File size: 16,033 Bytes
5b90b0d a306750 7f3dfcc a306750 cbbd51f a306750 167f6e6 295803f a306750 cbbd51f f4672c6 295803f a306750 5b90b0d a306750 820eb4b a306750 c350bb5 aade08d a306750 4f047bc cbbd51f f4672c6 a306750 f4672c6 a306750 cbbd51f f18e6b9 f4672c6 a306750 aade08d cbbd51f f4672c6 cbbd51f f4672c6 295803f f4672c6 295803f f4672c6 295803f f4672c6 295803f f4672c6 295803f f4672c6 cbbd51f bf69cdf f4672c6 cbbd51f f4672c6 cbbd51f f4672c6 a306750 cbbd51f f56bb7e cbbd51f 07968d5 cbbd51f 3294219 f4672c6 cbbd51f 295803f 08b4bf9 295803f cbbd51f 08b4bf9 cbbd51f 08b4bf9 cbbd51f e279e64 295803f a306750 295803f 99af063 295803f 99af063 295803f 99af063 295803f cbbd51f f4672c6 295803f f4672c6 295803f 99af063 f4672c6 99af063 f4672c6 99af063 f4672c6 cbbd51f 295803f a306750 f4672c6 99af063 f4672c6 a306750 cbbd51f a306750 99af063 f4672c6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 |
import cachetools
from pydantic import BaseModel
from llama_cpp import Llama
from concurrent.futures import ThreadPoolExecutor, as_completed
import asyncio
import os
from dotenv import load_dotenv
from fastapi import FastAPI
from fastapi.responses import StreamingResponse, JSONResponse
import uvicorn
from threading import Thread
import psutil
import gc
import torch
import numpy as np
from PIL import Image
import stable_diffusion_cpp as sdcpp
import base64
import io
import time
from typing import AsyncGenerator
load_dotenv()
HUGGINGFACE_TOKEN = os.getenv("HUGGINGFACE_TOKEN")
cache = cachetools.TTLCache(maxsize=100, ttl=60)
global_data = {
'models': {},
'tokensxx': {
'eos': '<|end_of-text|>',
'pad': '<pad>',
'unk': '<unk>',
'bos': '<|begin_of_text|>',
'sep': '<|sep|>',
'cls': '<|cls|>',
'mask': '<mask>',
'eot': '<|eot_id|>',
'eom': '<|eom_id|>',
'lf': '<|0x0A|>'
},
'tokens': {
'eos': 'eos_token',
'pad': 'pad_token',
'unk': 'unk_token',
'bos': 'bos_token',
'sep': 'sep_token',
'cls': 'cls_token',
'mask': 'mask_token'
},
'model_metadata': {},
'eos': {},
'pad': {},
'padding': {},
'unk': {},
'bos': {},
'sep': {},
'cls': {},
'mask': {},
'eot': {},
'eom': {},
'lf': {},
'max_tokens': {},
'tokenizers': {},
'model_params': {},
'model_size': {},
'model_ftype': {},
'n_ctx_train': {},
'n_embd': {},
'n_layer': {},
'n_head': {},
'n_head_kv': {},
'n_rot': {},
'n_swa': {},
'n_embd_head_k': {},
'n_embd_head_v': {},
'n_gqa': {},
'n_embd_k_gqa': {},
'n_embd_v_gqa': {},
'f_norm_eps': {},
'f_norm_rms_eps': {},
'f_clamp_kqv': {},
'f_max_alibi_bias': {},
'f_logit_scale': {},
'n_ff': {},
'n_expert': {},
'n_expert_used': {},
'causal_attn': {},
'pooling_type': {},
'rope_type': {},
'rope_scaling': {},
'freq_base_train': {},
'freq_scale_train': {},
'n_ctx_orig_yarn': {},
'rope_finetuned': {},
'ssm_d_conv': {},
'ssm_d_inner': {},
'ssm_d_state': {},
'ssm_dt_rank': {},
'ssm_dt_b_c_rms': {},
'vocab_type': {},
'model_type': {},
"general.architecture": {},
"general.type": {},
"general.name": {},
"general.finetune": {},
"general.basename": {},
"general.size_label": {},
"general.license": {},
"general.license.link": {},
"general.tags": {},
"general.languages": {},
"general.organization": {},
"general.base_model.count": {},
'general.file_type': {},
"phi3.context_length": {},
"phi3.rope.scaling.original_context_length": {},
"phi3.embedding_length": {},
"phi3.feed_forward_length": {},
"phi3.block_count": {},
"phi3.attention.head_count": {},
"phi3.attention.head_count_kv": {},
"phi3.attention.layer_norm_rms_epsilon": {},
"phi3.rope.dimension_count": {},
"phi3.rope.freq_base": {},
"phi3.attention.sliding_window": {},
"phi3.rope.scaling.attn_factor": {},
"llama.block_count": {},
"llama.context_length": {},
"llama.embedding_length": {},
"llama.feed_forward_length": {},
"llama.attention.head_count": {},
"llama.attention.head_count_kv": {},
"llama.rope.freq_base": {},
"llama.attention.layer_norm_rms_epsilon": {},
"llama.attention.key_length": {},
"llama.attention.value_length": {},
"llama.vocab_size": {},
"llama.rope.dimension_count": {},
"deepseek2.block_count": {},
"deepseek2.context_length": {},
"deepseek2.embedding_length": {},
"deepseek2.feed_forward_length": {},
"deepseek2.attention.head_count": {},
"deepseek2.attention.head_count_kv": {},
"deepseek2.rope.freq_base": {},
"deepseek2.attention.layer_norm_rms_epsilon": {},
"deepseek2.expert_used_count": {},
"deepseek2.leading_dense_block_count": {},
"deepseek2.vocab_size": {},
"deepseek2.attention.kv_lora_rank": {},
"deepseek2.attention.key_length": {},
"deepseek2.attention.value_length": {},
"deepseek2.expert_feed_forward_length": {},
"deepseek2.expert_count": {},
"deepseek2.expert_shared_count": {},
"deepseek2.expert_weights_scale": {},
"deepseek2.rope.dimension_count": {},
"deepseek2.rope.scaling.type": {},
"deepseek2.rope.scaling.factor": {},
"deepseek2.rope.scaling.yarn_log_multiplier": {},
"qwen2.block_count": {},
"qwen2.context_length": {},
"qwen2.embedding_length": {},
"qwen2.feed_forward_length": {},
"qwen2.attention.head_count": {},
"qwen2.attention.head_count_kv": {},
"qwen2.rope.freq_base": {},
"qwen2.attention.layer_norm_rms_epsilon": {},
"general.version": {},
"general.datasets": {},
"tokenizer.ggml.model": {},
"tokenizer.ggml.pre": {},
"tokenizer.ggml.tokens": {},
"tokenizer.ggml.token_type": {},
"tokenizer.ggml.merges": {},
"tokenizer.ggml.bos_token_id": {},
"tokenizer.ggml.eos_token_id": {},
"tokenizer.ggml.unknown_token_id": {},
"tokenizer.ggml.padding_token_id": {},
"tokenizer.ggml.add_bos_token": {},
"tokenizer.ggml.add_eos_token": {},
"tokenizer.ggml.add_space_prefix": {},
"tokenizer.chat_template": {},
"quantize.imatrix.file": {},
"quantize.imatrix.dataset": {},
"quantize.imatrix.entries_count": {},
"quantize.imatrix.chunks_count": {},
"general.quantization_version": {},
'n_lora_q': {},
'n_lora_kv': {},
'n_expert_shared': {},
'n_ff_exp': {},
"n_layer_dense_lead": {},
"expert_weights_scale": {},
"rope_yarn_log_mul": {},
'eval': {},
'time': {},
'token': {},
'tokens': {},
'pads': {},
'model': {},
'base': {},
'model_base': {},
'perhaps': {},
'word': {},
'words': {},
'start': {},
'stop': {},
'run': {},
'runs': {},
'ms': {},
'vocabulary': {},
'timeout': {},
'load': {},
'load_time': {},
'bas': {},
'tok': {},
'second': {},
'seconds': {},
'graph': {},
'load_model': {},
'end': {},
'llama_perf_context_print': {},
'llm_load_print_meta': {},
'model_type': {},
'image_model': {}
}
model_configs = [
{
"repo_id": "Hjgugugjhuhjggg/testing_semifinal-Q2_K-GGUF",
"filename": "testing_semifinal-q2_k.gguf",
"name": "testing"
},
{
"repo_id": "bartowski/Llama-3.2-3B-Instruct-uncensored-GGUF",
"filename": "Llama-3.2-3B-Instruct-uncensored-Q2_K.gguf",
"name": "Llama-3.2-3B-Instruct"
},
{
"repo_id": "city96/FLUX.1-schnell-gguf",
"filename": "flux1-schnell-Q2_K.gguf",
"name": "flux1-schnell"
},
]
class ModelManager:
def __init__(self):
self.models = {}
self.image_model = None
def load_model(self, model_config):
if model_config['name'] not in self.models and model_config['name'] != "flux1-schnell":
try:
print(f"Loading model: {model_config['name']}")
self.models[model_config['name']] = Llama.from_pretrained(
repo_id=model_config['repo_id'],
filename=model_config['filename'],
use_auth_token=HUGGINGFACE_TOKEN,
n_threads=20,
use_gpu=False
)
print(f"Model loaded: {model_config['name']}")
# Load tokenizer after model load
if model_config['name'] not in global_data['tokenizers']:
global_data['tokenizers'][model_config['name']] = self.models[model_config['name']].tokenizer()
print(f"tokenizer loaded for: {model_config['name']}")
# load the eos token
global_data['eos'][model_config['name']] = self.models[model_config['name']].token_eos()
print(f"eos loaded for: {model_config['name']}")
except Exception as e:
print(f"Error loading model {model_config['name']}: {e}")
def load_image_model(self, model_config):
try:
print(f"Attempting to load image model with config: {model_config}")
self.image_model = sdcpp.StableDiffusionCpp(
repo_id=model_config['repo_id'],
filename=model_config['filename'],
use_auth_token=HUGGINGFACE_TOKEN,
n_threads=20,
use_gpu=False
)
print(f"Image model loaded successfully: {self.image_model}")
except Exception as e:
print(f"Error loading image model: {e}")
def load_all_models(self):
with ThreadPoolExecutor() as executor:
for config in model_configs:
if config['name'] == "flux1-schnell":
executor.submit(self.load_image_model, config)
else:
executor.submit(self.load_model, config)
return self.models, self.image_model
model_manager = ModelManager()
global_data['models'], global_data['image_model'] = model_manager.load_all_models()
class ChatRequest(BaseModel):
message: str
class ImageRequest(BaseModel):
prompt: str
def normalize_input(input_text):
return input_text.strip()
def remove_duplicates(text):
lines = text.split('\n')
unique_lines = []
seen_lines = set()
for line in lines:
if line not in seen_lines:
unique_lines.append(line)
seen_lines.add(line)
return '\n'.join(unique_lines)
def cache_response(func):
def wrapper(*args, **kwargs):
cache_key = f"{args}-{kwargs}"
if cache_key in cache:
return cache[cache_key]
response = func(*args, **kwargs)
cache[cache_key] = response
return response
return wrapper
@cache_response
def generate_model_response(model, inputs, max_tokens=9999999):
try:
response = model(inputs, max_tokens=max_tokens)
return remove_duplicates(response['choices'][0]['text'])
except Exception as e:
return ""
def remove_repetitive_responses(responses):
unique_responses = {}
for response in responses:
if response['model'] not in unique_responses:
unique_responses[response['model']] = response['response']
return unique_responses
async def process_message(message: str):
inputs = normalize_input(message)
async def stream_response(inputs: str) -> AsyncGenerator[str, None]:
max_token_limit = 150
full_response = ""
current_inputs = inputs
eos_found = False
start_time = time.time()
executor = ThreadPoolExecutor()
while current_inputs and not eos_found:
futures = [
executor.submit(generate_model_response, model, current_inputs, max_tokens=max_token_limit)
for model in global_data['models'].values()
]
responses = [
{'model': model_name, 'response': future.result()}
for model_name, future in zip(global_data['models'].keys(), as_completed(futures))
]
unique_responses = remove_repetitive_responses(responses)
formatted_response = next(iter(unique_responses.values()))
print(f"Generated chunk: {formatted_response}")
#tokenize the response
tokenizer = next(iter(global_data['tokenizers'].values()))
tokens = tokenizer.encode(formatted_response)
token_count = len(tokens)
chunk_size = 30 # Set token chunk size
for i in range(0, token_count, chunk_size):
chunk_tokens = tokens[i : i + chunk_size]
decoded_chunk = tokenizer.decode(chunk_tokens)
yield decoded_chunk
# Check for EOS token in decoded chunk
eos_token = next(iter(global_data['eos'].values()))
if eos_token in tokens:
eos_found = True
print(f"End of sequence token found")
break
full_response += formatted_response
current_inputs = formatted_response if len(formatted_response.split()) > 0 else ""
end_time = time.time()
executor.shutdown(wait=True) # waits for all threads to finish
print(f"Total time taken to process response {end_time-start_time}")
return StreamingResponse(stream_response(inputs), media_type="text/plain")
async def generate_image(prompt: str):
if global_data['image_model']:
try:
print("Generating image with prompt:", prompt)
image_bytes = global_data['image_model'].generate(
prompt=prompt,
negative_prompt="ugly, deformed, disfigured",
steps=25,
cfg_scale=7.0,
width=512,
height=512,
seed=-1,
return_type='bytes'
)
image = Image.open(io.BytesIO(image_bytes))
print("Image generated successfully.")
buffered = io.BytesIO()
image.save(buffered, format="PNG")
image_base64 = base64.b64encode(buffered.getvalue()).decode()
return JSONResponse(content={"image": image_base64})
except Exception as e:
print(f"Error generating image: {e}")
return JSONResponse(content={"error": str(e)})
else:
print("No image model loaded.")
return JSONResponse(content={"error": "No image model loaded"})
def release_resources():
try:
torch.cuda.empty_cache()
gc.collect()
except Exception as e:
print(f"Failed to release resources: {e}")
def resource_manager():
MAX_RAM_PERCENT = 10
MAX_CPU_PERCENT = 10
MAX_GPU_PERCENT = 10
MAX_RAM_MB = 1024 # 1GB
while True:
try:
virtual_mem = psutil.virtual_memory()
current_ram_percent = virtual_mem.percent
current_ram_mb = virtual_mem.used / (1024 * 1024) # Convert to MB
if current_ram_percent > MAX_RAM_PERCENT or current_ram_mb > MAX_RAM_MB:
release_resources()
current_cpu_percent = psutil.cpu_percent()
if current_cpu_percent > MAX_CPU_PERCENT:
print("CPU usage too high, attempting to reduce nice")
p = psutil.Process(os.getpid())
p.nice(1)
if torch.cuda.is_available():
gpu = torch.cuda.current_device()
gpu_mem = torch.cuda.memory_percent(gpu)
if gpu_mem > MAX_GPU_PERCENT:
release_resources()
time.sleep(10) # Check every 10 seconds
except Exception as e:
print(f"Error in resource manager: {e}")
app = FastAPI()
@app.post("/generate")
async def generate(request: ChatRequest):
try:
return await process_message(request.message)
except Exception as e:
return JSONResponse(content={"error": str(e)})
@app.post("/generate_image")
async def generate_image_endpoint(request: ImageRequest):
try:
return await generate_image(request.prompt)
except Exception as e:
return JSONResponse(content={"error": str(e)})
def run_uvicorn():
try:
uvicorn.run(app, host="0.0.0.0", port=7860)
except Exception as e:
print(f"Error al ejecutar uvicorn: {e}")
if __name__ == "__main__":
Thread(target=run_uvicorn).start()
Thread(target=resource_manager, daemon=True).start() # Run resource manager in background
asyncio.get_event_loop().run_forever() |