Spaces:
Build error
Build error
| #!/usr/bin/env python3 | |
| """Initialize modules for espnet2 neural networks.""" | |
| import torch | |
| from typeguard import check_argument_types | |
| def initialize(model: torch.nn.Module, init: str): | |
| """Initialize weights of a neural network module. | |
| Parameters are initialized using the given method or distribution. | |
| Custom initialization routines can be implemented into submodules | |
| as function `espnet_initialization_fn` within the custom module. | |
| Args: | |
| model: Target. | |
| init: Method of initialization. | |
| """ | |
| assert check_argument_types() | |
| print("init with", init) | |
| # weight init | |
| for p in model.parameters(): | |
| if p.dim() > 1: | |
| if init == "xavier_uniform": | |
| torch.nn.init.xavier_uniform_(p.data) | |
| elif init == "xavier_normal": | |
| torch.nn.init.xavier_normal_(p.data) | |
| elif init == "kaiming_uniform": | |
| torch.nn.init.kaiming_uniform_(p.data, nonlinearity="relu") | |
| elif init == "kaiming_normal": | |
| torch.nn.init.kaiming_normal_(p.data, nonlinearity="relu") | |
| else: | |
| raise ValueError("Unknown initialization: " + init) | |
| # bias init | |
| for name, p in model.named_parameters(): | |
| if ".bias" in name and p.dim() == 1: | |
| p.data.zero_() | |