File size: 23,321 Bytes
cf7fc45 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 |
from __future__ import annotations
import asyncio
import uuid
import json
import os
from py_arkose_generator.arkose import get_values_for_request
from async_property import async_cached_property
from selenium.webdriver.common.by import By
from selenium.webdriver.support.ui import WebDriverWait
from selenium.webdriver.support import expected_conditions as EC
from ..base_provider import AsyncGeneratorProvider
from ..helper import format_prompt, get_cookies
from ...webdriver import get_browser, get_driver_cookies
from ...typing import AsyncResult, Messages
from ...requests import StreamSession
from ...image import to_image, to_bytes, ImageType, ImageResponse
# Aliases for model names
MODELS = {
"gpt-3.5": "text-davinci-002-render-sha",
"gpt-3.5-turbo": "text-davinci-002-render-sha",
"gpt-4": "gpt-4",
"gpt-4-gizmo": "gpt-4-gizmo"
}
class OpenaiChat(AsyncGeneratorProvider):
"""A class for creating and managing conversations with OpenAI chat service"""
url = "https://chat.openai.com"
working = True
needs_auth = True
supports_gpt_35_turbo = True
supports_gpt_4 = True
_cookies: dict = {}
_default_model: str = None
@classmethod
async def create(
cls,
prompt: str = None,
model: str = "",
messages: Messages = [],
history_disabled: bool = False,
action: str = "next",
conversation_id: str = None,
parent_id: str = None,
image: ImageType = None,
**kwargs
) -> Response:
"""
Create a new conversation or continue an existing one
Args:
prompt: The user input to start or continue the conversation
model: The name of the model to use for generating responses
messages: The list of previous messages in the conversation
history_disabled: A flag indicating if the history and training should be disabled
action: The type of action to perform, either "next", "continue", or "variant"
conversation_id: The ID of the existing conversation, if any
parent_id: The ID of the parent message, if any
image: The image to include in the user input, if any
**kwargs: Additional keyword arguments to pass to the generator
Returns:
A Response object that contains the generator, action, messages, and options
"""
# Add the user input to the messages list
if prompt:
messages.append({
"role": "user",
"content": prompt
})
generator = cls.create_async_generator(
model,
messages,
history_disabled=history_disabled,
action=action,
conversation_id=conversation_id,
parent_id=parent_id,
image=image,
response_fields=True,
**kwargs
)
return Response(
generator,
action,
messages,
kwargs
)
@classmethod
async def _upload_image(
cls,
session: StreamSession,
headers: dict,
image: ImageType
) -> ImageResponse:
"""
Upload an image to the service and get the download URL
Args:
session: The StreamSession object to use for requests
headers: The headers to include in the requests
image: The image to upload, either a PIL Image object or a bytes object
Returns:
An ImageResponse object that contains the download URL, file name, and other data
"""
# Convert the image to a PIL Image object and get the extension
image = to_image(image)
extension = image.format.lower()
# Convert the image to a bytes object and get the size
data_bytes = to_bytes(image)
data = {
"file_name": f"{image.width}x{image.height}.{extension}",
"file_size": len(data_bytes),
"use_case": "multimodal"
}
# Post the image data to the service and get the image data
async with session.post(f"{cls.url}/backend-api/files", json=data, headers=headers) as response:
response.raise_for_status()
image_data = {
**data,
**await response.json(),
"mime_type": f"image/{extension}",
"extension": extension,
"height": image.height,
"width": image.width
}
# Put the image bytes to the upload URL and check the status
async with session.put(
image_data["upload_url"],
data=data_bytes,
headers={
"Content-Type": image_data["mime_type"],
"x-ms-blob-type": "BlockBlob"
}
) as response:
response.raise_for_status()
# Post the file ID to the service and get the download URL
async with session.post(
f"{cls.url}/backend-api/files/{image_data['file_id']}/uploaded",
json={},
headers=headers
) as response:
response.raise_for_status()
download_url = (await response.json())["download_url"]
return ImageResponse(download_url, image_data["file_name"], image_data)
@classmethod
async def _get_default_model(cls, session: StreamSession, headers: dict):
"""
Get the default model name from the service
Args:
session: The StreamSession object to use for requests
headers: The headers to include in the requests
Returns:
The default model name as a string
"""
# Check the cache for the default model
if cls._default_model:
return cls._default_model
# Get the models data from the service
async with session.get(f"{cls.url}/backend-api/models", headers=headers) as response:
data = await response.json()
if "categories" in data:
cls._default_model = data["categories"][-1]["default_model"]
else:
raise RuntimeError(f"Response: {data}")
return cls._default_model
@classmethod
def _create_messages(cls, prompt: str, image_response: ImageResponse = None):
"""
Create a list of messages for the user input
Args:
prompt: The user input as a string
image_response: The image response object, if any
Returns:
A list of messages with the user input and the image, if any
"""
# Check if there is an image response
if not image_response:
# Create a content object with the text type and the prompt
content = {"content_type": "text", "parts": [prompt]}
else:
# Create a content object with the multimodal text type and the image and the prompt
content = {
"content_type": "multimodal_text",
"parts": [{
"asset_pointer": f"file-service://{image_response.get('file_id')}",
"height": image_response.get("height"),
"size_bytes": image_response.get("file_size"),
"width": image_response.get("width"),
}, prompt]
}
# Create a message object with the user role and the content
messages = [{
"id": str(uuid.uuid4()),
"author": {"role": "user"},
"content": content,
}]
# Check if there is an image response
if image_response:
# Add the metadata object with the attachments
messages[0]["metadata"] = {
"attachments": [{
"height": image_response.get("height"),
"id": image_response.get("file_id"),
"mimeType": image_response.get("mime_type"),
"name": image_response.get("file_name"),
"size": image_response.get("file_size"),
"width": image_response.get("width"),
}]
}
return messages
@classmethod
async def _get_generated_image(cls, session: StreamSession, headers: dict, line: dict) -> ImageResponse:
"""
Retrieves the image response based on the message content.
This method processes the message content to extract image information and retrieves the
corresponding image from the backend API. It then returns an ImageResponse object containing
the image URL and the prompt used to generate the image.
Args:
session (StreamSession): The StreamSession object used for making HTTP requests.
headers (dict): HTTP headers to be used for the request.
line (dict): A dictionary representing the line of response that contains image information.
Returns:
ImageResponse: An object containing the image URL and the prompt, or None if no image is found.
Raises:
RuntimeError: If there'san error in downloading the image, including issues with the HTTP request or response.
"""
if "parts" not in line["message"]["content"]:
return
first_part = line["message"]["content"]["parts"][0]
if "asset_pointer" not in first_part or "metadata" not in first_part:
return
file_id = first_part["asset_pointer"].split("file-service://", 1)[1]
prompt = first_part["metadata"]["dalle"]["prompt"]
try:
async with session.get(f"{cls.url}/backend-api/files/{file_id}/download", headers=headers) as response:
response.raise_for_status()
download_url = (await response.json())["download_url"]
return ImageResponse(download_url, prompt)
except Exception as e:
raise RuntimeError(f"Error in downloading image: {e}")
@classmethod
async def _delete_conversation(cls, session: StreamSession, headers: dict, conversation_id: str):
"""
Deletes a conversation by setting its visibility to False.
This method sends an HTTP PATCH request to update the visibility of a conversation.
It's used to effectively delete a conversation from being accessed or displayed in the future.
Args:
session (StreamSession): The StreamSession object used for making HTTP requests.
headers (dict): HTTP headers to be used for the request.
conversation_id (str): The unique identifier of the conversation to be deleted.
Raises:
HTTPError: If the HTTP request fails or returns an unsuccessful status code.
"""
async with session.patch(
f"{cls.url}/backend-api/conversation/{conversation_id}",
json={"is_visible": False},
headers=headers
) as response:
response.raise_for_status()
@classmethod
async def create_async_generator(
cls,
model: str,
messages: Messages,
proxy: str = None,
timeout: int = 120,
access_token: str = None,
cookies: dict = None,
auto_continue: bool = False,
history_disabled: bool = True,
action: str = "next",
conversation_id: str = None,
parent_id: str = None,
image: ImageType = None,
response_fields: bool = False,
**kwargs
) -> AsyncResult:
"""
Create an asynchronous generator for the conversation.
Args:
model (str): The model name.
messages (Messages): The list of previous messages.
proxy (str): Proxy to use for requests.
timeout (int): Timeout for requests.
access_token (str): Access token for authentication.
cookies (dict): Cookies to use for authentication.
auto_continue (bool): Flag to automatically continue the conversation.
history_disabled (bool): Flag to disable history and training.
action (str): Type of action ('next', 'continue', 'variant').
conversation_id (str): ID of the conversation.
parent_id (str): ID of the parent message.
image (ImageType): Image to include in the conversation.
response_fields (bool): Flag to include response fields in the output.
**kwargs: Additional keyword arguments.
Yields:
AsyncResult: Asynchronous results from the generator.
Raises:
RuntimeError: If an error occurs during processing.
"""
model = MODELS.get(model, model)
if not parent_id:
parent_id = str(uuid.uuid4())
if not cookies:
cookies = cls._cookies or get_cookies("chat.openai.com")
if not access_token and "access_token" in cookies:
access_token = cookies["access_token"]
if not access_token:
login_url = os.environ.get("G4F_LOGIN_URL")
if login_url:
yield f"Please login: [ChatGPT]({login_url})\n\n"
access_token, cookies = cls._browse_access_token(proxy)
cls._cookies = cookies
headers = {"Authorization": f"Bearer {access_token}"}
async with StreamSession(
proxies={"https": proxy},
impersonate="chrome110",
timeout=timeout,
cookies=dict([(name, value) for name, value in cookies.items() if name == "_puid"])
) as session:
if not model:
model = await cls._get_default_model(session, headers)
try:
image_response = None
if image:
image_response = await cls._upload_image(session, headers, image)
yield image_response
except Exception as e:
yield e
end_turn = EndTurn()
while not end_turn.is_end:
data = {
"action": action,
"arkose_token": await cls._get_arkose_token(session),
"conversation_id": conversation_id,
"parent_message_id": parent_id,
"model": model,
"history_and_training_disabled": history_disabled and not auto_continue,
}
if action != "continue":
prompt = format_prompt(messages) if not conversation_id else messages[-1]["content"]
data["messages"] = cls._create_messages(prompt, image_response)
async with session.post(
f"{cls.url}/backend-api/conversation",
json=data,
headers={"Accept": "text/event-stream", **headers}
) as response:
if not response.ok:
raise RuntimeError(f"Response {response.status_code}: {await response.text()}")
try:
last_message: int = 0
async for line in response.iter_lines():
if not line.startswith(b"data: "):
continue
elif line.startswith(b"data: [DONE]"):
break
try:
line = json.loads(line[6:])
except:
continue
if "message" not in line:
continue
if "error" in line and line["error"]:
raise RuntimeError(line["error"])
if "message_type" not in line["message"]["metadata"]:
continue
try:
image_response = await cls._get_generated_image(session, headers, line)
if image_response:
yield image_response
except Exception as e:
yield e
if line["message"]["author"]["role"] != "assistant":
continue
if line["message"]["content"]["content_type"] != "text":
continue
if line["message"]["metadata"]["message_type"] not in ("next", "continue", "variant"):
continue
conversation_id = line["conversation_id"]
parent_id = line["message"]["id"]
if response_fields:
response_fields = False
yield ResponseFields(conversation_id, parent_id, end_turn)
if "parts" in line["message"]["content"]:
new_message = line["message"]["content"]["parts"][0]
if len(new_message) > last_message:
yield new_message[last_message:]
last_message = len(new_message)
if "finish_details" in line["message"]["metadata"]:
if line["message"]["metadata"]["finish_details"]["type"] == "stop":
end_turn.end()
except Exception as e:
raise e
if not auto_continue:
break
action = "continue"
await asyncio.sleep(5)
if history_disabled and auto_continue:
await cls._delete_conversation(session, headers, conversation_id)
@classmethod
def _browse_access_token(cls, proxy: str = None, timeout: int = 1200) -> tuple[str, dict]:
"""
Browse to obtain an access token.
Args:
proxy (str): Proxy to use for browsing.
Returns:
tuple[str, dict]: A tuple containing the access token and cookies.
"""
driver = get_browser(proxy=proxy)
try:
driver.get(f"{cls.url}/")
WebDriverWait(driver, timeout).until(EC.presence_of_element_located((By.ID, "prompt-textarea")))
access_token = driver.execute_script(
"let session = await fetch('/api/auth/session');"
"let data = await session.json();"
"let accessToken = data['accessToken'];"
"let expires = new Date(); expires.setTime(expires.getTime() + 60 * 60 * 24 * 7);"
"document.cookie = 'access_token=' + accessToken + ';expires=' + expires.toUTCString() + ';path=/';"
"return accessToken;"
)
return access_token, get_driver_cookies(driver)
finally:
driver.quit()
@classmethod
async def _get_arkose_token(cls, session: StreamSession) -> str:
"""
Obtain an Arkose token for the session.
Args:
session (StreamSession): The session object.
Returns:
str: The Arkose token.
Raises:
RuntimeError: If unable to retrieve the token.
"""
config = {
"pkey": "3D86FBBA-9D22-402A-B512-3420086BA6CC",
"surl": "https://tcr9i.chat.openai.com",
"headers": {
"User-Agent": 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/107.0.0.0 Safari/537.36'
},
"site": cls.url,
}
args_for_request = get_values_for_request(config)
async with session.post(**args_for_request) as response:
response.raise_for_status()
decoded_json = await response.json()
if "token" in decoded_json:
return decoded_json["token"]
raise RuntimeError(f"Response: {decoded_json}")
class EndTurn:
"""
Class to represent the end of a conversation turn.
"""
def __init__(self):
self.is_end = False
def end(self):
self.is_end = True
class ResponseFields:
"""
Class to encapsulate response fields.
"""
def __init__(self, conversation_id: str, message_id: str, end_turn: EndTurn):
self.conversation_id = conversation_id
self.message_id = message_id
self._end_turn = end_turn
class Response():
"""
Class to encapsulate a response from the chat service.
"""
def __init__(
self,
generator: AsyncResult,
action: str,
messages: Messages,
options: dict
):
self._generator = generator
self.action = action
self.is_end = False
self._message = None
self._messages = messages
self._options = options
self._fields = None
async def generator(self):
if self._generator:
self._generator = None
chunks = []
async for chunk in self._generator:
if isinstance(chunk, ResponseFields):
self._fields = chunk
else:
yield chunk
chunks.append(str(chunk))
self._message = "".join(chunks)
if not self._fields:
raise RuntimeError("Missing response fields")
self.is_end = self._fields._end_turn.is_end
def __aiter__(self):
return self.generator()
@async_cached_property
async def message(self) -> str:
await self.generator()
return self._message
async def get_fields(self):
await self.generator()
return {"conversation_id": self._fields.conversation_id, "parent_id": self._fields.message_id}
async def next(self, prompt: str, **kwargs) -> Response:
return await OpenaiChat.create(
**self._options,
prompt=prompt,
messages=await self.messages,
action="next",
**await self.get_fields(),
**kwargs
)
async def do_continue(self, **kwargs) -> Response:
fields = await self.get_fields()
if self.is_end:
raise RuntimeError("Can't continue message. Message already finished.")
return await OpenaiChat.create(
**self._options,
messages=await self.messages,
action="continue",
**fields,
**kwargs
)
async def variant(self, **kwargs) -> Response:
if self.action != "next":
raise RuntimeError("Can't create variant from continue or variant request.")
return await OpenaiChat.create(
**self._options,
messages=self._messages,
action="variant",
**await self.get_fields(),
**kwargs
)
@async_cached_property
async def messages(self):
messages = self._messages
messages.append({"role": "assistant", "content": await self.message})
return messages |