, [GPT_dropdown], [])
|
| 620 |
-
gr.Markdown(value=i18n("*请上传并填写参考信息"))
|
| 621 |
-
with gr.Row():
|
| 622 |
-
inp_ref = gr.Audio(label=i18n("请上传3~10秒内参考音频,超过会报错!"), type="filepath")
|
| 623 |
-
with gr.Column():
|
| 624 |
-
ref_text_free = gr.Checkbox(label=i18n("开启无参考文本模式。不填参考文本亦相当于开启。"), value=False, interactive=True, show_label=True)
|
| 625 |
-
gr.Markdown(i18n("使用无参考文本模式时建议使用微调的GPT"))
|
| 626 |
-
prompt_text = gr.Textbox(label=i18n("参考音频的文本"), value="")
|
| 627 |
-
prompt_language = gr.Dropdown(
|
| 628 |
-
label=i18n("参考音频的语种"), choices=[i18n("中文"), i18n("英文"), i18n("日文"), i18n("中英混合"), i18n("日英混合"), i18n("多语种混合")], value=i18n("中文")
|
| 629 |
-
)
|
| 630 |
-
gr.Markdown(value=i18n("*请填写需要合成的目标文本。中英混合选中文,日英混合选日文,中日混合暂不支持,非目标语言文本自动遗弃。"))
|
| 631 |
-
with gr.Row():
|
| 632 |
-
text = gr.Textbox(label=i18n("需要合成的文本"), value="")
|
| 633 |
-
text_language = gr.Dropdown(
|
| 634 |
-
label=i18n("需要合成的语种"), choices=[i18n("中文"), i18n("英文"), i18n("日文"), i18n("中英混合"), i18n("日英混合"), i18n("多语种混合")], value=i18n("中文")
|
| 635 |
-
)
|
| 636 |
-
how_to_cut = gr.Radio(
|
| 637 |
-
label=i18n("怎么切"),
|
| 638 |
-
choices=[i18n("不切"), i18n("凑四句一切"), i18n("凑50字一切"), i18n("按中文句号。切"), i18n("按英文句号.切"), i18n("按标点符号切"), ],
|
| 639 |
-
value=i18n("凑四句一切"),
|
| 640 |
-
interactive=True,
|
| 641 |
-
)
|
| 642 |
-
with gr.Row():
|
| 643 |
-
gr.Markdown("gpt采样参数(无参考文本时不要太低):")
|
| 644 |
-
top_k = gr.Slider(minimum=1,maximum=100,step=1,label=i18n("top_k"),value=5,interactive=True)
|
| 645 |
-
top_p = gr.Slider(minimum=0,maximum=1,step=0.05,label=i18n("top_p"),value=1,interactive=True)
|
| 646 |
-
temperature = gr.Slider(minimum=0,maximum=1,step=0.05,label=i18n("temperature"),value=1,interactive=True)
|
| 647 |
-
inference_button = gr.Button(i18n("合成语音"), variant="primary")
|
| 648 |
-
output = gr.Audio(label=i18n("输出的语音"))
|
| 649 |
-
|
| 650 |
-
inference_button.click(
|
| 651 |
-
get_tts_wav,
|
| 652 |
-
[inp_ref, prompt_text, prompt_language, text, text_language, how_to_cut, top_k, top_p, temperature, ref_text_free],
|
| 653 |
-
[output], api_name="GetVoice"
|
| 654 |
-
)
|
| 655 |
-
|
| 656 |
-
gr.Markdown(value=i18n("文本切分工具。太长的文本合成出来效果不一定好,所以太长建议先切。合成会根据文本的换行分开合成再拼起来。"))
|
| 657 |
-
with gr.Row():
|
| 658 |
-
text_inp = gr.Textbox(label=i18n("需要合成的切分前文本"), value="")
|
| 659 |
-
button1 = gr.Button(i18n("凑四句一切"), variant="primary")
|
| 660 |
-
button2 = gr.Button(i18n("凑50字一切"), variant="primary")
|
| 661 |
-
button3 = gr.Button(i18n("按中文句号。切"), variant="primary")
|
| 662 |
-
button4 = gr.Button(i18n("按英文句号.切"), variant="primary")
|
| 663 |
-
button5 = gr.Button(i18n("按标点符号切"), variant="primary")
|
| 664 |
-
text_opt = gr.Textbox(label=i18n("切分后文本"), value="")
|
| 665 |
-
button1.click(cut1, [text_inp], [text_opt])
|
| 666 |
-
button2.click(cut2, [text_inp], [text_opt])
|
| 667 |
-
button3.click(cut3, [text_inp], [text_opt])
|
| 668 |
-
button4.click(cut4, [text_inp], [text_opt])
|
| 669 |
-
button5.click(cut5, [text_inp], [text_opt])
|
| 670 |
-
gr.Markdown(value=i18n("后续将支持转音素、手工修改音素、语音合成分步执行。"))
|
| 671 |
-
|
| 672 |
-
app.queue(concurrency_count=511, max_size=1022).launch(
|
| 673 |
-
server_name="0.0.0.0",
|
| 674 |
-
inbrowser=True,
|
| 675 |
-
share=is_share,
|
| 676 |
-
server_port=infer_ttswebui,
|
| 677 |
-
quiet=True,
|
| 678 |
-
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
configs/s1.yaml
DELETED
|
@@ -1,31 +0,0 @@
|
|
| 1 |
-
train:
|
| 2 |
-
seed: 1234
|
| 3 |
-
epochs: 300
|
| 4 |
-
batch_size: 8
|
| 5 |
-
gradient_accumulation: 4
|
| 6 |
-
save_every_n_epoch: 1
|
| 7 |
-
precision: 16
|
| 8 |
-
gradient_clip: 1.0
|
| 9 |
-
optimizer:
|
| 10 |
-
lr: 0.01
|
| 11 |
-
lr_init: 0.00001
|
| 12 |
-
lr_end: 0.0001
|
| 13 |
-
warmup_steps: 2000
|
| 14 |
-
decay_steps: 40000
|
| 15 |
-
data:
|
| 16 |
-
max_eval_sample: 8
|
| 17 |
-
max_sec: 54
|
| 18 |
-
num_workers: 1
|
| 19 |
-
pad_val: 1024 # same with EOS in model
|
| 20 |
-
model:
|
| 21 |
-
vocab_size: 1025
|
| 22 |
-
phoneme_vocab_size: 512
|
| 23 |
-
embedding_dim: 512
|
| 24 |
-
hidden_dim: 512
|
| 25 |
-
head: 16
|
| 26 |
-
linear_units: 2048
|
| 27 |
-
n_layer: 12
|
| 28 |
-
dropout: 0
|
| 29 |
-
EOS: 1024
|
| 30 |
-
inference:
|
| 31 |
-
top_k: 5
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
configs/s1big.yaml
DELETED
|
@@ -1,31 +0,0 @@
|
|
| 1 |
-
train:
|
| 2 |
-
seed: 1234
|
| 3 |
-
epochs: 300
|
| 4 |
-
batch_size: 8
|
| 5 |
-
gradient_accumulation: 4
|
| 6 |
-
save_every_n_epoch: 1
|
| 7 |
-
precision: 16-mixed
|
| 8 |
-
gradient_clip: 1.0
|
| 9 |
-
optimizer:
|
| 10 |
-
lr: 0.01
|
| 11 |
-
lr_init: 0.00001
|
| 12 |
-
lr_end: 0.0001
|
| 13 |
-
warmup_steps: 2000
|
| 14 |
-
decay_steps: 40000
|
| 15 |
-
data:
|
| 16 |
-
max_eval_sample: 8
|
| 17 |
-
max_sec: 54
|
| 18 |
-
num_workers: 1
|
| 19 |
-
pad_val: 1024 # same with EOS in model
|
| 20 |
-
model:
|
| 21 |
-
vocab_size: 1025
|
| 22 |
-
phoneme_vocab_size: 512
|
| 23 |
-
embedding_dim: 1024
|
| 24 |
-
hidden_dim: 1024
|
| 25 |
-
head: 16
|
| 26 |
-
linear_units: 2048
|
| 27 |
-
n_layer: 16
|
| 28 |
-
dropout: 0
|
| 29 |
-
EOS: 1024
|
| 30 |
-
inference:
|
| 31 |
-
top_k: 5
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
configs/s1big2.yaml
DELETED
|
@@ -1,31 +0,0 @@
|
|
| 1 |
-
train:
|
| 2 |
-
seed: 1234
|
| 3 |
-
epochs: 300
|
| 4 |
-
batch_size: 12
|
| 5 |
-
gradient_accumulation: 4
|
| 6 |
-
save_every_n_epoch: 1
|
| 7 |
-
precision: 16-mixed
|
| 8 |
-
gradient_clip: 1.0
|
| 9 |
-
optimizer:
|
| 10 |
-
lr: 0.01
|
| 11 |
-
lr_init: 0.00001
|
| 12 |
-
lr_end: 0.0001
|
| 13 |
-
warmup_steps: 2000
|
| 14 |
-
decay_steps: 40000
|
| 15 |
-
data:
|
| 16 |
-
max_eval_sample: 8
|
| 17 |
-
max_sec: 54
|
| 18 |
-
num_workers: 1
|
| 19 |
-
pad_val: 1024 # same with EOS in model
|
| 20 |
-
model:
|
| 21 |
-
vocab_size: 1025
|
| 22 |
-
phoneme_vocab_size: 512
|
| 23 |
-
embedding_dim: 1024
|
| 24 |
-
hidden_dim: 1024
|
| 25 |
-
head: 16
|
| 26 |
-
linear_units: 2048
|
| 27 |
-
n_layer: 6
|
| 28 |
-
dropout: 0
|
| 29 |
-
EOS: 1024
|
| 30 |
-
inference:
|
| 31 |
-
top_k: 5
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
configs/s1longer.yaml
DELETED
|
@@ -1,31 +0,0 @@
|
|
| 1 |
-
train:
|
| 2 |
-
seed: 1234
|
| 3 |
-
epochs: 20
|
| 4 |
-
batch_size: 8
|
| 5 |
-
save_every_n_epoch: 1
|
| 6 |
-
precision: 16-mixed
|
| 7 |
-
gradient_clip: 1.0
|
| 8 |
-
optimizer:
|
| 9 |
-
lr: 0.01
|
| 10 |
-
lr_init: 0.00001
|
| 11 |
-
lr_end: 0.0001
|
| 12 |
-
warmup_steps: 2000
|
| 13 |
-
decay_steps: 40000
|
| 14 |
-
data:
|
| 15 |
-
max_eval_sample: 8
|
| 16 |
-
max_sec: 54
|
| 17 |
-
num_workers: 4
|
| 18 |
-
pad_val: 1024 # same with EOS in model
|
| 19 |
-
model:
|
| 20 |
-
vocab_size: 1025
|
| 21 |
-
phoneme_vocab_size: 512
|
| 22 |
-
embedding_dim: 512
|
| 23 |
-
hidden_dim: 512
|
| 24 |
-
head: 16
|
| 25 |
-
linear_units: 2048
|
| 26 |
-
n_layer: 24
|
| 27 |
-
dropout: 0
|
| 28 |
-
EOS: 1024
|
| 29 |
-
random_bert: 0
|
| 30 |
-
inference:
|
| 31 |
-
top_k: 5
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
configs/s1mq.yaml
DELETED
|
@@ -1,77 +0,0 @@
|
|
| 1 |
-
train:
|
| 2 |
-
seed: 1234
|
| 3 |
-
epochs: 100
|
| 4 |
-
batch_size: 6
|
| 5 |
-
gradient_accumulation: 4
|
| 6 |
-
save_every_n_epoch: 1
|
| 7 |
-
precision: 32
|
| 8 |
-
gradient_clip: 1.0
|
| 9 |
-
optimizer:
|
| 10 |
-
lr: 0.01
|
| 11 |
-
lr_init: 0.00001
|
| 12 |
-
lr_end: 0.0001
|
| 13 |
-
warmup_steps: 2000
|
| 14 |
-
decay_steps: 40000
|
| 15 |
-
data:
|
| 16 |
-
max_eval_sample: 8
|
| 17 |
-
max_sec: 40
|
| 18 |
-
num_workers: 1
|
| 19 |
-
pad_val: 1024 # same with EOS in model
|
| 20 |
-
model:
|
| 21 |
-
saving_path: "ckpt/"
|
| 22 |
-
resume_checkpoint: null
|
| 23 |
-
vocoder_config_path: "quantizer/new_ckpt/config.json"
|
| 24 |
-
vocoder_ckpt_path: "quantizer/new_ckpt/g_00600000"
|
| 25 |
-
datadir: "/home/liweiche/GigaSpeech/wavs"
|
| 26 |
-
metapath: "/home/liweiche/GigaSpeech/train2.json"
|
| 27 |
-
val_metapath: "/home/liweiche/GigaSpeech/dev2.json"
|
| 28 |
-
sampledir: "logs/"
|
| 29 |
-
pretrained_path: null
|
| 30 |
-
lr: 0.0001
|
| 31 |
-
batch_size: 200.0
|
| 32 |
-
train_bucket_size: 8192
|
| 33 |
-
training_step: 800000
|
| 34 |
-
optim_flat_percent: 0.0
|
| 35 |
-
warmup_step: 50
|
| 36 |
-
adam_beta1: 0.9
|
| 37 |
-
adam_beta2: 0.98
|
| 38 |
-
ffd_size: 3072
|
| 39 |
-
hidden_size: 768
|
| 40 |
-
enc_nlayers: 6
|
| 41 |
-
dec_nlayers: 6
|
| 42 |
-
nheads: 12
|
| 43 |
-
ar_layer: 4
|
| 44 |
-
ar_ffd_size: 1024
|
| 45 |
-
ar_hidden_size: 256
|
| 46 |
-
ar_nheads: 4
|
| 47 |
-
aligner_softmax_temp: 1.0
|
| 48 |
-
layer_norm_eps: 0.00001
|
| 49 |
-
speaker_embed_dropout: 0.05
|
| 50 |
-
label_smoothing: 0.0
|
| 51 |
-
val_check_interval: 5000
|
| 52 |
-
check_val_every_n_epoch: 1
|
| 53 |
-
precision: "fp16"
|
| 54 |
-
nworkers: 16
|
| 55 |
-
distributed: true
|
| 56 |
-
accelerator: "ddp"
|
| 57 |
-
version: null
|
| 58 |
-
accumulate_grad_batches: 1
|
| 59 |
-
use_repetition_token: true
|
| 60 |
-
use_repetition_gating: false
|
| 61 |
-
repetition_penalty: 1.0
|
| 62 |
-
sampling_temperature: 1.0
|
| 63 |
-
top_k: -1
|
| 64 |
-
min_top_k: 3
|
| 65 |
-
top_p: 0.8
|
| 66 |
-
sample_num: 4
|
| 67 |
-
length_penalty_max_length: 15000
|
| 68 |
-
length_penalty_max_prob: 0.95
|
| 69 |
-
max_input_length: 2048
|
| 70 |
-
max_output_length: 2000
|
| 71 |
-
sample_rate: 16000
|
| 72 |
-
n_codes: 1024
|
| 73 |
-
n_cluster_groups: 1
|
| 74 |
-
phone_context_window: 4
|
| 75 |
-
phoneset_size: 1000
|
| 76 |
-
inference:
|
| 77 |
-
top_k: 5
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
configs/s2.json
DELETED
|
@@ -1,90 +0,0 @@
|
|
| 1 |
-
{
|
| 2 |
-
"train": {
|
| 3 |
-
"log_interval": 100,
|
| 4 |
-
"eval_interval": 500,
|
| 5 |
-
"seed": 1234,
|
| 6 |
-
"epochs": 100,
|
| 7 |
-
"learning_rate": 0.0001,
|
| 8 |
-
"betas": [
|
| 9 |
-
0.8,
|
| 10 |
-
0.99
|
| 11 |
-
],
|
| 12 |
-
"eps": 1e-09,
|
| 13 |
-
"batch_size": 32,
|
| 14 |
-
"fp16_run": true,
|
| 15 |
-
"lr_decay": 0.999875,
|
| 16 |
-
"segment_size": 20480,
|
| 17 |
-
"init_lr_ratio": 1,
|
| 18 |
-
"warmup_epochs": 0,
|
| 19 |
-
"c_mel": 45,
|
| 20 |
-
"c_kl": 1.0,
|
| 21 |
-
"text_low_lr_rate": 0.4
|
| 22 |
-
},
|
| 23 |
-
"data": {
|
| 24 |
-
"max_wav_value": 32768.0,
|
| 25 |
-
"sampling_rate": 32000,
|
| 26 |
-
"filter_length": 2048,
|
| 27 |
-
"hop_length": 640,
|
| 28 |
-
"win_length": 2048,
|
| 29 |
-
"n_mel_channels": 128,
|
| 30 |
-
"mel_fmin": 0.0,
|
| 31 |
-
"mel_fmax": null,
|
| 32 |
-
"add_blank": true,
|
| 33 |
-
"n_speakers": 300,
|
| 34 |
-
"cleaned_text": true
|
| 35 |
-
},
|
| 36 |
-
"model": {
|
| 37 |
-
"inter_channels": 192,
|
| 38 |
-
"hidden_channels": 192,
|
| 39 |
-
"filter_channels": 768,
|
| 40 |
-
"n_heads": 2,
|
| 41 |
-
"n_layers": 6,
|
| 42 |
-
"kernel_size": 3,
|
| 43 |
-
"p_dropout": 0.1,
|
| 44 |
-
"resblock": "1",
|
| 45 |
-
"resblock_kernel_sizes": [
|
| 46 |
-
3,
|
| 47 |
-
7,
|
| 48 |
-
11
|
| 49 |
-
],
|
| 50 |
-
"resblock_dilation_sizes": [
|
| 51 |
-
[
|
| 52 |
-
1,
|
| 53 |
-
3,
|
| 54 |
-
5
|
| 55 |
-
],
|
| 56 |
-
[
|
| 57 |
-
1,
|
| 58 |
-
3,
|
| 59 |
-
5
|
| 60 |
-
],
|
| 61 |
-
[
|
| 62 |
-
1,
|
| 63 |
-
3,
|
| 64 |
-
5
|
| 65 |
-
]
|
| 66 |
-
],
|
| 67 |
-
"upsample_rates": [
|
| 68 |
-
10,
|
| 69 |
-
8,
|
| 70 |
-
2,
|
| 71 |
-
2,
|
| 72 |
-
2
|
| 73 |
-
],
|
| 74 |
-
"upsample_initial_channel": 512,
|
| 75 |
-
"upsample_kernel_sizes": [
|
| 76 |
-
16,
|
| 77 |
-
16,
|
| 78 |
-
8,
|
| 79 |
-
2,
|
| 80 |
-
2
|
| 81 |
-
],
|
| 82 |
-
"n_layers_q": 3,
|
| 83 |
-
"use_spectral_norm": false,
|
| 84 |
-
"gin_channels": 512,
|
| 85 |
-
"semantic_frame_rate": "25hz",
|
| 86 |
-
"freeze_quantizer": true
|
| 87 |
-
},
|
| 88 |
-
"s2_ckpt_dir": "logs/s2/big2k1",
|
| 89 |
-
"content_module": "cnhubert"
|
| 90 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|