diff --git a/.gitattributes b/.gitattributes
index c7d9f3332a950355d5a77d85000f05e6f45435ea..e339d11e08bb73a20958b21166d3937c9ae479a5 100644
--- a/.gitattributes
+++ b/.gitattributes
@@ -32,3 +32,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
 *.zip filter=lfs diff=lfs merge=lfs -text
 *.zst filter=lfs diff=lfs merge=lfs -text
 *tfevents* filter=lfs diff=lfs merge=lfs -text
+*.psd filter=lfs diff=lfs merge=lfs -text
diff --git a/README.md b/README.md
index 03cb7eb74f4ec004d3bf7178414b16d3631b0186..139dc454d481b5ea557249742bb32a1a9bad13ad 100644
--- a/README.md
+++ b/README.md
@@ -1,10 +1,10 @@
 ---
-title: Image Editing With GPT3
-emoji: 🐨
+title: X Decoder
+emoji: 📈
 colorFrom: purple
-colorTo: blue
+colorTo: gray
 sdk: gradio
-sdk_version: 3.16.1
+sdk_version: 3.14.0
 app_file: app.py
 pinned: false
 license: afl-3.0
diff --git a/__init__.py b/__init__.py
new file mode 100755
index 0000000000000000000000000000000000000000..e69de29bb2d1d6434b8b29ae775ad8c2e48c5391
diff --git a/app.py b/app.py
new file mode 100644
index 0000000000000000000000000000000000000000..2c0b85755b8d5e772a0f27efa063e180d4d83e47
--- /dev/null
+++ b/app.py
@@ -0,0 +1,98 @@
+# --------------------------------------------------------
+# X-Decoder -- Generalized Decoding for Pixel, Image, and Language
+# Copyright (c) 2022 Microsoft
+# Licensed under The MIT License [see LICENSE for details]
+# Written by Jianwei Yang (jianwyan@microsoft.com), Xueyan Zou (xueyan@cs.wisc.edu)
+# --------------------------------------------------------
+
+import os
+os.system("python -m pip install git+https://github.com/MaureenZOU/detectron2-xyz.git")
+
+import gradio as gr
+import torch
+import argparse
+
+from xdecoder.BaseModel import BaseModel
+from xdecoder import build_model
+from utils.distributed import init_distributed
+from utils.arguments import load_opt_from_config_files
+
+from tasks import *
+
+def parse_option():
+    parser = argparse.ArgumentParser('X-Decoder All-in-One Demo', add_help=False)
+    parser.add_argument('--conf_files', default="configs/xdecoder/svlp_focalt_lang.yaml", metavar="FILE", help='path to config file', )
+    args = parser.parse_args()
+
+    return args
+
+'''
+build args
+'''
+args = parse_option()
+opt = load_opt_from_config_files(args.conf_files)
+opt = init_distributed(opt)
+
+# META DATA
+pretrained_pth_last = os.path.join("xdecoder_focalt_last.pt")
+pretrained_pth_novg = os.path.join("xdecoder_focalt_last_novg.pt")
+
+if not os.path.exists(pretrained_pth_last):
+    os.system("wget {}".format("https://projects4jw.blob.core.windows.net/x-decoder/release/xdecoder_focalt_last.pt"))
+
+if not os.path.exists(pretrained_pth_novg):
+    os.system("wget {}".format("https://projects4jw.blob.core.windows.net/x-decoder/release/xdecoder_focalt_last_novg.pt"))
+
+
+'''
+build model
+'''
+model_last = BaseModel(opt, build_model(opt)).from_pretrained(pretrained_pth_last).eval().cuda()
+model_cap = BaseModel(opt, build_model(opt)).from_pretrained(pretrained_pth_novg).eval().cuda()
+
+with torch.no_grad():
+    model_last.model.sem_seg_head.predictor.lang_encoder.get_text_embeddings(["background", "background"], is_eval=True)
+    model_cap.model.sem_seg_head.predictor.lang_encoder.get_text_embeddings(["background", "background"], is_eval=True)
+
+'''
+inference model
+'''
+
+@torch.no_grad()
+def inference(image, instruction, *args, **kwargs):
+    image = image.convert("RGB")
+    with torch.autocast(device_type='cuda', dtype=torch.float16):
+        return referring_inpainting_gpt3(model_last, image, instruction, *args, **kwargs)
+
+'''
+launch app
+'''
+title = "X-Decoder + GPT-3 Instructional Image Editing"
+description = "<p style='text-align: center'> <a href='https://x-decoder-vl.github.io/' target='_blank'>Project Page</a> | <a href='https://arxiv.org/pdf/2212.11270.pdf' target='_blank'>Paper</a> | <a href='https://github.com/microsoft/X-Decoder' target='_blank'>Github Repo</a> | <a href='https://youtu.be/wYp6vmyolqE' target='_blank'>Video</a> </p>"
+
+article = "The Demo is Run on X-Decoder (Focal-T)."
+
+inputs = [gr.inputs.Image(type='pil'), gr.Textbox(label="instruction")]
+gr.Interface(
+    fn=inference,
+    inputs=inputs,
+    outputs=[
+        gr.outputs.Image(
+        type="pil",
+        label="segmentation results"),
+        gr.Textbox(label="text restuls"),
+        gr.outputs.Image(
+        type="pil",
+        label="inpainting results"),
+    ],
+    examples=[
+    ["./images/apples.jpg", "change green apple to a red apple"],
+    ["./images/girl_and_two_boys.png", "remove the boy with blue backbag"],
+    ["./images/dog.png", "remove the dog"],
+    ],
+    title=title,
+    description=description,
+    article=article,
+    allow_flagging='never',
+    cache_examples=True,
+).launch(share=True)
\ No newline at end of file
diff --git a/configs/xdecoder/svlp_focalt_lang.yaml b/configs/xdecoder/svlp_focalt_lang.yaml
new file mode 100755
index 0000000000000000000000000000000000000000..8010124cad660e07e8de7fae1f91166ff1ac834d
--- /dev/null
+++ b/configs/xdecoder/svlp_focalt_lang.yaml
@@ -0,0 +1,110 @@
+# --------------------------------------------------------
+# X-Decoder -- Generalized Decoding for Pixel, Image, and Language
+# Copyright (c) 2022 Microsoft
+# Licensed under The MIT License [see LICENSE for details]
+# Written by Xueyan Zou (xueyan@cs.wisc.edu)
+# --------------------------------------------------------
+
+##################
+# Task settings
+##################
+VERBOSE: true
+MODEL:
+  NAME: xdecoder_model
+  HEAD: xdecoder_head
+  DIM_PROJ: 512
+  BACKBONE_DIM: 768
+  TEXT:
+    ARCH: vlpencoder
+    NAME: transformer
+    TOKENIZER: clip
+    CONTEXT_LENGTH: 77 # 77
+    WIDTH: 512
+    HEADS: 8
+    LAYERS: 12 # 6
+    AUTOGRESSIVE: True
+  BACKBONE:
+    NAME: focal_dw
+    PRETRAINED: ''
+    LOAD_PRETRAINED: false
+    FOCAL:
+      PRETRAIN_IMG_SIZE: 224
+      PATCH_SIZE: 4
+      EMBED_DIM: 96
+      DEPTHS: [2, 2, 6, 2]
+      FOCAL_LEVELS: [3, 3, 3, 3]
+      FOCAL_WINDOWS: [3, 3, 3, 3]
+      DROP_PATH_RATE: 0.3
+      MLP_RATIO: 4.0
+      DROP_RATE: 0.0
+      PATCH_NORM: True
+      USE_CONV_EMBED: True
+      SCALING_MODULATOR: True
+      USE_CHECKPOINT: False
+      USE_POSTLN: true
+      USE_POSTLN_IN_MODULATION: false
+      USE_LAYERSCALE: True
+      OUT_FEATURES: ["res2", "res3", "res4", "res5"]
+      OUT_INDICES: [0, 1, 2, 3]
+  ENCODER:
+    NAME: transformer_encoder_fpn
+    IGNORE_VALUE: 255
+    NUM_CLASSES: 133
+    LOSS_WEIGHT: 1.0
+    CONVS_DIM: 512
+    MASK_DIM: 512
+    NORM: "GN"
+    IN_FEATURES: ["res2", "res3", "res4", "res5"]
+    DEFORMABLE_TRANSFORMER_ENCODER_IN_FEATURES: ["res3", "res4", "res5"]
+    COMMON_STRIDE: 4
+    TRANSFORMER_ENC_LAYERS: 6
+  DECODER:
+    NAME: xdecoder
+    TRANSFORMER_IN_FEATURE: "multi_scale_pixel_decoder"
+    MASK: True
+    GROUNDING:
+      ENABLED: True
+      MAX_LEN: 5
+      TEXT_WEIGHT: 2.0
+      CLASS_WEIGHT: 0.5
+    DETECTION: False
+    CAPTION:
+      ENABLED: True
+      PHRASE_PROB: 0.0
+      SIM_THRES: 0.95
+    CAPTIONING:
+      ENABLED: True
+      STEP: 50
+    RETRIEVAL:
+      ENABLED: True
+      DIM_IMG: 768
+      ENSEMBLE: True
+    HIDDEN_DIM: 512
+    NUM_OBJECT_QUERIES: 101
+    NHEADS: 8
+    DROPOUT: 0.0
+    DIM_FEEDFORWARD: 2048
+    PRE_NORM: False
+    ENFORCE_INPUT_PROJ: False
+    SIZE_DIVISIBILITY: 32
+    TRAIN_NUM_POINTS: 12544
+    OVERSAMPLE_RATIO: 3.0
+    IMPORTANCE_SAMPLE_RATIO: 0.75
+    DEC_LAYERS: 10  # 9 decoder layers, add one for the loss on learnable query
+    TOP_GROUNDING_LAYERS: 3
+    TOP_CAPTION_LAYERS: 3
+    TOP_CAPTIONING_LAYERS: 3
+    TOP_RETRIEVAL_LAYERS: 3
+    TOP_OPENIMAGE_LAYERS: 10
+    TEST:
+      SEMANTIC_ON: True
+      INSTANCE_ON: True
+      PANOPTIC_ON: True
+      OVERLAP_THRESHOLD: 0.8
+      OBJECT_MASK_THRESHOLD: 0.4
+      SEM_SEG_POSTPROCESSING_BEFORE_INFERENCE: false
+      DETECTIONS_PER_IMAGE: 100
+
+INPUT:
+  PIXEL_MEAN: [123.675, 116.280, 103.530]
+  PIXEL_STD: [58.395, 57.120, 57.375]
\ No newline at end of file
diff --git a/images/apples.jpg b/images/apples.jpg
new file mode 100644
index 0000000000000000000000000000000000000000..52c854d1e31430e1100ef0231c70016b8ba835b8
Binary files /dev/null and b/images/apples.jpg differ
diff --git a/images/coco/000.jpg b/images/coco/000.jpg
new file mode 100755
index 0000000000000000000000000000000000000000..af38ff573f505d7fb24aca165fe36a02f4a0561e
Binary files /dev/null and b/images/coco/000.jpg differ
diff --git a/images/coco/001.jpg b/images/coco/001.jpg
new file mode 100755
index 0000000000000000000000000000000000000000..9b68704d20116fa24faade4c6a90250231c020fa
Binary files /dev/null and b/images/coco/001.jpg differ
diff --git a/images/coco/002.jpg b/images/coco/002.jpg
new file mode 100755
index 0000000000000000000000000000000000000000..d4dffd00b209fabcacb664f3fa7d8b4ea781a0e9
Binary files /dev/null and b/images/coco/002.jpg differ
diff --git a/images/coco/003.jpg b/images/coco/003.jpg
new file mode 100755
index 0000000000000000000000000000000000000000..06d3accacfd2ac0e1b501b29e5cb9f73dd819861
Binary files /dev/null and b/images/coco/003.jpg differ
diff --git a/images/coco/004.jpg b/images/coco/004.jpg
new file mode 100755
index 0000000000000000000000000000000000000000..36dece6f1f94660514399899ef8f430539995927
Binary files /dev/null and b/images/coco/004.jpg differ
diff --git a/images/coco/005.jpg b/images/coco/005.jpg
new file mode 100755
index 0000000000000000000000000000000000000000..31c6139af798e434b8aae1143cadaf258a8149db
Binary files /dev/null and b/images/coco/005.jpg differ
diff --git a/images/coco/006.jpg b/images/coco/006.jpg
new file mode 100755
index 0000000000000000000000000000000000000000..1f0385e5735f38f24109808c2b38e46572f8e7ff
Binary files /dev/null and b/images/coco/006.jpg differ
diff --git a/images/coco/007.jpg b/images/coco/007.jpg
new file mode 100755
index 0000000000000000000000000000000000000000..57344ef00f67f202a1d03b9fa1b93134b977e25d
Binary files /dev/null and b/images/coco/007.jpg differ
diff --git a/images/coco/008.jpg b/images/coco/008.jpg
new file mode 100755
index 0000000000000000000000000000000000000000..665e1652e5bc26b88ddfc3e86120309e72cc4889
Binary files /dev/null and b/images/coco/008.jpg differ
diff --git a/images/coco/009.jpg b/images/coco/009.jpg
new file mode 100755
index 0000000000000000000000000000000000000000..03b87a9ab6fad9546d9abeeab9b07dbd5b489d89
Binary files /dev/null and b/images/coco/009.jpg differ
diff --git a/images/coco/010.jpg b/images/coco/010.jpg
new file mode 100755
index 0000000000000000000000000000000000000000..7767b0481e9047839d6c4fe6ae4df24c06fa9848
Binary files /dev/null and b/images/coco/010.jpg differ
diff --git a/images/coco/011.jpg b/images/coco/011.jpg
new file mode 100755
index 0000000000000000000000000000000000000000..9541405d88ae703a4bc013a0dfdc973576aa852f
Binary files /dev/null and b/images/coco/011.jpg differ
diff --git a/images/coco/012.jpg b/images/coco/012.jpg
new file mode 100755
index 0000000000000000000000000000000000000000..6e4a51585d5bb1f668dc2c3aedd058ade022f58e
Binary files /dev/null and b/images/coco/012.jpg differ
diff --git a/images/coco/013.jpg b/images/coco/013.jpg
new file mode 100755
index 0000000000000000000000000000000000000000..0eaac632ff14f217801ea35e69740f1e0b0233bc
Binary files /dev/null and b/images/coco/013.jpg differ
diff --git a/images/coco/014.jpg b/images/coco/014.jpg
new file mode 100755
index 0000000000000000000000000000000000000000..389684fac4ad79ea89ad8a22227e7c2816d449b5
Binary files /dev/null and b/images/coco/014.jpg differ
diff --git a/images/coco/015.jpg b/images/coco/015.jpg
new file mode 100755
index 0000000000000000000000000000000000000000..47215aff0b3d89d8d9d873764c40d91ff1029087
Binary files /dev/null and b/images/coco/015.jpg differ
diff --git a/images/coco/016.jpg b/images/coco/016.jpg
new file mode 100755
index 0000000000000000000000000000000000000000..7c45b46f760f81f183b6870c7d874e01709fdfb7
Binary files /dev/null and b/images/coco/016.jpg differ
diff --git a/images/coco/017.jpg b/images/coco/017.jpg
new file mode 100755
index 0000000000000000000000000000000000000000..5e4b77deef254b0d45ae563d0480d1e17b6e2789
Binary files /dev/null and b/images/coco/017.jpg differ
diff --git a/images/coco/018.jpg b/images/coco/018.jpg
new file mode 100755
index 0000000000000000000000000000000000000000..dd6dc5c23f57c71babcd26e63bd2668a858fb6ee
Binary files /dev/null and b/images/coco/018.jpg differ
diff --git a/images/coco/019.jpg b/images/coco/019.jpg
new file mode 100755
index 0000000000000000000000000000000000000000..4e3bcc1a82881db0d727b4940267b3d4b5465a37
Binary files /dev/null and b/images/coco/019.jpg differ
diff --git a/images/coco/020.jpg b/images/coco/020.jpg
new file mode 100755
index 0000000000000000000000000000000000000000..e3cdc1c190987575cf811b4859adb015b67437ca
Binary files /dev/null and b/images/coco/020.jpg differ
diff --git a/images/coco/021.jpg b/images/coco/021.jpg
new file mode 100755
index 0000000000000000000000000000000000000000..527cef4736b529bc5833f9404d3b08d138f98d43
Binary files /dev/null and b/images/coco/021.jpg differ
diff --git a/images/coco/022.jpg b/images/coco/022.jpg
new file mode 100755
index 0000000000000000000000000000000000000000..28de1c765dfdae21a502d5c6c3d493cd5a55856f
Binary files /dev/null and b/images/coco/022.jpg differ
diff --git a/images/coco/023.jpg b/images/coco/023.jpg
new file mode 100755
index 0000000000000000000000000000000000000000..890f544bdc9bc55bde6ec7c7e3691dbea21e4765
Binary files /dev/null and b/images/coco/023.jpg differ
diff --git a/images/coco/024.jpg b/images/coco/024.jpg
new file mode 100755
index 0000000000000000000000000000000000000000..f9926d71dd23f18d4041d0425a386a36aad205a2
Binary files /dev/null and b/images/coco/024.jpg differ
diff --git a/images/coco/025.jpg b/images/coco/025.jpg
new file mode 100755
index 0000000000000000000000000000000000000000..63cdbd33d452ee5f2abb08ace9bf9416e8b83363
Binary files /dev/null and b/images/coco/025.jpg differ
diff --git a/images/coco/026.jpg b/images/coco/026.jpg
new file mode 100755
index 0000000000000000000000000000000000000000..05a3883234eae9be70fb5c8c256d7da58036c449
Binary files /dev/null and b/images/coco/026.jpg differ
diff --git a/images/coco/027.jpg b/images/coco/027.jpg
new file mode 100755
index 0000000000000000000000000000000000000000..c93d00d5f873b7d2bfa6ac0753a9cb35536bfd55
Binary files /dev/null and b/images/coco/027.jpg differ
diff --git a/images/coco/028.jpg b/images/coco/028.jpg
new file mode 100755
index 0000000000000000000000000000000000000000..f003f982f242d069331e31bb154f597049dd70dc
Binary files /dev/null and b/images/coco/028.jpg differ
diff --git a/images/coco/029.jpg b/images/coco/029.jpg
new file mode 100755
index 0000000000000000000000000000000000000000..5e71fda27908c37102501a7adde22b3d99e8438d
Binary files /dev/null and b/images/coco/029.jpg differ
diff --git a/images/coco/030.jpg b/images/coco/030.jpg
new file mode 100755
index 0000000000000000000000000000000000000000..e7f633f9a0bfdecc8c38909d49810f06e8e4d246
Binary files /dev/null and b/images/coco/030.jpg differ
diff --git a/images/coco/031.jpg b/images/coco/031.jpg
new file mode 100755
index 0000000000000000000000000000000000000000..f6c472549a9c03f0f243d86372dfcfb26b7bdb97
Binary files /dev/null and b/images/coco/031.jpg differ
diff --git a/images/coco/032.jpg b/images/coco/032.jpg
new file mode 100755
index 0000000000000000000000000000000000000000..0fd9657ed002d9591107fb7175d84c5587d90955
Binary files /dev/null and b/images/coco/032.jpg differ
diff --git a/images/coco/033.jpg b/images/coco/033.jpg
new file mode 100755
index 0000000000000000000000000000000000000000..cca519968adc695c5f5e3636f20405ce04ef75db
Binary files /dev/null and b/images/coco/033.jpg differ
diff --git a/images/coco/034.jpg b/images/coco/034.jpg
new file mode 100755
index 0000000000000000000000000000000000000000..1baebb5fbc1ebb838f5e1d2a47354715bd2c718d
Binary files /dev/null and b/images/coco/034.jpg differ
diff --git a/images/coco/035.jpg b/images/coco/035.jpg
new file mode 100755
index 0000000000000000000000000000000000000000..a3ce2201cad5dda06080290287d38312514bb223
Binary files /dev/null and b/images/coco/035.jpg differ
diff --git a/images/coco/036.jpg b/images/coco/036.jpg
new file mode 100755
index 0000000000000000000000000000000000000000..bc1ff9fffc8662d957a9fe15237ec985c96eb2ad
Binary files /dev/null and b/images/coco/036.jpg differ
diff --git a/images/coco/037.jpg b/images/coco/037.jpg
new file mode 100755
index 0000000000000000000000000000000000000000..1182e979223e8e0a9073e59e4701611f85245cf3
Binary files /dev/null and b/images/coco/037.jpg differ
diff --git a/images/coco/038.jpg b/images/coco/038.jpg
new file mode 100755
index 0000000000000000000000000000000000000000..1428c8d72d432df4bfd167f71813b720476bb0df
Binary files /dev/null and b/images/coco/038.jpg differ
diff --git a/images/coco/039.jpg b/images/coco/039.jpg
new file mode 100755
index 0000000000000000000000000000000000000000..c16d9e599d845bfbf945d8fdcda98012338cfebe
Binary files /dev/null and b/images/coco/039.jpg differ
diff --git a/images/coco/040.jpg b/images/coco/040.jpg
new file mode 100755
index 0000000000000000000000000000000000000000..f8c10c7c7f832be20595fe1f582f9b7b2e42b2f7
Binary files /dev/null and b/images/coco/040.jpg differ
diff --git a/images/coco/041.jpg b/images/coco/041.jpg
new file mode 100755
index 0000000000000000000000000000000000000000..65ecf1b5da6fc9cf958a263885f27dd3f260b048
Binary files /dev/null and b/images/coco/041.jpg differ
diff --git a/images/coco/042.jpg b/images/coco/042.jpg
new file mode 100755
index 0000000000000000000000000000000000000000..ceac8978d3b72a4a1eec17cf4355ab7d20de1a6f
Binary files /dev/null and b/images/coco/042.jpg differ
diff --git a/images/coco/043.jpg b/images/coco/043.jpg
new file mode 100755
index 0000000000000000000000000000000000000000..3c9de73569c928fc4937df914ea99ab5c45de0cc
Binary files /dev/null and b/images/coco/043.jpg differ
diff --git a/images/coco/044.jpg b/images/coco/044.jpg
new file mode 100755
index 0000000000000000000000000000000000000000..cc78c5d44252c507c0ae0c54fd74542743e6f910
Binary files /dev/null and b/images/coco/044.jpg differ
diff --git a/images/coco/045.jpg b/images/coco/045.jpg
new file mode 100755
index 0000000000000000000000000000000000000000..feceffce5ca35f547c2e9043ea5fa864c6cf96d5
Binary files /dev/null and b/images/coco/045.jpg differ
diff --git a/images/coco/046.jpg b/images/coco/046.jpg
new file mode 100755
index 0000000000000000000000000000000000000000..74b22da715685f4854b46bdf69d6db9ae2b97b68
Binary files /dev/null and b/images/coco/046.jpg differ
diff --git a/images/coco/047.jpg b/images/coco/047.jpg
new file mode 100755
index 0000000000000000000000000000000000000000..daadf5279748b32bbd150bc52b0a365906df4db6
Binary files /dev/null and b/images/coco/047.jpg differ
diff --git a/images/coco/048.jpg b/images/coco/048.jpg
new file mode 100755
index 0000000000000000000000000000000000000000..c8f2aa41dde43ea864aefbe1a59b938d93766cb2
Binary files /dev/null and b/images/coco/048.jpg differ
diff --git a/images/coco/049.jpg b/images/coco/049.jpg
new file mode 100755
index 0000000000000000000000000000000000000000..8cfc5971523a1904929227094253f32135698475
Binary files /dev/null and b/images/coco/049.jpg differ
diff --git a/images/coco/050.jpg b/images/coco/050.jpg
new file mode 100755
index 0000000000000000000000000000000000000000..914a9f4cd9157d32e2a7cbb7b581d6f41e462c5e
Binary files /dev/null and b/images/coco/050.jpg differ
diff --git a/images/coco/051.jpg b/images/coco/051.jpg
new file mode 100755
index 0000000000000000000000000000000000000000..f3ac1a476f8720990f7a813b04d6a56cc6dc8953
Binary files /dev/null and b/images/coco/051.jpg differ
diff --git a/images/coco/052.jpg b/images/coco/052.jpg
new file mode 100755
index 0000000000000000000000000000000000000000..ee0901142974bcc57b6f6bd82fb5857f3227cf37
Binary files /dev/null and b/images/coco/052.jpg differ
diff --git a/images/coco/053.jpg b/images/coco/053.jpg
new file mode 100755
index 0000000000000000000000000000000000000000..494b48c99e0ceb33a28e9f99d566525eaed310ea
Binary files /dev/null and b/images/coco/053.jpg differ
diff --git a/images/coco/054.jpg b/images/coco/054.jpg
new file mode 100755
index 0000000000000000000000000000000000000000..6011c1c0ab284065d31194ce8f1ce1b1d1ef78da
Binary files /dev/null and b/images/coco/054.jpg differ
diff --git a/images/coco/055.jpg b/images/coco/055.jpg
new file mode 100755
index 0000000000000000000000000000000000000000..4af1cb2af083ebd0dfabf9f9933ce4b3c5c1884d
Binary files /dev/null and b/images/coco/055.jpg differ
diff --git a/images/coco/056.jpg b/images/coco/056.jpg
new file mode 100755
index 0000000000000000000000000000000000000000..9763bf5b6dd0065830c8b12fa3b306dcb16717af
Binary files /dev/null and b/images/coco/056.jpg differ
diff --git a/images/coco/057.jpg b/images/coco/057.jpg
new file mode 100755
index 0000000000000000000000000000000000000000..1309367d08b8952df03451d9d653a1f0b0b26bbf
Binary files /dev/null and b/images/coco/057.jpg differ
diff --git a/images/coco/058.jpg b/images/coco/058.jpg
new file mode 100755
index 0000000000000000000000000000000000000000..32a967693e20ca9d9a8117329d4cce5f589204e2
Binary files /dev/null and b/images/coco/058.jpg differ
diff --git a/images/coco/059.jpg b/images/coco/059.jpg
new file mode 100755
index 0000000000000000000000000000000000000000..5497a2f65fefff6e8821c5f582bc0ff8ec6c25b1
Binary files /dev/null and b/images/coco/059.jpg differ
diff --git a/images/coco/060.jpg b/images/coco/060.jpg
new file mode 100755
index 0000000000000000000000000000000000000000..e1420e3628c96c4e3497d27338b8f691dee4d80f
Binary files /dev/null and b/images/coco/060.jpg differ
diff --git a/images/coco/061.jpg b/images/coco/061.jpg
new file mode 100755
index 0000000000000000000000000000000000000000..8105a552f5281a629ff15a74d10bebfc1f704379
Binary files /dev/null and b/images/coco/061.jpg differ
diff --git a/images/coco/062.jpg b/images/coco/062.jpg
new file mode 100755
index 0000000000000000000000000000000000000000..38cdb3357d35cf7c9ace5cf5c95f364c0c3c7a4f
Binary files /dev/null and b/images/coco/062.jpg differ
diff --git a/images/coco/063.jpg b/images/coco/063.jpg
new file mode 100755
index 0000000000000000000000000000000000000000..410eab482ac2b7ee6eb1ec0efc3530605e540f1f
Binary files /dev/null and b/images/coco/063.jpg differ
diff --git a/images/coco/064.jpg b/images/coco/064.jpg
new file mode 100755
index 0000000000000000000000000000000000000000..2bb18c7c2edc6ba2f36667e83d8f3148fcdb8bf5
Binary files /dev/null and b/images/coco/064.jpg differ
diff --git a/images/coco/065.jpg b/images/coco/065.jpg
new file mode 100755
index 0000000000000000000000000000000000000000..33900cabc587a7fe24888297aa6d9295663104fe
Binary files /dev/null and b/images/coco/065.jpg differ
diff --git a/images/coco/066.jpg b/images/coco/066.jpg
new file mode 100755
index 0000000000000000000000000000000000000000..8d0df547ea31d3d7e5062dd9ceec94f7a04772ac
Binary files /dev/null and b/images/coco/066.jpg differ
diff --git a/images/coco/067.jpg b/images/coco/067.jpg
new file mode 100755
index 0000000000000000000000000000000000000000..9f978f909c374b58aec661a58636e5a77d4c334f
Binary files /dev/null and b/images/coco/067.jpg differ
diff --git a/images/coco/068.jpg b/images/coco/068.jpg
new file mode 100755
index 0000000000000000000000000000000000000000..98233d53711883ec109b8566dfcbd25da6b354a4
Binary files /dev/null and b/images/coco/068.jpg differ
diff --git a/images/coco/069.jpg b/images/coco/069.jpg
new file mode 100755
index 0000000000000000000000000000000000000000..32f079f4e5a7c46fc2cf2b707a69662025923402
Binary files /dev/null and b/images/coco/069.jpg differ
diff --git a/images/coco/070.jpg b/images/coco/070.jpg
new file mode 100755
index 0000000000000000000000000000000000000000..52a51793ab449d32f9393a7807a53b42a511cf93
Binary files /dev/null and b/images/coco/070.jpg differ
diff --git a/images/coco/071.jpg b/images/coco/071.jpg
new file mode 100755
index 0000000000000000000000000000000000000000..fdef33732008ec94e34fa1c92951d3cf4acc3112
Binary files /dev/null and b/images/coco/071.jpg differ
diff --git a/images/coco/072.jpg b/images/coco/072.jpg
new file mode 100755
index 0000000000000000000000000000000000000000..f4cb09c4b01a3633e7fd1ea680a7112b41b28abf
Binary files /dev/null and b/images/coco/072.jpg differ
diff --git a/images/coco/073.jpg b/images/coco/073.jpg
new file mode 100755
index 0000000000000000000000000000000000000000..eaf228188e2485875923898f0e75dca8ca3a29c1
Binary files /dev/null and b/images/coco/073.jpg differ
diff --git a/images/coco/074.jpg b/images/coco/074.jpg
new file mode 100755
index 0000000000000000000000000000000000000000..a8f21f19eff1034b20581dd6068b8666e6616e76
Binary files /dev/null and b/images/coco/074.jpg differ
diff --git a/images/coco/075.jpg b/images/coco/075.jpg
new file mode 100755
index 0000000000000000000000000000000000000000..bab1c099eb248c00bc5c58f5d77c6cde63f4927a
Binary files /dev/null and b/images/coco/075.jpg differ
diff --git a/images/coco/076.jpg b/images/coco/076.jpg
new file mode 100755
index 0000000000000000000000000000000000000000..6f7d5129d837d8fc23ea3199672a6828f232a4ba
Binary files /dev/null and b/images/coco/076.jpg differ
diff --git a/images/coco/077.jpg b/images/coco/077.jpg
new file mode 100755
index 0000000000000000000000000000000000000000..56b4dc146da19c025cad7069dffe7b7c66f59720
Binary files /dev/null and b/images/coco/077.jpg differ
diff --git a/images/coco/078.jpg b/images/coco/078.jpg
new file mode 100755
index 0000000000000000000000000000000000000000..39849b1532f4276e33f72afc429edde836674057
Binary files /dev/null and b/images/coco/078.jpg differ
diff --git a/images/coco/079.jpg b/images/coco/079.jpg
new file mode 100755
index 0000000000000000000000000000000000000000..33c32bb7cc96f8768592d874734b5c52b6775a3e
Binary files /dev/null and b/images/coco/079.jpg differ
diff --git a/images/dog.png b/images/dog.png
new file mode 100644
index 0000000000000000000000000000000000000000..e84dfc8554d344a69afb1fe8c7b8b2997d4e5e11
Binary files /dev/null and b/images/dog.png differ
diff --git a/images/fruit.jpg b/images/fruit.jpg
new file mode 100644
index 0000000000000000000000000000000000000000..99d107a84272ceb572017df1a041c0c3b235bdaf
Binary files /dev/null and b/images/fruit.jpg differ
diff --git a/images/horse.png b/images/horse.png
new file mode 100644
index 0000000000000000000000000000000000000000..4c41798102e6b523037b66e5bb2407776c1ae4d7
Binary files /dev/null and b/images/horse.png differ
diff --git a/images/landscape.jpg b/images/landscape.jpg
new file mode 100644
index 0000000000000000000000000000000000000000..91578f776de896f758b78698d71d61ad19894acc
Binary files /dev/null and b/images/landscape.jpg differ
diff --git a/images/mountain.jpeg b/images/mountain.jpeg
new file mode 100644
index 0000000000000000000000000000000000000000..17e8abfb022e4ded0c0ea6edfc6344b1dea2c758
Binary files /dev/null and b/images/mountain.jpeg differ
diff --git a/images/owls.jpeg b/images/owls.jpeg
new file mode 100644
index 0000000000000000000000000000000000000000..63bfd80a5e973f6b3eab718252779357174cd813
Binary files /dev/null and b/images/owls.jpeg differ
diff --git a/images/penguin.jpeg b/images/penguin.jpeg
new file mode 100644
index 0000000000000000000000000000000000000000..b76253073d946989177af3cc9928b2d8265d39b0
Binary files /dev/null and b/images/penguin.jpeg differ
diff --git a/images/rose.webp b/images/rose.webp
new file mode 100644
index 0000000000000000000000000000000000000000..33657ae71e37b955bedd3209ae2a79f58a8c62d3
Binary files /dev/null and b/images/rose.webp differ
diff --git a/images/street.jpg b/images/street.jpg
new file mode 100644
index 0000000000000000000000000000000000000000..39294f30f004e7f5dafbfacdc75953812b1ca845
Binary files /dev/null and b/images/street.jpg differ
diff --git a/tasks/__init__.py b/tasks/__init__.py
new file mode 100644
index 0000000000000000000000000000000000000000..dd57fbd0eceb1a0079215a008f3392cd8d661b9b
--- /dev/null
+++ b/tasks/__init__.py
@@ -0,0 +1,11 @@
+from .img_cap import image_captioning
+from .open_inst import open_instseg
+from .open_pano import open_panoseg
+from .open_sem import open_semseg
+from .ref_cap import referring_captioning
+from .ref_in import referring_inpainting
+from .ref_seg import referring_segmentation
+from .text_ret import text_retrieval
+from .reg_ret import region_retrieval
+from .ref_in_gpu3 import referring_inpainting_gpt3
+from . import img_cap, open_inst, open_pano, open_sem, ref_cap, ref_in, ref_seg, text_ret
\ No newline at end of file
diff --git a/tasks/__pycache__/__init__.cpython-38.pyc b/tasks/__pycache__/__init__.cpython-38.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..b6f2f965ba49ad89ec03054395fa4f773f8a9aa2
Binary files /dev/null and b/tasks/__pycache__/__init__.cpython-38.pyc differ
diff --git a/tasks/__pycache__/img_cap.cpython-38.pyc b/tasks/__pycache__/img_cap.cpython-38.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..35afcf25d4807ece1cb0da61b2d005226528c24b
Binary files /dev/null and b/tasks/__pycache__/img_cap.cpython-38.pyc differ
diff --git a/tasks/__pycache__/open_inst.cpython-38.pyc b/tasks/__pycache__/open_inst.cpython-38.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..441a4ce156ef177d59ffe09b731c0490b7736c9b
Binary files /dev/null and b/tasks/__pycache__/open_inst.cpython-38.pyc differ
diff --git a/tasks/__pycache__/open_pano.cpython-38.pyc b/tasks/__pycache__/open_pano.cpython-38.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..c49897c9ca1c434b5b8f81bdefc546c7fac263a1
Binary files /dev/null and b/tasks/__pycache__/open_pano.cpython-38.pyc differ
diff --git a/tasks/__pycache__/open_sem.cpython-38.pyc b/tasks/__pycache__/open_sem.cpython-38.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..c14aa8a610b8d11d75e2d98f2a901622b065bcf2
Binary files /dev/null and b/tasks/__pycache__/open_sem.cpython-38.pyc differ
diff --git a/tasks/__pycache__/ref_cap.cpython-38.pyc b/tasks/__pycache__/ref_cap.cpython-38.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..70abba737c0acc98a98bef379d369cb3052fbb21
Binary files /dev/null and b/tasks/__pycache__/ref_cap.cpython-38.pyc differ
diff --git a/tasks/__pycache__/ref_in.cpython-38.pyc b/tasks/__pycache__/ref_in.cpython-38.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..e13b881c93fee5778746b549e1f31b0db3597ca2
Binary files /dev/null and b/tasks/__pycache__/ref_in.cpython-38.pyc differ
diff --git a/tasks/__pycache__/ref_in_gpu3.cpython-38.pyc b/tasks/__pycache__/ref_in_gpu3.cpython-38.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..8a63a7c80c1c483656ef03b45b41414e54922d17
Binary files /dev/null and b/tasks/__pycache__/ref_in_gpu3.cpython-38.pyc differ
diff --git a/tasks/__pycache__/ref_seg.cpython-38.pyc b/tasks/__pycache__/ref_seg.cpython-38.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..32123156fcce574fce7f9793a7b19df9aebf0404
Binary files /dev/null and b/tasks/__pycache__/ref_seg.cpython-38.pyc differ
diff --git a/tasks/__pycache__/reg_ret.cpython-38.pyc b/tasks/__pycache__/reg_ret.cpython-38.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..7a9254cbab72382804bb2747c49b704862827a15
Binary files /dev/null and b/tasks/__pycache__/reg_ret.cpython-38.pyc differ
diff --git a/tasks/__pycache__/text_ret.cpython-38.pyc b/tasks/__pycache__/text_ret.cpython-38.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..06865b882866b0faa57cf01e2a53026f2bb5254f
Binary files /dev/null and b/tasks/__pycache__/text_ret.cpython-38.pyc differ
diff --git a/tasks/img_cap.py b/tasks/img_cap.py
new file mode 100644
index 0000000000000000000000000000000000000000..2d0edf253896327a6ac5e244ed1b54696c7db9cd
--- /dev/null
+++ b/tasks/img_cap.py
@@ -0,0 +1,55 @@
+# --------------------------------------------------------
+# X-Decoder -- Generalized Decoding for Pixel, Image, and Language
+# Copyright (c) 2022 Microsoft
+# Licensed under The MIT License [see LICENSE for details]
+# Written by Xueyan Zou (xueyan@cs.wisc.edu)
+# --------------------------------------------------------
+
+import cv2
+import torch
+import numpy as np
+from PIL import Image
+from torchvision import transforms
+
+
+t = []
+t.append(transforms.Resize(224, interpolation=Image.BICUBIC))
+transform = transforms.Compose(t)
+
+t = []
+t.append(transforms.Resize(512, interpolation=Image.BICUBIC))
+transform_v = transforms.Compose(t)
+
+def image_captioning(model, image, texts, inpainting_text, *args, **kwargs):
+    with torch.no_grad():
+        image_ori = transform_v(image)
+        width = image_ori.size[0]
+        height = image_ori.size[1]
+        image_ori = np.asarray(image_ori)
+
+        image = transform(image)
+        image = np.asarray(image)
+        images = torch.from_numpy(image.copy()).permute(2,0,1).cuda()
+
+        batch_inputs = [{'image': images, 'height': height, 'width': width, 'image_id': 0}]
+        outputs = model.model.evaluate_captioning(batch_inputs)
+        text = outputs[-1]['captioning_text']
+
+        image_ori = image_ori.copy()
+        cv2.rectangle(image_ori, (0, height-60), (width, height), (0,0,0), -1)
+        font                   = cv2.FONT_HERSHEY_DUPLEX
+        fontScale              = 1.2
+        thickness              = 2
+        lineType               = 2
+        bottomLeftCornerOfText = (10, height-20)
+        fontColor              = [255,255,255]
+        cv2.putText(image_ori, text,
+            bottomLeftCornerOfText,
+            font, 
+            fontScale,
+            fontColor,
+            thickness,
+            lineType)
+    torch.cuda.empty_cache()
+    return Image.fromarray(image_ori), text, None
+
diff --git a/tasks/open_inst.py b/tasks/open_inst.py
new file mode 100644
index 0000000000000000000000000000000000000000..1cf1686a0b20c8f54aca9a308afef7cf6dfed166
--- /dev/null
+++ b/tasks/open_inst.py
@@ -0,0 +1,60 @@
+# --------------------------------------------------------
+# X-Decoder -- Generalized Decoding for Pixel, Image, and Language
+# Copyright (c) 2022 Microsoft
+# Licensed under The MIT License [see LICENSE for details]
+# Written by Xueyan Zou (xueyan@cs.wisc.edu)
+# --------------------------------------------------------
+
+import torch
+import numpy as np
+from PIL import Image
+from torchvision import transforms
+from utils.visualizer import Visualizer
+from detectron2.utils.colormap import random_color
+from detectron2.data import MetadataCatalog
+from detectron2.structures import BitMasks
+
+
+t = []
+t.append(transforms.Resize(512, interpolation=Image.BICUBIC))
+transform = transforms.Compose(t)
+metadata = MetadataCatalog.get('ade20k_panoptic_train')
+
+def open_instseg(model, image, texts, inpainting_text, *args, **kwargs):
+    thing_classes = [x.strip() for x in texts.split(',')]
+    thing_colors = [random_color(rgb=True, maximum=255).astype(np.int32).tolist() for _ in range(len(thing_classes))]
+    thing_dataset_id_to_contiguous_id = {x:x for x in range(len(thing_classes))}
+
+    MetadataCatalog.get("demo").set(
+        thing_colors=thing_colors,
+        thing_classes=thing_classes,
+        thing_dataset_id_to_contiguous_id=thing_dataset_id_to_contiguous_id,
+    )
+
+    with torch.no_grad():
+        model.model.sem_seg_head.predictor.lang_encoder.get_text_embeddings(thing_classes + ["background"], is_eval=True)
+
+        metadata = MetadataCatalog.get('demo')
+        model.model.metadata = metadata
+        model.model.sem_seg_head.num_classes = len(thing_classes)
+
+        image_ori = transform(image)
+        width = image_ori.size[0]
+        height = image_ori.size[1]
+        image = np.asarray(image_ori)
+        images = torch.from_numpy(image.copy()).permute(2,0,1).cuda()
+
+        batch_inputs = [{'image': images, 'height': height, 'width': width}]
+        outputs = model.forward(batch_inputs)
+        visual = Visualizer(image_ori, metadata=metadata)
+
+        inst_seg = outputs[-1]['instances']
+        inst_seg.pred_masks = inst_seg.pred_masks.cpu()
+        inst_seg.pred_boxes = BitMasks(inst_seg.pred_masks > 0).get_bounding_boxes()
+        demo = visual.draw_instance_predictions(inst_seg) # rgb Image
+        res = demo.get_image()
+
+
+    MetadataCatalog.remove('demo')
+    torch.cuda.empty_cache()
+    return Image.fromarray(res), '', None
diff --git a/tasks/open_pano.py b/tasks/open_pano.py
new file mode 100644
index 0000000000000000000000000000000000000000..48a05f3ec5a0e78568cc4a47c6433b52a4330e8b
--- /dev/null
+++ b/tasks/open_pano.py
@@ -0,0 +1,70 @@
+# --------------------------------------------------------
+# X-Decoder -- Generalized Decoding for Pixel, Image, and Language
+# Copyright (c) 2022 Microsoft
+# Licensed under The MIT License [see LICENSE for details]
+# Written by Xueyan Zou (xueyan@cs.wisc.edu)
+# --------------------------------------------------------
+
+import torch
+import numpy as np
+from PIL import Image
+from torchvision import transforms
+from utils.visualizer import Visualizer
+from detectron2.utils.colormap import random_color
+from detectron2.data import MetadataCatalog
+
+
+t = []
+t.append(transforms.Resize(512, interpolation=Image.BICUBIC))
+transform = transforms.Compose(t)
+metadata = MetadataCatalog.get('ade20k_panoptic_train')
+
+def open_panoseg(model, image, texts, inpainting_text, *args, **kwargs):
+    stuff_classes = [x.strip() for x in texts.split(';')[0].replace('stuff:','').split(',')]
+    thing_classes = [x.strip() for x in texts.split(';')[1].replace('thing:','').split(',')]
+    thing_colors = [random_color(rgb=True, maximum=255).astype(np.int32).tolist() for _ in range(len(thing_classes))]
+    stuff_colors = [random_color(rgb=True, maximum=255).astype(np.int32).tolist() for _ in range(len(stuff_classes))]
+    thing_dataset_id_to_contiguous_id = {x:x for x in range(len(thing_classes))}
+    stuff_dataset_id_to_contiguous_id = {x+len(thing_classes):x for x in range(len(stuff_classes))}
+
+    MetadataCatalog.get("demo").set(
+        thing_colors=thing_colors,
+        thing_classes=thing_classes,
+        thing_dataset_id_to_contiguous_id=thing_dataset_id_to_contiguous_id,
+        stuff_colors=stuff_colors,
+        stuff_classes=stuff_classes,
+        stuff_dataset_id_to_contiguous_id=stuff_dataset_id_to_contiguous_id,
+    )
+    model.model.sem_seg_head.predictor.lang_encoder.get_text_embeddings(thing_classes + stuff_classes + ["background"], is_eval=True)
+    metadata = MetadataCatalog.get('demo')
+    model.model.metadata = metadata
+    model.model.sem_seg_head.num_classes = len(thing_classes + stuff_classes)
+
+    with torch.no_grad():
+        image_ori = transform(image)
+        width = image_ori.size[0]
+        height = image_ori.size[1]
+        image = transform(image_ori)
+        image = np.asarray(image)
+        images = torch.from_numpy(image.copy()).permute(2,0,1).cuda()
+
+        batch_inputs = [{'image': images, 'height': height, 'width': width}]
+        outputs = model.forward(batch_inputs)
+        visual = Visualizer(image_ori, metadata=metadata)
+
+        pano_seg = outputs[-1]['panoptic_seg'][0]
+        pano_seg_info = outputs[-1]['panoptic_seg'][1]
+
+        for i in range(len(pano_seg_info)):
+            if pano_seg_info[i]['category_id'] in metadata.thing_dataset_id_to_contiguous_id.keys():
+                pano_seg_info[i]['category_id'] = metadata.thing_dataset_id_to_contiguous_id[pano_seg_info[i]['category_id']]
+            else:
+                pano_seg_info[i]['isthing'] = False
+                pano_seg_info[i]['category_id'] = metadata.stuff_dataset_id_to_contiguous_id[pano_seg_info[i]['category_id']]
+
+        demo = visual.draw_panoptic_seg(pano_seg.cpu(), pano_seg_info) # rgb Image
+        res = demo.get_image()
+
+    MetadataCatalog.remove('demo')
+    torch.cuda.empty_cache()
+    return Image.fromarray(res), '', None
\ No newline at end of file
diff --git a/tasks/open_sem.py b/tasks/open_sem.py
new file mode 100644
index 0000000000000000000000000000000000000000..04b95fc9fff82951cf6683a5a2f0632bf30837e4
--- /dev/null
+++ b/tasks/open_sem.py
@@ -0,0 +1,57 @@
+# --------------------------------------------------------
+# X-Decoder -- Generalized Decoding for Pixel, Image, and Language
+# Copyright (c) 2022 Microsoft
+# Licensed under The MIT License [see LICENSE for details]
+# Written by Xueyan Zou (xueyan@cs.wisc.edu)
+# --------------------------------------------------------
+
+import os
+import cv2
+import torch
+import numpy as np
+from PIL import Image
+from torchvision import transforms
+from utils.visualizer import Visualizer
+from detectron2.utils.colormap import random_color
+from detectron2.data import MetadataCatalog
+
+
+t = []
+t.append(transforms.Resize(512, interpolation=Image.BICUBIC))
+transform = transforms.Compose(t)
+metadata = MetadataCatalog.get('ade20k_panoptic_train')
+
+def open_semseg(model, image, texts, inpainting_text, *args, **kwargs):    
+    stuff_classes = [x.strip() for x in texts.split(',')]
+    stuff_colors = [random_color(rgb=True, maximum=255).astype(np.int32).tolist() for _ in range(len(stuff_classes))]
+    stuff_dataset_id_to_contiguous_id = {x:x for x in range(len(stuff_classes))}
+
+    MetadataCatalog.get("demo").set(
+        stuff_colors=stuff_colors,
+        stuff_classes=stuff_classes,
+        stuff_dataset_id_to_contiguous_id=stuff_dataset_id_to_contiguous_id,
+    )
+    model.model.sem_seg_head.predictor.lang_encoder.get_text_embeddings(stuff_classes + ["background"], is_eval=True)
+    metadata = MetadataCatalog.get('demo')
+    model.model.metadata = metadata
+    model.model.sem_seg_head.num_classes = len(stuff_classes)
+
+    with torch.no_grad():
+        image_ori = transform(image)
+        width = image_ori.size[0]
+        height = image_ori.size[1]
+        image = transform(image_ori)
+        image = np.asarray(image)
+        images = torch.from_numpy(image.copy()).permute(2,0,1).cuda()
+
+        batch_inputs = [{'image': images, 'height': height, 'width': width}]
+        outputs = model.forward(batch_inputs)
+        visual = Visualizer(image_ori, metadata=metadata)
+
+        sem_seg = outputs[-1]['sem_seg'].max(0)[1]
+        demo = visual.draw_sem_seg(sem_seg.cpu(), alpha=0.5) # rgb Image
+        res = demo.get_image()
+        
+    MetadataCatalog.remove('demo')
+    torch.cuda.empty_cache()
+    return Image.fromarray(res), '', None
\ No newline at end of file
diff --git a/tasks/ref_cap.py b/tasks/ref_cap.py
new file mode 100644
index 0000000000000000000000000000000000000000..76cd1fd34a038db0fd7a8818ff7a7c764bfb040d
--- /dev/null
+++ b/tasks/ref_cap.py
@@ -0,0 +1,68 @@
+# --------------------------------------------------------
+# X-Decoder -- Generalized Decoding for Pixel, Image, and Language
+# Copyright (c) 2022 Microsoft
+# Licensed under The MIT License [see LICENSE for details]
+# Written by Xueyan Zou (xueyan@cs.wisc.edu)
+# --------------------------------------------------------
+
+import torch
+import torch.nn.functional as F
+import numpy as np
+from PIL import Image
+from torchvision import transforms
+from utils.visualizer import Visualizer
+from detectron2.data import MetadataCatalog
+
+t = []
+t.append(transforms.Resize(224, interpolation=Image.BICUBIC))
+transform_ret = transforms.Compose(t)
+t = []
+t.append(transforms.Resize(512, interpolation=Image.BICUBIC))
+transform_grd = transforms.Compose(t)
+
+metedata = MetadataCatalog.get('coco_2017_train_panoptic')
+
+def referring_captioning(model, image, texts, inpainting_text, *args, **kwargs):
+    model_last, model_cap = model
+    with torch.no_grad():
+        image_ori = image
+        image = transform_grd(image)
+        width = image.size[0]
+        height = image.size[1]
+        image = np.asarray(image)
+        image_ori_ = image
+        images = torch.from_numpy(image.copy()).permute(2,0,1).cuda()
+        texts_input = [[texts.strip() if texts.endswith('.') else (texts + '.')]]
+
+        batch_inputs = [{'image': images, 'groundings': {'texts':texts_input}, 'height': height, 'width': width}]
+        outputs = model_last.model.evaluate_grounding(batch_inputs, None)
+
+        grd_mask = (outputs[-1]['grounding_mask'] > 0).float()
+        grd_mask_ = (1 - F.interpolate(grd_mask[None,], (224, 224), mode='nearest')[0]).bool()
+
+        color = [252/255, 91/255, 129/255]
+        visual = Visualizer(image_ori_, metadata=metedata)
+        demo = visual.draw_binary_mask(grd_mask.cpu().numpy()[0], color=color, text=texts)
+        res = demo.get_image()
+
+        if (1 - grd_mask_.float()).sum() < 5:
+            torch.cuda.empty_cache()
+            return Image.fromarray(res), 'n/a', None
+
+        grd_mask_ = grd_mask_ * 0
+        image = transform_ret(image_ori)
+        image_ori = np.asarray(image_ori)
+        image = np.asarray(image)
+        images = torch.from_numpy(image.copy()).permute(2,0,1).cuda()
+        batch_inputs = [{'image': images, 'image_id': 0, 'captioning_mask': grd_mask_}]
+
+        token_text = texts.replace('.','') if texts.endswith('.') else texts
+        token = model_cap.model.sem_seg_head.predictor.lang_encoder.tokenizer.encode(token_text)
+        token = torch.tensor(token)[None,:-1]
+
+        outputs = model_cap.model.evaluate_captioning(batch_inputs, extra={'token': token})
+        # outputs = model_cap.model.evaluate_captioning(batch_inputs, extra={})
+        text = outputs[-1]['captioning_text']
+
+    torch.cuda.empty_cache()
+    return Image.fromarray(res), text, None 
\ No newline at end of file
diff --git a/tasks/ref_in.py b/tasks/ref_in.py
new file mode 100644
index 0000000000000000000000000000000000000000..d872a993eadae5cbd6c37e821232149fa2e3de16
--- /dev/null
+++ b/tasks/ref_in.py
@@ -0,0 +1,77 @@
+# --------------------------------------------------------
+# X-Decoder -- Generalized Decoding for Pixel, Image, and Language
+# Copyright (c) 2022 Microsoft
+# Licensed under The MIT License [see LICENSE for details]
+# Written by Jianwei Yang (jianwyan@microsoft.com), Xueyan Zou (xueyan@cs.wisc.edu)
+# --------------------------------------------------------
+
+import torch
+import numpy as np
+from PIL import Image
+from utils.inpainting import pad_image
+from torchvision import transforms
+from utils.visualizer import Visualizer
+from diffusers import StableDiffusionInpaintPipeline
+from detectron2.utils.colormap import random_color
+from detectron2.data import MetadataCatalog
+from scipy import ndimage
+
+
+t = []
+t.append(transforms.Resize(512, interpolation=Image.BICUBIC))
+transform = transforms.Compose(t)
+metadata = MetadataCatalog.get('ade20k_panoptic_train')
+
+pipe = StableDiffusionInpaintPipeline.from_pretrained(
+    # "stabilityai/stable-diffusion-2-inpainting",
+    "runwayml/stable-diffusion-inpainting",
+    revision="fp16", 
+    torch_dtype=torch.float16,
+).to("cuda")
+
+def crop_image(input_image):
+    crop_w, crop_h = np.floor(np.array(input_image.size) / 64).astype(int) * 64
+    im_cropped = Image.fromarray(np.array(input_image)[:crop_h, :crop_w])
+    return im_cropped
+
+def referring_inpainting(model, image, texts, inpainting_text, *args, **kwargs):
+    model.model.metadata = metadata
+    texts = [[texts if texts.strip().endswith('.') else (texts.strip() + '.')]]
+    image_ori = crop_image(transform(image))
+
+    with torch.no_grad():
+        width = image_ori.size[0]
+        height = image_ori.size[1]
+        image = np.asarray(image_ori)
+        image_ori_np = np.asarray(image_ori)
+        images = torch.from_numpy(image.copy()).permute(2,0,1).cuda()
+
+        batch_inputs = [{'image': images, 'height': height, 'width': width, 'groundings': {'texts': texts}}]        
+        outputs = model.model.evaluate_grounding(batch_inputs, None)
+        visual = Visualizer(image_ori_np, metadata=metadata)
+
+        grd_mask = (outputs[0]['grounding_mask'] > 0).float().cpu().numpy()
+        for idx, mask in enumerate(grd_mask):
+            color = random_color(rgb=True, maximum=1).astype(np.int32).tolist()
+            demo = visual.draw_binary_mask(mask, color=color, text=texts[idx])
+        res = demo.get_image()
+    
+    if inpainting_text not in ['no', '']:
+        # if we want to do inpainting
+        image_crop = image_ori
+        struct2 = ndimage.generate_binary_structure(2, 2)
+        mask_dilated = ndimage.binary_dilation(grd_mask[0], structure=struct2, iterations=3).astype(grd_mask[0].dtype)
+        mask = Image.fromarray(mask_dilated * 255).convert('RGB')
+        image_and_mask = {
+            "image": image_crop,
+            "mask": mask,
+        }
+        width = image_crop.size[0]; height = image_crop.size[1]
+        images_inpainting = pipe(prompt = inpainting_text.strip(), image=image_and_mask['image'], mask_image=image_and_mask['mask'], height=height, width=width).images[0]
+        # put images_inpainting back to original image
+        # image_ori.paste(images_inpainting)        
+        torch.cuda.empty_cache()
+        return Image.fromarray(res) ,'' , images_inpainting
+    else:
+        torch.cuda.empty_cache()
+        return image_ori, 'text', Image.fromarray(res)
\ No newline at end of file
diff --git a/tasks/ref_in_gpu3.py b/tasks/ref_in_gpu3.py
new file mode 100644
index 0000000000000000000000000000000000000000..c578666beb7c31b10caac15d2c6ba0db4aa2b89b
--- /dev/null
+++ b/tasks/ref_in_gpu3.py
@@ -0,0 +1,103 @@
+# --------------------------------------------------------
+# X-Decoder -- Generalized Decoding for Pixel, Image, and Language
+# Copyright (c) 2022 Microsoft
+# Licensed under The MIT License [see LICENSE for details]
+# Written by Jianwei Yang (jianwyan@microsoft.com)
+# --------------------------------------------------------
+import os
+import openai
+import torch
+import numpy as np
+from scipy import ndimage
+from PIL import Image
+from utils.inpainting import pad_image, crop_image
+from torchvision import transforms
+from utils.visualizer import Visualizer
+from diffusers import StableDiffusionInpaintPipeline
+from detectron2.utils.colormap import random_color
+from detectron2.data import MetadataCatalog
+
+
+t = []
+t.append(transforms.Resize(512, interpolation=Image.BICUBIC))
+transform = transforms.Compose(t)
+metadata = MetadataCatalog.get('ade20k_panoptic_train')
+
+pipe = StableDiffusionInpaintPipeline.from_pretrained(
+    # "stabilityai/stable-diffusion-2-inpainting",
+    "runwayml/stable-diffusion-inpainting",
+    revision="fp16", 
+    torch_dtype=torch.float16,
+).to("cuda")
+
+prompts = []
+prompts.append("remove the person, task: (referring editing), source: [person], target:<clean and empty scene>;")
+prompts.append("remove the person in the middle, task: (referring editing), source: [person in the middle], target:<clean and empty scene>;")
+prompts.append("remove the dog on the left side, task: (referring editing), source: [dog on the left side], target:<clean and empty scene>;")
+prompts.append("change the apple to a pear, task: (referring editing), source: [apple], target: <pear>;")
+prompts.append("change the red apple to a green one, task: (referring editing), source: [red apple], target: <green apple>;")
+prompts.append("replace the dog with a cat, task: (referring editing), source: [dot], target: <cat>;")
+prompts.append("replace the red apple with a green one, task: (referring editing), source: [red apple], target: <green apple>;")
+
+def get_gpt3_response(prompt):
+    openai.api_key = os.getenv("OPENAI_API_KEY")
+
+    response = openai.Completion.create(
+    model="text-davinci-003",
+    prompt=prompt,
+    temperature=0.7,
+    max_tokens=128,
+    top_p=1,
+    frequency_penalty=0,
+    presence_penalty=0
+    )
+
+    return response
+
+def referring_inpainting_gpt3(model, image, instruction, *args, **kwargs):    
+    # convert instruction to source and target
+    print(instruction)
+    resp = get_gpt3_response(' '.join(prompts) + instruction + ',')
+    resp_text = resp['choices'][0]['text']
+    print(resp_text)
+    ref_text = resp_text[resp_text.find('[')+1:resp_text.find(']')]
+    inp_text = resp_text[resp_text.find('<')+1:resp_text.find('>')]
+
+    model.model.metadata = metadata
+    texts = [[ref_text if ref_text.strip().endswith('.') else (ref_text.strip() + '.')]]
+    image_ori = crop_image(transform(image))
+
+    with torch.no_grad():
+        width = image_ori.size[0]
+        height = image_ori.size[1]
+        image = np.asarray(image_ori)
+        image_ori_np = np.asarray(image_ori)
+        images = torch.from_numpy(image.copy()).permute(2,0,1).cuda()
+
+        batch_inputs = [{'image': images, 'height': height, 'width': width, 'groundings': {'texts': texts}}]        
+        outputs = model.model.evaluate_grounding(batch_inputs, None)
+        visual = Visualizer(image_ori_np, metadata=metadata)
+
+        grd_mask = (outputs[0]['grounding_mask'] > 0).float().cpu().numpy()
+        for idx, mask in enumerate(grd_mask):
+            color = random_color(rgb=True, maximum=1).astype(np.int32).tolist()
+            demo = visual.draw_binary_mask(mask, color=color, text=texts[idx])
+        res = demo.get_image()
+    
+    if inp_text not in ['no', '']:
+        image_crop = image_ori
+        struct2 = ndimage.generate_binary_structure(2, 2)
+        mask_dilated = ndimage.binary_dilation(grd_mask[0], structure=struct2, iterations=3).astype(grd_mask[0].dtype)
+        mask = Image.fromarray(mask_dilated * 255).convert('RGB')
+        image_and_mask = {
+            "image": image_crop,
+            "mask": mask,
+        }
+        # images_inpainting = inpainting(inpainting_model, image_and_mask, inp_text, ddim_steps, num_samples, scale, seed)
+        width = image_ori.size[0]; height = image_ori.size[1]
+        images_inpainting = pipe(prompt = inp_text.strip(), image=image_and_mask['image'], mask_image=image_and_mask['mask'], height=height, width=width).images
+        torch.cuda.empty_cache()
+        return Image.fromarray(res), resp_text, images_inpainting[0]
+    else:
+        torch.cuda.empty_cache()
+        return image_ori, resp_text, Image.fromarray(res)
\ No newline at end of file
diff --git a/tasks/ref_seg.py b/tasks/ref_seg.py
new file mode 100644
index 0000000000000000000000000000000000000000..d1a832d8c36b8584ca0784af3c7346c9825e2b6b
--- /dev/null
+++ b/tasks/ref_seg.py
@@ -0,0 +1,46 @@
+# --------------------------------------------------------
+# X-Decoder -- Generalized Decoding for Pixel, Image, and Language
+# Copyright (c) 2022 Microsoft
+# Licensed under The MIT License [see LICENSE for details]
+# Written by Xueyan Zou (xueyan@cs.wisc.edu)
+# --------------------------------------------------------
+
+import torch
+import numpy as np
+from PIL import Image
+from torchvision import transforms
+from utils.visualizer import Visualizer
+from detectron2.utils.colormap import random_color
+from detectron2.data import MetadataCatalog
+
+
+t = []
+t.append(transforms.Resize(512, interpolation=Image.BICUBIC))
+transform = transforms.Compose(t)
+metadata = MetadataCatalog.get('ade20k_panoptic_train')
+
+def referring_segmentation(model, image, texts, inpainting_text, *args, **kwargs):
+    model.model.metadata = metadata
+    texts = texts.strip()
+    texts = [[text.strip() if text.endswith('.') else (text + '.')] for text in texts.split(',')]
+    image_ori = transform(image)
+
+    with torch.no_grad():
+        width = image_ori.size[0]
+        height = image_ori.size[1]
+        image = np.asarray(image_ori)
+        image_ori_np = np.asarray(image_ori)
+        images = torch.from_numpy(image.copy()).permute(2,0,1).cuda()
+
+        batch_inputs = [{'image': images, 'height': height, 'width': width, 'groundings': {'texts': texts}}]        
+        outputs = model.model.evaluate_grounding(batch_inputs, None)
+        visual = Visualizer(image_ori_np, metadata=metadata)
+
+        grd_mask = (outputs[0]['grounding_mask'] > 0).float().cpu().numpy()
+        for idx, mask in enumerate(grd_mask):
+            color = random_color(rgb=True, maximum=1).astype(np.int32).tolist()
+            demo = visual.draw_binary_mask(mask, color=color, text=texts[idx])
+        res = demo.get_image()
+    
+    torch.cuda.empty_cache()
+    return Image.fromarray(res), '', None
\ No newline at end of file
diff --git a/tasks/reg_ret.py b/tasks/reg_ret.py
new file mode 100644
index 0000000000000000000000000000000000000000..f475cca2c29cc380a7c27d7493fdb227464eb5f6
--- /dev/null
+++ b/tasks/reg_ret.py
@@ -0,0 +1,72 @@
+# --------------------------------------------------------
+# X-Decoder -- Generalized Decoding for Pixel, Image, and Language
+# Copyright (c) 2022 Microsoft
+# Licensed under The MIT License [see LICENSE for details]
+# Written by Xueyan Zou (xueyan@cs.wisc.edu)
+# --------------------------------------------------------
+
+import glob
+import os
+import torch
+import numpy as np
+from PIL import Image
+from torchvision import transforms
+from detectron2.data import MetadataCatalog
+from utils.visualizer import Visualizer
+from xdecoder.language.loss import vl_similarity
+from detectron2.utils.colormap import random_color
+
+
+t = []
+t.append(transforms.Resize((224,224), interpolation=Image.BICUBIC))
+transform_ret = transforms.Compose(t)
+t = []
+t.append(transforms.Resize(512, interpolation=Image.BICUBIC))
+transform_grd = transforms.Compose(t)
+metadata = MetadataCatalog.get('coco_2017_train_panoptic')
+
+imgs_root = 'images/coco'
+img_pths = sorted(glob.glob(os.path.join(imgs_root, '*.jpg')))
+imgs = [Image.open(x).convert('RGB') for x in img_pths]
+v_emb = torch.load("v_emb.da")
+
+def region_retrieval(model, image, texts, inpainting_text, *args, **kwargs):
+    model_novg, model_seg = model
+    with torch.no_grad():
+        # images = [transform_ret(x) for x in imgs]
+        # images = [np.asarray(x) for x in imgs]
+        # images = [torch.from_numpy(x.copy()).permute(2,0,1).cuda() for x in images]
+        # batch_inputs = [{'image': image, 'image_id': 0} for image in images]
+        # outputs = model_novg.model.evaluate(batch_inputs)
+        # v_emb = torch.cat([x['captions'][-1:] for x in outputs])
+        # v_emb = v_emb / (v_emb.norm(dim=-1, keepdim=True) + 1e-7)
+        # torch.save(v_emb, "v_emb.da")
+        # exit()
+
+        texts_ = [[x.strip() if x.strip().endswith('.') else (x.strip() + '.')] for x in texts.split(',')]
+        model_novg.model.sem_seg_head.predictor.lang_encoder.get_text_embeddings(texts_, is_eval=False, name='caption', prompt=False)
+        t_emb = getattr(model_novg.model.sem_seg_head.predictor.lang_encoder, '{}_text_embeddings'.format('caption'))
+        temperature = model_novg.model.sem_seg_head.predictor.lang_encoder.logit_scale
+
+        logits = vl_similarity(v_emb, t_emb, temperature)
+        prob, idx = logits[:,0].softmax(-1).max(0)
+        image_ori = imgs[idx]
+        image = transform_grd(image_ori)
+        width, height = image.size
+        image = np.asarray(image)
+        image_ori = np.asarray(image)
+        images = torch.from_numpy(image.copy()).permute(2,0,1).cuda()
+        batch_inputs = [{'image': images, 'height': height, 'width': width, 'groundings': {'texts': texts_}}]
+        model_seg.model.sem_seg_head.predictor.lang_encoder.get_text_embeddings(texts_, is_eval=False, name='caption', prompt=False)
+        outputs = model_seg.model.evaluate_grounding(batch_inputs, None)
+
+        visual = Visualizer(image_ori, metadata=metadata)
+        grd_masks = (outputs[0]['grounding_mask'] > 0).float().cpu().numpy()
+
+        for text, mask in zip([x[0] for x in texts_], grd_masks):
+            color = random_color(rgb=True, maximum=1).astype(np.int32).tolist()
+            demo = visual.draw_binary_mask(mask, color=color, text=texts, alpha=0.5)
+        res = demo.get_image()
+
+    torch.cuda.empty_cache()
+    return Image.fromarray(res), "Selected Image Probability: {:.2f}".format(prob.item()), None
\ No newline at end of file
diff --git a/tasks/text_ret.py b/tasks/text_ret.py
new file mode 100644
index 0000000000000000000000000000000000000000..65d6831ec9b8d60806cc8237bdd5b4366791d1a8
--- /dev/null
+++ b/tasks/text_ret.py
@@ -0,0 +1,46 @@
+# --------------------------------------------------------
+# X-Decoder -- Generalized Decoding for Pixel, Image, and Language
+# Copyright (c) 2022 Microsoft
+# Licensed under The MIT License [see LICENSE for details]
+# Written by Xueyan Zou (xueyan@cs.wisc.edu)
+# --------------------------------------------------------
+
+import torch
+import numpy as np
+from PIL import Image
+from torchvision import transforms
+from detectron2.data import MetadataCatalog
+from xdecoder.language.loss import vl_similarity
+
+
+t = []
+t.append(transforms.Resize(224, interpolation=Image.BICUBIC))
+transform_ret = transforms.Compose(t)
+t = []
+t.append(transforms.Resize(512, interpolation=Image.BICUBIC))
+transform_grd = transforms.Compose(t)
+
+metedata = MetadataCatalog.get('coco_2017_train_panoptic')
+
+def text_retrieval(model, image, texts, inpainting_text, *args, **kwargs):
+    out_str = ''
+    with torch.no_grad():
+        image = transform_ret(image)
+        image = np.asarray(image)
+        images = torch.from_numpy(image.copy()).permute(2,0,1).cuda()
+        batch_inputs = [{'image': images, 'image_id': 0}]
+        outputs = model.model.evaluate(batch_inputs)
+        v_emb = torch.cat([x['captions'][-1:] for x in outputs])
+        v_emb = v_emb / (v_emb.norm(dim=-1, keepdim=True) + 1e-7)
+        
+        texts = [x.strip() for x in texts.split(',')]
+        model.model.sem_seg_head.predictor.lang_encoder.get_text_embeddings(texts, is_eval=False, name='caption', prompt=False)
+        t_emb = getattr(model.model.sem_seg_head.predictor.lang_encoder, '{}_text_embeddings'.format('caption'))
+        temperature = model.model.sem_seg_head.predictor.lang_encoder.logit_scale
+        logits = vl_similarity(v_emb, t_emb, temperature)
+        topk_prob, topk_idx = logits.softmax(-1)[0].topk(min(5, len(texts)))
+        
+        for prob, idx in zip(topk_prob, topk_idx):
+            out_str += "{}:{:.2f}; ".format(texts[idx.item()], prob.item())
+    torch.cuda.empty_cache()
+    return None, out_str, None
\ No newline at end of file
diff --git a/utils/Config.py b/utils/Config.py
new file mode 100755
index 0000000000000000000000000000000000000000..bc9877e4910a2ccfc2ac0d851c5c87ce1e134450
--- /dev/null
+++ b/utils/Config.py
@@ -0,0 +1,26 @@
+from fvcore.common.config import CfgNode as _CfgNode
+
+class CfgNode(_CfgNode):
+    """
+    The same as `fvcore.common.config.CfgNode`, but different in:
+
+    1. Use unsafe yaml loading by default.
+       Note that this may lead to arbitrary code execution: you must not
+       load a config file from untrusted sources before manually inspecting
+       the content of the file.
+    2. Support config versioning.
+       When attempting to merge an old config, it will convert the old config automatically.
+
+    .. automethod:: clone
+    .. automethod:: freeze
+    .. automethod:: defrost
+    .. automethod:: is_frozen
+    .. automethod:: load_yaml_with_base
+    .. automethod:: merge_from_list
+    .. automethod:: merge_from_other_cfg
+    """
+
+    def merge_from_dict(self, dict):
+        pass
+    
+node = CfgNode()
\ No newline at end of file
diff --git a/utils/__init__.py b/utils/__init__.py
new file mode 100755
index 0000000000000000000000000000000000000000..e69de29bb2d1d6434b8b29ae775ad8c2e48c5391
diff --git a/utils/__pycache__/__init__.cpython-38.pyc b/utils/__pycache__/__init__.cpython-38.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..d91ddcd0e21b1b23b4f087afa957099819709cd4
Binary files /dev/null and b/utils/__pycache__/__init__.cpython-38.pyc differ
diff --git a/utils/__pycache__/arguments.cpython-38.pyc b/utils/__pycache__/arguments.cpython-38.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..a96df3d6a0068a06f356c91c91cd325643a80417
Binary files /dev/null and b/utils/__pycache__/arguments.cpython-38.pyc differ
diff --git a/utils/__pycache__/ddim.cpython-38.pyc b/utils/__pycache__/ddim.cpython-38.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..f3619e86525fa7080e9a39674814a6730c884b8c
Binary files /dev/null and b/utils/__pycache__/ddim.cpython-38.pyc differ
diff --git a/utils/__pycache__/distributed.cpython-38.pyc b/utils/__pycache__/distributed.cpython-38.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..d0787a211bf923ce97f11528bd1bd24bbfe829bc
Binary files /dev/null and b/utils/__pycache__/distributed.cpython-38.pyc differ
diff --git a/utils/__pycache__/inpainting.cpython-38.pyc b/utils/__pycache__/inpainting.cpython-38.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..153a6ffb8a907c5387cd11c33133da7065f5ab31
Binary files /dev/null and b/utils/__pycache__/inpainting.cpython-38.pyc differ
diff --git a/utils/__pycache__/misc.cpython-38.pyc b/utils/__pycache__/misc.cpython-38.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..2a8a82c96d2cd9dc96f54ab62c78812cf2b86764
Binary files /dev/null and b/utils/__pycache__/misc.cpython-38.pyc differ
diff --git a/utils/__pycache__/model.cpython-38.pyc b/utils/__pycache__/model.cpython-38.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..806d89e45f20da0057fcd7de13223bcd33492267
Binary files /dev/null and b/utils/__pycache__/model.cpython-38.pyc differ
diff --git a/utils/__pycache__/model_loading.cpython-38.pyc b/utils/__pycache__/model_loading.cpython-38.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..f4814b4c1db6e19a890360ce16de8d0919ac0352
Binary files /dev/null and b/utils/__pycache__/model_loading.cpython-38.pyc differ
diff --git a/utils/__pycache__/util.cpython-38.pyc b/utils/__pycache__/util.cpython-38.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..e579bb8a015066ce4a511d622822edcfc1b66668
Binary files /dev/null and b/utils/__pycache__/util.cpython-38.pyc differ
diff --git a/utils/__pycache__/visualizer.cpython-38.pyc b/utils/__pycache__/visualizer.cpython-38.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..3a032417d583fb8ef232497f849da4ead8d7bfd9
Binary files /dev/null and b/utils/__pycache__/visualizer.cpython-38.pyc differ
diff --git a/utils/arguments.py b/utils/arguments.py
new file mode 100755
index 0000000000000000000000000000000000000000..c1a3fa8069e15a287aedd7d15828fa6e23c4fda4
--- /dev/null
+++ b/utils/arguments.py
@@ -0,0 +1,98 @@
+import yaml
+import json
+import argparse
+import logging
+
+logger = logging.getLogger(__name__)
+
+
+def load_config_dict_to_opt(opt, config_dict):
+    """
+    Load the key, value pairs from config_dict to opt, overriding existing values in opt
+    if there is any.
+    """
+    if not isinstance(config_dict, dict):
+        raise TypeError("Config must be a Python dictionary")
+    for k, v in config_dict.items():
+        k_parts = k.split('.')
+        pointer = opt
+        for k_part in k_parts[:-1]:
+            if k_part not in pointer:
+                pointer[k_part] = {}
+            pointer = pointer[k_part]
+            assert isinstance(pointer, dict), "Overriding key needs to be inside a Python dict."
+        ori_value = pointer.get(k_parts[-1])
+        pointer[k_parts[-1]] = v
+        if ori_value:
+            logger.warning(f"Overrided {k} from {ori_value} to {pointer[k_parts[-1]]}")
+
+
+def load_opt_from_config_files(conf_file):
+    """
+    Load opt from the config files, settings in later files can override those in previous files.
+
+    Args:
+        conf_files: config file path
+
+    Returns:
+        dict: a dictionary of opt settings
+    """
+    opt = {}
+    with open(conf_file, encoding='utf-8') as f:
+        config_dict = yaml.safe_load(f)
+
+    load_config_dict_to_opt(opt, config_dict)
+
+    return opt
+
+
+def load_opt_command(args):
+    parser = argparse.ArgumentParser(description='MainzTrain: Pretrain or fine-tune models for NLP tasks.')
+    parser.add_argument('command', help='Command: train/evaluate/train-and-evaluate')
+    parser.add_argument('--conf_files', required=True, help='Path(s) to the MainzTrain config file(s).')
+    parser.add_argument('--config_overrides', nargs='*', help='Override parameters on config with a json style string, e.g. {"<PARAM_NAME_1>": <PARAM_VALUE_1>, "<PARAM_GROUP_2>.<PARAM_SUBGROUP_2>.<PARAM_2>": <PARAM_VALUE_2>}. A key with "." updates the object in the corresponding nested dict. Remember to escape " in command line.')
+    parser.add_argument('--overrides', help='arguments that used to overide the config file in cmdline', nargs=argparse.REMAINDER)
+
+    cmdline_args = parser.parse_args() if not args else parser.parse_args(args)
+
+    opt = load_opt_from_config_files(cmdline_args.conf_files)
+
+    if cmdline_args.config_overrides:
+        config_overrides_string = ' '.join(cmdline_args.config_overrides)
+        logger.warning(f"Command line config overrides: {config_overrides_string}")
+        config_dict = json.loads(config_overrides_string)
+        load_config_dict_to_opt(opt, config_dict)
+
+    if cmdline_args.overrides:
+        assert len(cmdline_args.overrides) % 2 == 0, "overides arguments is not paired, required: key value"
+        keys = [cmdline_args.overrides[idx*2] for idx in range(len(cmdline_args.overrides)//2)]
+        vals = [cmdline_args.overrides[idx*2+1] for idx in range(len(cmdline_args.overrides)//2)]
+        vals = [val.replace('false', '').replace('False','') if len(val.replace(' ', '')) == 5 else val for val in vals]
+
+        types = []
+        for key in keys:
+            key = key.split('.')
+            ele = opt.copy()
+            while len(key) > 0:
+                ele = ele[key.pop(0)]
+            types.append(type(ele))
+        
+        config_dict = {x:z(y) for x,y,z in zip(keys, vals, types)}
+        load_config_dict_to_opt(opt, config_dict)
+
+    # combine cmdline_args into opt dictionary
+    for key, val in cmdline_args.__dict__.items():
+        if val is not None:
+            opt[key] = val
+
+    return opt, cmdline_args
+
+
+def save_opt_to_json(opt, conf_file):
+    with open(conf_file, 'w', encoding='utf-8') as f:
+        json.dump(opt, f, indent=4)
+
+
+def save_opt_to_yaml(opt, conf_file):
+    with open(conf_file, 'w', encoding='utf-8') as f:
+        yaml.dump(opt, f)
diff --git a/utils/ddim.py b/utils/ddim.py
new file mode 100644
index 0000000000000000000000000000000000000000..d6366003eb4107c95cf0cf7bbb653000f716d06c
--- /dev/null
+++ b/utils/ddim.py
@@ -0,0 +1,203 @@
+"""SAMPLING ONLY."""
+
+import torch
+import numpy as np
+from tqdm import tqdm
+from functools import partial
+
+from .util import make_ddim_sampling_parameters, make_ddim_timesteps, noise_like
+
+
+class DDIMSampler(object):
+    def __init__(self, model, schedule="linear", **kwargs):
+        super().__init__()
+        self.model = model
+        self.ddpm_num_timesteps = model.num_timesteps
+        self.schedule = schedule
+
+    def register_buffer(self, name, attr):
+        if type(attr) == torch.Tensor:
+            if attr.device != torch.device("cuda"):
+                attr = attr.to(torch.device("cuda"))
+        setattr(self, name, attr)
+
+    def make_schedule(self, ddim_num_steps, ddim_discretize="uniform", ddim_eta=0., verbose=True):
+        self.ddim_timesteps = make_ddim_timesteps(ddim_discr_method=ddim_discretize, num_ddim_timesteps=ddim_num_steps,
+                                                  num_ddpm_timesteps=self.ddpm_num_timesteps,verbose=verbose)
+        alphas_cumprod = self.model.alphas_cumprod
+        assert alphas_cumprod.shape[0] == self.ddpm_num_timesteps, 'alphas have to be defined for each timestep'
+        to_torch = lambda x: x.clone().detach().to(torch.float32).to(self.model.device)
+
+        self.register_buffer('betas', to_torch(self.model.betas))
+        self.register_buffer('alphas_cumprod', to_torch(alphas_cumprod))
+        self.register_buffer('alphas_cumprod_prev', to_torch(self.model.alphas_cumprod_prev))
+
+        # calculations for diffusion q(x_t | x_{t-1}) and others
+        self.register_buffer('sqrt_alphas_cumprod', to_torch(np.sqrt(alphas_cumprod.cpu())))
+        self.register_buffer('sqrt_one_minus_alphas_cumprod', to_torch(np.sqrt(1. - alphas_cumprod.cpu())))
+        self.register_buffer('log_one_minus_alphas_cumprod', to_torch(np.log(1. - alphas_cumprod.cpu())))
+        self.register_buffer('sqrt_recip_alphas_cumprod', to_torch(np.sqrt(1. / alphas_cumprod.cpu())))
+        self.register_buffer('sqrt_recipm1_alphas_cumprod', to_torch(np.sqrt(1. / alphas_cumprod.cpu() - 1)))
+
+        # ddim sampling parameters
+        ddim_sigmas, ddim_alphas, ddim_alphas_prev = make_ddim_sampling_parameters(alphacums=alphas_cumprod.cpu(),
+                                                                                   ddim_timesteps=self.ddim_timesteps,
+                                                                                   eta=ddim_eta,verbose=verbose)
+        self.register_buffer('ddim_sigmas', ddim_sigmas)
+        self.register_buffer('ddim_alphas', ddim_alphas)
+        self.register_buffer('ddim_alphas_prev', ddim_alphas_prev)
+        self.register_buffer('ddim_sqrt_one_minus_alphas', np.sqrt(1. - ddim_alphas))
+        sigmas_for_original_sampling_steps = ddim_eta * torch.sqrt(
+            (1 - self.alphas_cumprod_prev) / (1 - self.alphas_cumprod) * (
+                        1 - self.alphas_cumprod / self.alphas_cumprod_prev))
+        self.register_buffer('ddim_sigmas_for_original_num_steps', sigmas_for_original_sampling_steps)
+
+    @torch.no_grad()
+    def sample(self,
+               S,
+               batch_size,
+               shape,
+               conditioning=None,
+               callback=None,
+               normals_sequence=None,
+               img_callback=None,
+               quantize_x0=False,
+               eta=0.,
+               mask=None,
+               x0=None,
+               temperature=1.,
+               noise_dropout=0.,
+               score_corrector=None,
+               corrector_kwargs=None,
+               verbose=True,
+               x_T=None,
+               log_every_t=100,
+               unconditional_guidance_scale=1.,
+               unconditional_conditioning=None,
+               # this has to come in the same format as the conditioning, # e.g. as encoded tokens, ...
+               **kwargs
+               ):
+        if conditioning is not None:
+            if isinstance(conditioning, dict):
+                cbs = conditioning[list(conditioning.keys())[0]].shape[0]
+                if cbs != batch_size:
+                    print(f"Warning: Got {cbs} conditionings but batch-size is {batch_size}")
+            else:
+                if conditioning.shape[0] != batch_size:
+                    print(f"Warning: Got {conditioning.shape[0]} conditionings but batch-size is {batch_size}")
+
+        self.make_schedule(ddim_num_steps=S, ddim_eta=eta, verbose=verbose)
+        # sampling
+        C, H, W = shape
+        size = (batch_size, C, H, W)
+        print(f'Data shape for DDIM sampling is {size}, eta {eta}')
+
+        samples, intermediates = self.ddim_sampling(conditioning, size,
+                                                    callback=callback,
+                                                    img_callback=img_callback,
+                                                    quantize_denoised=quantize_x0,
+                                                    mask=mask, x0=x0,
+                                                    ddim_use_original_steps=False,
+                                                    noise_dropout=noise_dropout,
+                                                    temperature=temperature,
+                                                    score_corrector=score_corrector,
+                                                    corrector_kwargs=corrector_kwargs,
+                                                    x_T=x_T,
+                                                    log_every_t=log_every_t,
+                                                    unconditional_guidance_scale=unconditional_guidance_scale,
+                                                    unconditional_conditioning=unconditional_conditioning,
+                                                    )
+        return samples, intermediates
+
+    @torch.no_grad()
+    def ddim_sampling(self, cond, shape,
+                      x_T=None, ddim_use_original_steps=False,
+                      callback=None, timesteps=None, quantize_denoised=False,
+                      mask=None, x0=None, img_callback=None, log_every_t=100,
+                      temperature=1., noise_dropout=0., score_corrector=None, corrector_kwargs=None,
+                      unconditional_guidance_scale=1., unconditional_conditioning=None,):
+        device = self.model.betas.device
+        b = shape[0]
+        if x_T is None:
+            img = torch.randn(shape, device=device)
+        else:
+            img = x_T
+
+        if timesteps is None:
+            timesteps = self.ddpm_num_timesteps if ddim_use_original_steps else self.ddim_timesteps
+        elif timesteps is not None and not ddim_use_original_steps:
+            subset_end = int(min(timesteps / self.ddim_timesteps.shape[0], 1) * self.ddim_timesteps.shape[0]) - 1
+            timesteps = self.ddim_timesteps[:subset_end]
+
+        intermediates = {'x_inter': [img], 'pred_x0': [img]}
+        time_range = reversed(range(0,timesteps)) if ddim_use_original_steps else np.flip(timesteps)
+        total_steps = timesteps if ddim_use_original_steps else timesteps.shape[0]
+        print(f"Running DDIM Sampling with {total_steps} timesteps")
+
+        iterator = tqdm(time_range, desc='DDIM Sampler', total=total_steps)
+
+        for i, step in enumerate(iterator):
+            index = total_steps - i - 1
+            ts = torch.full((b,), step, device=device, dtype=torch.long)
+
+            if mask is not None:
+                assert x0 is not None
+                img_orig = self.model.q_sample(x0, ts)  # TODO: deterministic forward pass?
+                img = img_orig * mask + (1. - mask) * img
+
+            outs = self.p_sample_ddim(img, cond, ts, index=index, use_original_steps=ddim_use_original_steps,
+                                      quantize_denoised=quantize_denoised, temperature=temperature,
+                                      noise_dropout=noise_dropout, score_corrector=score_corrector,
+                                      corrector_kwargs=corrector_kwargs,
+                                      unconditional_guidance_scale=unconditional_guidance_scale,
+                                      unconditional_conditioning=unconditional_conditioning)
+            img, pred_x0 = outs
+            if callback: callback(i)
+            if img_callback: img_callback(pred_x0, i)
+
+            if index % log_every_t == 0 or index == total_steps - 1:
+                intermediates['x_inter'].append(img)
+                intermediates['pred_x0'].append(pred_x0)
+
+        return img, intermediates
+
+    @torch.no_grad()
+    def p_sample_ddim(self, x, c, t, index, repeat_noise=False, use_original_steps=False, quantize_denoised=False,
+                      temperature=1., noise_dropout=0., score_corrector=None, corrector_kwargs=None,
+                      unconditional_guidance_scale=1., unconditional_conditioning=None):
+        b, *_, device = *x.shape, x.device
+
+        if unconditional_conditioning is None or unconditional_guidance_scale == 1.:
+            e_t = self.model.apply_model(x, t, c)
+        else:
+            x_in = torch.cat([x] * 2)
+            t_in = torch.cat([t] * 2)
+            c_in = torch.cat([unconditional_conditioning, c])
+            e_t_uncond, e_t = self.model.apply_model(x_in, t_in, c_in).chunk(2)
+            e_t = e_t_uncond + unconditional_guidance_scale * (e_t - e_t_uncond)
+
+        if score_corrector is not None:
+            assert self.model.parameterization == "eps"
+            e_t = score_corrector.modify_score(self.model, e_t, x, t, c, **corrector_kwargs)
+
+        alphas = self.model.alphas_cumprod if use_original_steps else self.ddim_alphas
+        alphas_prev = self.model.alphas_cumprod_prev if use_original_steps else self.ddim_alphas_prev
+        sqrt_one_minus_alphas = self.model.sqrt_one_minus_alphas_cumprod if use_original_steps else self.ddim_sqrt_one_minus_alphas
+        sigmas = self.model.ddim_sigmas_for_original_num_steps if use_original_steps else self.ddim_sigmas
+        # select parameters corresponding to the currently considered timestep
+        a_t = torch.full((b, 1, 1, 1), alphas[index], device=device)
+        a_prev = torch.full((b, 1, 1, 1), alphas_prev[index], device=device)
+        sigma_t = torch.full((b, 1, 1, 1), sigmas[index], device=device)
+        sqrt_one_minus_at = torch.full((b, 1, 1, 1), sqrt_one_minus_alphas[index],device=device)
+
+        # current prediction for x_0
+        pred_x0 = (x - sqrt_one_minus_at * e_t) / a_t.sqrt()
+        if quantize_denoised:
+            pred_x0, _, *_ = self.model.first_stage_model.quantize(pred_x0)
+        # direction pointing to x_t
+        dir_xt = (1. - a_prev - sigma_t**2).sqrt() * e_t
+        noise = sigma_t * noise_like(x.shape, device, repeat_noise) * temperature
+        if noise_dropout > 0.:
+            noise = torch.nn.functional.dropout(noise, p=noise_dropout)
+        x_prev = a_prev.sqrt() * pred_x0 + dir_xt + noise
+        return x_prev, pred_x0
diff --git a/utils/distributed.py b/utils/distributed.py
new file mode 100644
index 0000000000000000000000000000000000000000..521a934de05bca3159bb595cd0ab997ee08dd61a
--- /dev/null
+++ b/utils/distributed.py
@@ -0,0 +1,180 @@
+import os
+import time
+import torch
+import pickle
+import torch.distributed as dist
+
+
+def init_distributed(opt):
+    opt['CUDA'] = opt.get('CUDA', True) and torch.cuda.is_available()
+    if 'OMPI_COMM_WORLD_SIZE' not in os.environ:
+        # application was started without MPI
+        # default to single node with single process
+        opt['env_info'] = 'no MPI'
+        opt['world_size'] = 1
+        opt['local_size'] = 1
+        opt['rank'] = 0
+        opt['local_rank'] = 0
+        opt['master_address'] = '127.0.0.1'
+        opt['master_port'] = '8673'
+    else:
+        # application was started with MPI
+        # get MPI parameters
+        opt['world_size'] = int(os.environ['OMPI_COMM_WORLD_SIZE'])
+        opt['local_size'] = int(os.environ['OMPI_COMM_WORLD_LOCAL_SIZE'])
+        opt['rank'] = int(os.environ['OMPI_COMM_WORLD_RANK'])
+        opt['local_rank'] = int(os.environ['OMPI_COMM_WORLD_LOCAL_RANK'])
+
+    # set up device
+    if not opt['CUDA']:
+        assert opt['world_size'] == 1, 'multi-GPU training without CUDA is not supported since we use NCCL as communication backend'
+        opt['device'] = torch.device("cpu")
+    else:
+        torch.cuda.set_device(opt['local_rank'])
+        opt['device'] = torch.device("cuda", opt['local_rank'])
+    return opt
+
+def is_main_process():
+    rank = 0
+    if 'OMPI_COMM_WORLD_SIZE' in os.environ:
+        rank = int(os.environ['OMPI_COMM_WORLD_RANK'])
+
+    return rank == 0
+
+def get_world_size():
+    if not dist.is_available():
+        return 1
+    if not dist.is_initialized():
+        return 1
+    return dist.get_world_size()
+
+def get_rank():
+    if not dist.is_available():
+        return 0
+    if not dist.is_initialized():
+        return 0
+    return dist.get_rank()
+
+
+def synchronize():
+    """
+    Helper function to synchronize (barrier) among all processes when
+    using distributed training
+    """
+    if not dist.is_available():
+        return
+    if not dist.is_initialized():
+        return
+    world_size = dist.get_world_size()
+    rank = dist.get_rank()
+    if world_size == 1:
+        return
+
+    def _send_and_wait(r):
+        if rank == r:
+            tensor = torch.tensor(0, device="cuda")
+        else:
+            tensor = torch.tensor(1, device="cuda")
+        dist.broadcast(tensor, r)
+        while tensor.item() == 1:
+            time.sleep(1)
+
+    _send_and_wait(0)
+    # now sync on the main process
+    _send_and_wait(1)
+
+
+def all_gather(data):
+    """
+    Run all_gather on arbitrary picklable data (not necessarily tensors)
+    Args:
+        data: any picklable object
+    Returns:
+        list[data]: list of data gathered from each rank
+    """
+    world_size = get_world_size()
+    if world_size == 1:
+        return [data]
+
+    # serialized to a Tensor
+    buffer = pickle.dumps(data)
+    storage = torch.ByteStorage.from_buffer(buffer)
+    tensor = torch.ByteTensor(storage).to("cuda")
+
+    # obtain Tensor size of each rank
+    local_size = torch.IntTensor([tensor.numel()]).to("cuda")
+    size_list = [torch.IntTensor([0]).to("cuda") for _ in range(world_size)]
+    dist.all_gather(size_list, local_size)
+    size_list = [int(size.item()) for size in size_list]
+    max_size = max(size_list)
+
+    # receiving Tensor from all ranks
+    # we pad the tensor because torch all_gather does not support
+    # gathering tensors of different shapes
+    tensor_list = []
+    for _ in size_list:
+        tensor_list.append(torch.ByteTensor(size=(max_size,)).to("cuda"))
+    if local_size != max_size:
+        padding = torch.ByteTensor(size=(max_size - local_size,)).to("cuda")
+        tensor = torch.cat((tensor, padding), dim=0)
+    dist.all_gather(tensor_list, tensor)
+
+    data_list = []
+    for size, tensor in zip(size_list, tensor_list):
+        buffer = tensor.cpu().numpy().tobytes()[:size]
+        data_list.append(pickle.loads(buffer))
+
+    return data_list
+
+
+def reduce_dict(input_dict, average=True):
+    """
+    Args:
+        input_dict (dict): all the values will be reduced
+        average (bool): whether to do average or sum
+    Reduce the values in the dictionary from all processes so that process with rank
+    0 has the averaged results. Returns a dict with the same fields as
+    input_dict, after reduction.
+    """
+    world_size = get_world_size()
+    if world_size < 2:
+        return input_dict
+    with torch.no_grad():
+        names = []
+        values = []
+        # sort the keys so that they are consistent across processes
+        for k in sorted(input_dict.keys()):
+            names.append(k)
+            values.append(input_dict[k])
+        values = torch.stack(values, dim=0)
+        dist.reduce(values, dst=0)
+        if dist.get_rank() == 0 and average:
+            # only main process gets accumulated, so only divide by
+            # world_size in this case
+            values /= world_size
+        reduced_dict = {k: v for k, v in zip(names, values)}
+    return reduced_dict
+
+
+def broadcast_data(data):
+    if not torch.distributed.is_initialized():
+        return data
+    rank = dist.get_rank()
+    if rank == 0:
+        data_tensor = torch.tensor(data + [0], device="cuda")
+    else:
+        data_tensor = torch.tensor(data + [1], device="cuda")
+    torch.distributed.broadcast(data_tensor, 0)
+    while data_tensor.cpu().numpy()[-1] == 1:
+        time.sleep(1)
+
+    return data_tensor.cpu().numpy().tolist()[:-1]
+
+
+def reduce_sum(tensor):
+    if get_world_size() <= 1:
+        return tensor
+
+    tensor = tensor.clone()
+    dist.all_reduce(tensor, op=dist.ReduceOp.SUM)
+    return tensor
\ No newline at end of file
diff --git a/utils/inpainting.py b/utils/inpainting.py
new file mode 100644
index 0000000000000000000000000000000000000000..bd55afd9578d39a1e235d87fa87fefcfeec0ae1e
--- /dev/null
+++ b/utils/inpainting.py
@@ -0,0 +1,177 @@
+import sys
+import cv2
+import torch
+import numpy as np
+import gradio as gr
+from PIL import Image
+from omegaconf import OmegaConf
+from einops import repeat
+from imwatermark import WatermarkEncoder
+from pathlib import Path
+
+from .ddim import DDIMSampler
+from .util import instantiate_from_config
+
+
+torch.set_grad_enabled(False)
+
+
+def put_watermark(img, wm_encoder=None):
+    if wm_encoder is not None:
+        img = cv2.cvtColor(np.array(img), cv2.COLOR_RGB2BGR)
+        img = wm_encoder.encode(img, 'dwtDct')
+        img = Image.fromarray(img[:, :, ::-1])
+    return img
+
+
+def initialize_model(config, ckpt):
+    config = OmegaConf.load(config)
+    model = instantiate_from_config(config.model)
+
+    model.load_state_dict(torch.load(ckpt)["state_dict"], strict=False)
+
+    device = torch.device(
+        "cuda") if torch.cuda.is_available() else torch.device("cpu")
+    model = model.to(device)
+    sampler = DDIMSampler(model)
+
+    return sampler
+
+
+def make_batch_sd(
+        image,
+        mask,
+        txt,
+        device,
+        num_samples=1):
+    image = np.array(image.convert("RGB"))
+    image = image[None].transpose(0, 3, 1, 2)
+    image = torch.from_numpy(image).to(dtype=torch.float32) / 127.5 - 1.0
+
+    mask = np.array(mask.convert("L"))
+    mask = mask.astype(np.float32) / 255.0
+    mask = mask[None, None]
+    mask[mask < 0.5] = 0
+    mask[mask >= 0.5] = 1
+    mask = torch.from_numpy(mask)
+
+    masked_image = image * (mask < 0.5)
+
+    batch = {
+        "image": repeat(image.to(device=device), "1 ... -> n ...", n=num_samples),
+        "txt": num_samples * [txt],
+        "mask": repeat(mask.to(device=device), "1 ... -> n ...", n=num_samples),
+        "masked_image": repeat(masked_image.to(device=device), "1 ... -> n ...", n=num_samples),
+    }
+    return batch
+
+@torch.no_grad()
+def inpaint(sampler, image, mask, prompt, seed, scale, ddim_steps, num_samples=1, w=512, h=512):
+    device = torch.device(
+        "cuda") if torch.cuda.is_available() else torch.device("cpu")
+    model = sampler.model
+
+    print("Creating invisible watermark encoder (see https://github.com/ShieldMnt/invisible-watermark)...")
+    wm = "SDV2"
+    wm_encoder = WatermarkEncoder()
+    wm_encoder.set_watermark('bytes', wm.encode('utf-8'))
+
+    prng = np.random.RandomState(seed)
+    start_code = prng.randn(num_samples, 4, h // 8, w // 8)
+    start_code = torch.from_numpy(start_code).to(
+        device=device, dtype=torch.float32)
+
+    with torch.no_grad(), \
+            torch.autocast("cuda"):
+        batch = make_batch_sd(image, mask, txt=prompt,
+                              device=device, num_samples=num_samples)
+
+        c = model.cond_stage_model.encode(batch["txt"])
+
+        c_cat = list()
+        for ck in model.concat_keys:
+            cc = batch[ck].float()
+            if ck != model.masked_image_key:
+                bchw = [num_samples, 4, h // 8, w // 8]
+                cc = torch.nn.functional.interpolate(cc, size=bchw[-2:])
+            else:
+                cc = model.get_first_stage_encoding(
+                    model.encode_first_stage(cc))
+            c_cat.append(cc)
+        c_cat = torch.cat(c_cat, dim=1)
+
+        # cond
+        cond = {"c_concat": [c_cat], "c_crossattn": [c]}
+
+        # uncond cond
+        uc_cross = model.get_unconditional_conditioning(num_samples, "")
+        uc_full = {"c_concat": [c_cat], "c_crossattn": [uc_cross]}
+
+        shape = [model.channels, h // 8, w // 8]
+        samples_cfg, intermediates = sampler.sample(
+            ddim_steps,
+            num_samples,
+            shape,
+            cond,
+            verbose=False,
+            eta=1.0,
+            unconditional_guidance_scale=scale,
+            unconditional_conditioning=uc_full,
+            x_T=start_code,
+        )
+        x_samples_ddim = model.decode_first_stage(samples_cfg)
+
+        result = torch.clamp((x_samples_ddim + 1.0) / 2.0,
+                             min=0.0, max=1.0)
+
+        result = result.cpu().numpy().transpose(0, 2, 3, 1) * 255
+    return [put_watermark(Image.fromarray(img.astype(np.uint8)), wm_encoder) for img in result]
+
+def pad_image(input_image):
+    pad_w, pad_h = np.max(((2, 2), np.ceil(
+        np.array(input_image.size) / 64).astype(int)), axis=0) * 64 - input_image.size
+    im_padded = Image.fromarray(
+        np.pad(np.array(input_image), ((0, pad_h), (0, pad_w), (0, 0)), mode='edge'))
+    return im_padded
+
+def crop_image(input_image):
+    crop_w, crop_h = np.floor(np.array(input_image.size) / 64).astype(int) * 64
+    im_cropped = Image.fromarray(np.array(input_image)[:crop_h, :crop_w])
+    return im_cropped
+
+# sampler = initialize_model(sys.argv[1], sys.argv[2])
+@torch.no_grad()
+def predict(model, input_image, prompt, ddim_steps, num_samples, scale, seed):
+    """_summary_
+
+    Args:
+        input_image (_type_): dict
+            - image: PIL.Image. Input image.
+            - mask: PIL.Image. Mask image.
+        prompt (_type_): string to be used as prompt. 
+        ddim_steps (_type_): typical 45
+        num_samples (_type_): typical 4
+        scale (_type_): typical 10.0 Guidance Scale.
+        seed (_type_): typical 1529160519
+    
+    """
+    init_image = input_image["image"].convert("RGB")
+    init_mask = input_image["mask"].convert("RGB")
+    image = pad_image(init_image) # resize to integer multiple of 32
+    mask = pad_image(init_mask) # resize to integer multiple of 32
+    width, height = image.size
+    print("Inpainting...", width, height)
+
+    result = inpaint(
+        sampler=model,
+        image=image,
+        mask=mask,
+        prompt=prompt,
+        seed=seed,
+        scale=scale,
+        ddim_steps=ddim_steps,
+        num_samples=num_samples,
+        h=height, w=width
+    )
+
+    return result
\ No newline at end of file
diff --git a/utils/misc.py b/utils/misc.py
new file mode 100755
index 0000000000000000000000000000000000000000..7b7f187785f8f45ce3d0b069b94ff31150c707ac
--- /dev/null
+++ b/utils/misc.py
@@ -0,0 +1,122 @@
+import math
+import numpy as np
+
+def get_prompt_templates():
+    prompt_templates = [
+        '{}.',
+        'a photo of a {}.',
+        'a bad photo of a {}.',
+        'a photo of many {}.',
+        'a sculpture of a {}.',
+        'a photo of the hard to see {}.',
+        'a low resolution photo of the {}.',
+        'a rendering of a {}.',
+        'graffiti of a {}.',
+        'a bad photo of the {}.',
+        'a cropped photo of the {}.',
+        'a tattoo of a {}.',
+        'the embroidered {}.',
+        'a photo of a hard to see {}.',
+        'a bright photo of a {}.',
+        'a photo of a clean {}.',
+        'a photo of a dirty {}.',
+        'a dark photo of the {}.',
+        'a drawing of a {}.',
+        'a photo of my {}.',
+        'the plastic {}.',
+        'a photo of the cool {}.',
+        'a close-up photo of a {}.',
+        'a black and white photo of the {}.',
+        'a painting of the {}.',
+        'a painting of a {}.',
+        'a pixelated photo of the {}.',
+        'a sculpture of the {}.',
+        'a bright photo of the {}.',
+        'a cropped photo of a {}.',
+        'a plastic {}.',
+        'a photo of the dirty {}.',
+        'a jpeg corrupted photo of a {}.',
+        'a blurry photo of the {}.',
+        'a photo of the {}.',
+        'a good photo of the {}.',
+        'a rendering of the {}.',
+        'a {} in a video game.',
+        'a photo of one {}.',
+        'a doodle of a {}.',
+        'a close-up photo of the {}.',
+        'the origami {}.',
+        'the {} in a video game.',
+        'a sketch of a {}.',
+        'a doodle of the {}.',
+        'a origami {}.',
+        'a low resolution photo of a {}.',
+        'the toy {}.',
+        'a rendition of the {}.',
+        'a photo of the clean {}.',
+        'a photo of a large {}.',
+        'a rendition of a {}.',
+        'a photo of a nice {}.',
+        'a photo of a weird {}.',
+        'a blurry photo of a {}.',
+        'a cartoon {}.',
+        'art of a {}.',
+        'a sketch of the {}.',
+        'a embroidered {}.',
+        'a pixelated photo of a {}.',
+        'itap of the {}.',
+        'a jpeg corrupted photo of the {}.',
+        'a good photo of a {}.',
+        'a plushie {}.',
+        'a photo of the nice {}.',
+        'a photo of the small {}.',
+        'a photo of the weird {}.',
+        'the cartoon {}.',
+        'art of the {}.',
+        'a drawing of the {}.',
+        'a photo of the large {}.',
+        'a black and white photo of a {}.',
+        'the plushie {}.',
+        'a dark photo of a {}.',
+        'itap of a {}.',
+        'graffiti of the {}.',
+        'a toy {}.',
+        'itap of my {}.',
+        'a photo of a cool {}.',
+        'a photo of a small {}.',
+        'a tattoo of the {}.',
+    ]
+    return prompt_templates
+
+
+def prompt_engineering(classnames, topk=1, suffix='.'):
+    prompt_templates = get_prompt_templates()
+    temp_idx = np.random.randint(min(len(prompt_templates), topk))
+
+    if isinstance(classnames, list):
+        classname = random.choice(classnames)
+    else:
+        classname = classnames
+
+    return prompt_templates[temp_idx].replace('.', suffix).format(classname.replace(',', '').replace('+', ' '))
+
+class AverageMeter(object):
+    """Computes and stores the average and current value."""
+    def __init__(self):
+        self.reset()
+
+    def reset(self):
+        self.val = 0
+        self.avg = 0
+        self.sum = 0
+        self.count = 0
+
+    def update(self, val, n=1, decay=0):
+        self.val = val
+        if decay:
+            alpha = math.exp(-n / decay)  # exponential decay over 100 updates
+            self.sum = alpha * self.sum + (1 - alpha) * val * n
+            self.count = alpha * self.count + (1 - alpha) * n
+        else:
+            self.sum += val * n
+            self.count += n
+        self.avg = self.sum / self.count
diff --git a/utils/model.py b/utils/model.py
new file mode 100755
index 0000000000000000000000000000000000000000..c6002070f13c8ba45fa65da9ce907bcc88688a35
--- /dev/null
+++ b/utils/model.py
@@ -0,0 +1,32 @@
+import logging
+import os
+import time
+import pickle
+
+import torch
+import torch.distributed as dist
+
+from fvcore.nn import FlopCountAnalysis
+from fvcore.nn import flop_count_table
+from fvcore.nn import flop_count_str
+
+logger = logging.getLogger(__name__)
+
+
+NORM_MODULES = [
+    torch.nn.BatchNorm1d,
+    torch.nn.BatchNorm2d,
+    torch.nn.BatchNorm3d,
+    torch.nn.SyncBatchNorm,
+    # NaiveSyncBatchNorm inherits from BatchNorm2d
+    torch.nn.GroupNorm,
+    torch.nn.InstanceNorm1d,
+    torch.nn.InstanceNorm2d,
+    torch.nn.InstanceNorm3d,
+    torch.nn.LayerNorm,
+    torch.nn.LocalResponseNorm,
+]
+
+def register_norm_module(cls):
+    NORM_MODULES.append(cls)
+    return cls
\ No newline at end of file
diff --git a/utils/model_loading.py b/utils/model_loading.py
new file mode 100755
index 0000000000000000000000000000000000000000..e679cb7f59f19a3834110ace1f56a1bd077d0049
--- /dev/null
+++ b/utils/model_loading.py
@@ -0,0 +1,42 @@
+# --------------------------------------------------------
+# X-Decoder -- Generalized Decoding for Pixel, Image, and Language
+# Copyright (c) 2022 Microsoft
+# Licensed under The MIT License [see LICENSE for details]
+# Written by Xueyan Zou (xueyan@cs.wisc.edu)
+# --------------------------------------------------------
+
+import logging
+from utils.distributed import is_main_process
+logger = logging.getLogger(__name__)
+
+
+def align_and_update_state_dicts(model_state_dict, ckpt_state_dict):
+    model_keys = sorted(model_state_dict.keys())
+    ckpt_keys = sorted(ckpt_state_dict.keys())
+    result_dicts = {}
+    matched_log = []
+    unmatched_log = []
+    unloaded_log = []
+    for model_key in model_keys:
+        model_weight = model_state_dict[model_key]
+        if model_key in ckpt_keys:
+            ckpt_weight = ckpt_state_dict[model_key]
+            if model_weight.shape == ckpt_weight.shape:
+                result_dicts[model_key] = ckpt_weight
+                ckpt_keys.pop(ckpt_keys.index(model_key))
+                matched_log.append("Loaded {}, Model Shape: {} <-> Ckpt Shape: {}".format(model_key, model_weight.shape, ckpt_weight.shape))
+            else:
+                unmatched_log.append("*UNMATCHED* {}, Model Shape: {} <-> Ckpt Shape: {}".format(model_key, model_weight.shape, ckpt_weight.shape))
+        else:
+            unloaded_log.append("*UNLOADED* {}, Model Shape: {}".format(model_key, model_weight.shape))
+            
+    if is_main_process():
+        for info in matched_log:
+            logger.info(info)
+        for info in unloaded_log:
+            logger.warning(info)
+        for key in ckpt_keys:
+            logger.warning("$UNUSED$ {}, Ckpt Shape: {}".format(key, ckpt_state_dict[key].shape))
+        for info in unmatched_log:
+            logger.warning(info)
+    return result_dicts
\ No newline at end of file
diff --git a/utils/util.py b/utils/util.py
new file mode 100644
index 0000000000000000000000000000000000000000..868c090d4fca05263ee59b7f7e32ef04802674e0
--- /dev/null
+++ b/utils/util.py
@@ -0,0 +1,283 @@
+# adopted from
+# https://github.com/openai/improved-diffusion/blob/main/improved_diffusion/gaussian_diffusion.py
+# and
+# https://github.com/lucidrains/denoising-diffusion-pytorch/blob/7706bdfc6f527f58d33f84b7b522e61e6e3164b3/denoising_diffusion_pytorch/denoising_diffusion_pytorch.py
+# and
+# https://github.com/openai/guided-diffusion/blob/0ba878e517b276c45d1195eb29f6f5f72659a05b/guided_diffusion/nn.py
+#
+# thanks!
+import importlib
+
+import os
+import math
+import torch
+import torch.nn as nn
+import numpy as np
+from einops import repeat
+
+
+def instantiate_from_config(config):
+    if not "target" in config:
+        if config == '__is_first_stage__':
+            return None
+        elif config == "__is_unconditional__":
+            return None
+        raise KeyError("Expected key `target` to instantiate.")
+    return get_obj_from_str(config["target"])(**config.get("params", dict()))
+
+
+def get_obj_from_str(string, reload=False):
+    module, cls = string.rsplit(".", 1)
+    if reload:
+        module_imp = importlib.import_module(module)
+        importlib.reload(module_imp)
+    return getattr(importlib.import_module(module, package=None), cls)
+
+
+def make_beta_schedule(schedule, n_timestep, linear_start=1e-4, linear_end=2e-2, cosine_s=8e-3):
+    if schedule == "linear":
+        betas = (
+                torch.linspace(linear_start ** 0.5, linear_end ** 0.5, n_timestep, dtype=torch.float64) ** 2
+        )
+
+    elif schedule == "cosine":
+        timesteps = (
+                torch.arange(n_timestep + 1, dtype=torch.float64) / n_timestep + cosine_s
+        )
+        alphas = timesteps / (1 + cosine_s) * np.pi / 2
+        alphas = torch.cos(alphas).pow(2)
+        alphas = alphas / alphas[0]
+        betas = 1 - alphas[1:] / alphas[:-1]
+        betas = np.clip(betas, a_min=0, a_max=0.999)
+
+    elif schedule == "sqrt_linear":
+        betas = torch.linspace(linear_start, linear_end, n_timestep, dtype=torch.float64)
+    elif schedule == "sqrt":
+        betas = torch.linspace(linear_start, linear_end, n_timestep, dtype=torch.float64) ** 0.5
+    else:
+        raise ValueError(f"schedule '{schedule}' unknown.")
+    return betas.numpy()
+
+
+def make_ddim_timesteps(ddim_discr_method, num_ddim_timesteps, num_ddpm_timesteps, verbose=True):
+    if ddim_discr_method == 'uniform':
+        c = num_ddpm_timesteps // num_ddim_timesteps
+        ddim_timesteps = np.asarray(list(range(0, num_ddpm_timesteps, c)))
+    elif ddim_discr_method == 'quad':
+        ddim_timesteps = ((np.linspace(0, np.sqrt(num_ddpm_timesteps * .8), num_ddim_timesteps)) ** 2).astype(int)
+    else:
+        raise NotImplementedError(f'There is no ddim discretization method called "{ddim_discr_method}"')
+
+    # assert ddim_timesteps.shape[0] == num_ddim_timesteps
+    # add one to get the final alpha values right (the ones from first scale to data during sampling)
+    steps_out = ddim_timesteps + 1
+    if verbose:
+        print(f'Selected timesteps for ddim sampler: {steps_out}')
+    return steps_out
+
+
+def make_ddim_sampling_parameters(alphacums, ddim_timesteps, eta, verbose=True):
+    # select alphas for computing the variance schedule
+    alphas = alphacums[ddim_timesteps]
+    alphas_prev = np.asarray([alphacums[0]] + alphacums[ddim_timesteps[:-1]].tolist())
+
+    # according the the formula provided in https://arxiv.org/abs/2010.02502
+    sigmas = eta * np.sqrt((1 - alphas_prev) / (1 - alphas) * (1 - alphas / alphas_prev))
+    if verbose:
+        print(f'Selected alphas for ddim sampler: a_t: {alphas}; a_(t-1): {alphas_prev}')
+        print(f'For the chosen value of eta, which is {eta}, '
+              f'this results in the following sigma_t schedule for ddim sampler {sigmas}')
+    return sigmas, alphas, alphas_prev
+
+
+def betas_for_alpha_bar(num_diffusion_timesteps, alpha_bar, max_beta=0.999):
+    """
+    Create a beta schedule that discretizes the given alpha_t_bar function,
+    which defines the cumulative product of (1-beta) over time from t = [0,1].
+    :param num_diffusion_timesteps: the number of betas to produce.
+    :param alpha_bar: a lambda that takes an argument t from 0 to 1 and
+                      produces the cumulative product of (1-beta) up to that
+                      part of the diffusion process.
+    :param max_beta: the maximum beta to use; use values lower than 1 to
+                     prevent singularities.
+    """
+    betas = []
+    for i in range(num_diffusion_timesteps):
+        t1 = i / num_diffusion_timesteps
+        t2 = (i + 1) / num_diffusion_timesteps
+        betas.append(min(1 - alpha_bar(t2) / alpha_bar(t1), max_beta))
+    return np.array(betas)
+
+
+def extract_into_tensor(a, t, x_shape):
+    b, *_ = t.shape
+    out = a.gather(-1, t)
+    return out.reshape(b, *((1,) * (len(x_shape) - 1)))
+
+
+def checkpoint(func, inputs, params, flag):
+    """
+    Evaluate a function without caching intermediate activations, allowing for
+    reduced memory at the expense of extra compute in the backward pass.
+    :param func: the function to evaluate.
+    :param inputs: the argument sequence to pass to `func`.
+    :param params: a sequence of parameters `func` depends on but does not
+                   explicitly take as arguments.
+    :param flag: if False, disable gradient checkpointing.
+    """
+    if flag:
+        args = tuple(inputs) + tuple(params)
+        return CheckpointFunction.apply(func, len(inputs), *args)
+    else:
+        return func(*inputs)
+
+
+class CheckpointFunction(torch.autograd.Function):
+    @staticmethod
+    def forward(ctx, run_function, length, *args):
+        ctx.run_function = run_function
+        ctx.input_tensors = list(args[:length])
+        ctx.input_params = list(args[length:])
+
+        with torch.no_grad():
+            output_tensors = ctx.run_function(*ctx.input_tensors)
+        return output_tensors
+
+    @staticmethod
+    def backward(ctx, *output_grads):
+        ctx.input_tensors = [x.detach().requires_grad_(True) for x in ctx.input_tensors]
+        with torch.enable_grad():
+            # Fixes a bug where the first op in run_function modifies the
+            # Tensor storage in place, which is not allowed for detach()'d
+            # Tensors.
+            shallow_copies = [x.view_as(x) for x in ctx.input_tensors]
+            output_tensors = ctx.run_function(*shallow_copies)
+        input_grads = torch.autograd.grad(
+            output_tensors,
+            ctx.input_tensors + ctx.input_params,
+            output_grads,
+            allow_unused=True,
+        )
+        del ctx.input_tensors
+        del ctx.input_params
+        del output_tensors
+        return (None, None) + input_grads
+
+
+def timestep_embedding(timesteps, dim, max_period=10000, repeat_only=False):
+    """
+    Create sinusoidal timestep embeddings.
+    :param timesteps: a 1-D Tensor of N indices, one per batch element.
+                      These may be fractional.
+    :param dim: the dimension of the output.
+    :param max_period: controls the minimum frequency of the embeddings.
+    :return: an [N x dim] Tensor of positional embeddings.
+    """
+    if not repeat_only:
+        half = dim // 2
+        freqs = torch.exp(
+            -math.log(max_period) * torch.arange(start=0, end=half, dtype=torch.float32) / half
+        ).to(device=timesteps.device)
+        args = timesteps[:, None].float() * freqs[None]
+        embedding = torch.cat([torch.cos(args), torch.sin(args)], dim=-1)
+        if dim % 2:
+            embedding = torch.cat([embedding, torch.zeros_like(embedding[:, :1])], dim=-1)
+    else:
+        embedding = repeat(timesteps, 'b -> b d', d=dim)
+    return embedding
+
+
+def zero_module(module):
+    """
+    Zero out the parameters of a module and return it.
+    """
+    for p in module.parameters():
+        p.detach().zero_()
+    return module
+
+
+def scale_module(module, scale):
+    """
+    Scale the parameters of a module and return it.
+    """
+    for p in module.parameters():
+        p.detach().mul_(scale)
+    return module
+
+
+def mean_flat(tensor):
+    """
+    Take the mean over all non-batch dimensions.
+    """
+    return tensor.mean(dim=list(range(1, len(tensor.shape))))
+
+
+def normalization(channels):
+    """
+    Make a standard normalization layer.
+    :param channels: number of input channels.
+    :return: an nn.Module for normalization.
+    """
+    return GroupNorm32(32, channels)
+
+
+# PyTorch 1.7 has SiLU, but we support PyTorch 1.5.
+class SiLU(nn.Module):
+    def forward(self, x):
+        return x * torch.sigmoid(x)
+
+
+class GroupNorm32(nn.GroupNorm):
+    def forward(self, x):
+        return super().forward(x.float()).type(x.dtype)
+
+def conv_nd(dims, *args, **kwargs):
+    """
+    Create a 1D, 2D, or 3D convolution module.
+    """
+    if dims == 1:
+        return nn.Conv1d(*args, **kwargs)
+    elif dims == 2:
+        return nn.Conv2d(*args, **kwargs)
+    elif dims == 3:
+        return nn.Conv3d(*args, **kwargs)
+    raise ValueError(f"unsupported dimensions: {dims}")
+
+
+def linear(*args, **kwargs):
+    """
+    Create a linear module.
+    """
+    return nn.Linear(*args, **kwargs)
+
+
+def avg_pool_nd(dims, *args, **kwargs):
+    """
+    Create a 1D, 2D, or 3D average pooling module.
+    """
+    if dims == 1:
+        return nn.AvgPool1d(*args, **kwargs)
+    elif dims == 2:
+        return nn.AvgPool2d(*args, **kwargs)
+    elif dims == 3:
+        return nn.AvgPool3d(*args, **kwargs)
+    raise ValueError(f"unsupported dimensions: {dims}")
+
+
+class HybridConditioner(nn.Module):
+
+    def __init__(self, c_concat_config, c_crossattn_config):
+        super().__init__()
+        self.concat_conditioner = instantiate_from_config(c_concat_config)
+        self.crossattn_conditioner = instantiate_from_config(c_crossattn_config)
+
+    def forward(self, c_concat, c_crossattn):
+        c_concat = self.concat_conditioner(c_concat)
+        c_crossattn = self.crossattn_conditioner(c_crossattn)
+        return {'c_concat': [c_concat], 'c_crossattn': [c_crossattn]}
+
+
+def noise_like(shape, device, repeat=False):
+    repeat_noise = lambda: torch.randn((1, *shape[1:]), device=device).repeat(shape[0], *((1,) * (len(shape) - 1)))
+    noise = lambda: torch.randn(shape, device=device)
+    return repeat_noise() if repeat else noise()
\ No newline at end of file
diff --git a/utils/visualizer.py b/utils/visualizer.py
new file mode 100755
index 0000000000000000000000000000000000000000..afdc2e2ff69f0b36b51c75c41d1893e8d9fb582e
--- /dev/null
+++ b/utils/visualizer.py
@@ -0,0 +1,1278 @@
+# Copyright (c) Facebook, Inc. and its affiliates.
+import colorsys
+import logging
+import math
+import numpy as np
+from enum import Enum, unique
+import cv2
+import matplotlib as mpl
+import matplotlib.colors as mplc
+import matplotlib.figure as mplfigure
+import pycocotools.mask as mask_util
+import torch
+from matplotlib.backends.backend_agg import FigureCanvasAgg
+from PIL import Image
+
+from detectron2.data import MetadataCatalog
+from detectron2.structures import BitMasks, Boxes, BoxMode, Keypoints, PolygonMasks, RotatedBoxes
+from detectron2.utils.file_io import PathManager
+
+from detectron2.utils.colormap import random_color
+
+logger = logging.getLogger(__name__)
+__all__ = ["ColorMode", "VisImage", "Visualizer"]
+
+
+_SMALL_OBJECT_AREA_THRESH = 1000
+_LARGE_MASK_AREA_THRESH = 120000
+_OFF_WHITE = (1.0, 1.0, 240.0 / 255)
+_BLACK = (0, 0, 0)
+_RED = (1.0, 0, 0)
+
+_KEYPOINT_THRESHOLD = 0.05
+
+
+@unique
+class ColorMode(Enum):
+    """
+    Enum of different color modes to use for instance visualizations.
+    """
+
+    IMAGE = 0
+    """
+    Picks a random color for every instance and overlay segmentations with low opacity.
+    """
+    SEGMENTATION = 1
+    """
+    Let instances of the same category have similar colors
+    (from metadata.thing_colors), and overlay them with
+    high opacity. This provides more attention on the quality of segmentation.
+    """
+    IMAGE_BW = 2
+    """
+    Same as IMAGE, but convert all areas without masks to gray-scale.
+    Only available for drawing per-instance mask predictions.
+    """
+
+
+class GenericMask:
+    """
+    Attribute:
+        polygons (list[ndarray]): list[ndarray]: polygons for this mask.
+            Each ndarray has format [x, y, x, y, ...]
+        mask (ndarray): a binary mask
+    """
+
+    def __init__(self, mask_or_polygons, height, width):
+        self._mask = self._polygons = self._has_holes = None
+        self.height = height
+        self.width = width
+
+        m = mask_or_polygons
+        if isinstance(m, dict):
+            # RLEs
+            assert "counts" in m and "size" in m
+            if isinstance(m["counts"], list):  # uncompressed RLEs
+                h, w = m["size"]
+                assert h == height and w == width
+                m = mask_util.frPyObjects(m, h, w)
+            self._mask = mask_util.decode(m)[:, :]
+            return
+
+        if isinstance(m, list):  # list[ndarray]
+            self._polygons = [np.asarray(x).reshape(-1) for x in m]
+            return
+
+        if isinstance(m, np.ndarray):  # assumed to be a binary mask
+            assert m.shape[1] != 2, m.shape
+            assert m.shape == (
+                height,
+                width,
+            ), f"mask shape: {m.shape}, target dims: {height}, {width}"
+            self._mask = m.astype("uint8")
+            return
+
+        raise ValueError("GenericMask cannot handle object {} of type '{}'".format(m, type(m)))
+
+    @property
+    def mask(self):
+        if self._mask is None:
+            self._mask = self.polygons_to_mask(self._polygons)
+        return self._mask
+
+    @property
+    def polygons(self):
+        if self._polygons is None:
+            self._polygons, self._has_holes = self.mask_to_polygons(self._mask)
+        return self._polygons
+
+    @property
+    def has_holes(self):
+        if self._has_holes is None:
+            if self._mask is not None:
+                self._polygons, self._has_holes = self.mask_to_polygons(self._mask)
+            else:
+                self._has_holes = False  # if original format is polygon, does not have holes
+        return self._has_holes
+
+    def mask_to_polygons(self, mask):
+        # cv2.RETR_CCOMP flag retrieves all the contours and arranges them to a 2-level
+        # hierarchy. External contours (boundary) of the object are placed in hierarchy-1.
+        # Internal contours (holes) are placed in hierarchy-2.
+        # cv2.CHAIN_APPROX_NONE flag gets vertices of polygons from contours.
+        mask = np.ascontiguousarray(mask)  # some versions of cv2 does not support incontiguous arr
+        res = cv2.findContours(mask.astype("uint8"), cv2.RETR_CCOMP, cv2.CHAIN_APPROX_NONE)
+        hierarchy = res[-1]
+        if hierarchy is None:  # empty mask
+            return [], False
+        has_holes = (hierarchy.reshape(-1, 4)[:, 3] >= 0).sum() > 0
+        res = res[-2]
+        res = [x.flatten() for x in res]
+        # These coordinates from OpenCV are integers in range [0, W-1 or H-1].
+        # We add 0.5 to turn them into real-value coordinate space. A better solution
+        # would be to first +0.5 and then dilate the returned polygon by 0.5.
+        res = [x + 0.5 for x in res if len(x) >= 6]
+        return res, has_holes
+
+    def polygons_to_mask(self, polygons):
+        rle = mask_util.frPyObjects(polygons, self.height, self.width)
+        rle = mask_util.merge(rle)
+        return mask_util.decode(rle)[:, :]
+
+    def area(self):
+        return self.mask.sum()
+
+    def bbox(self):
+        p = mask_util.frPyObjects(self.polygons, self.height, self.width)
+        p = mask_util.merge(p)
+        bbox = mask_util.toBbox(p)
+        bbox[2] += bbox[0]
+        bbox[3] += bbox[1]
+        return bbox
+
+
+class _PanopticPrediction:
+    """
+    Unify different panoptic annotation/prediction formats
+    """
+
+    def __init__(self, panoptic_seg, segments_info, metadata=None):
+        if segments_info is None:
+            assert metadata is not None
+            # If "segments_info" is None, we assume "panoptic_img" is a
+            # H*W int32 image storing the panoptic_id in the format of
+            # category_id * label_divisor + instance_id. We reserve -1 for
+            # VOID label.
+            label_divisor = metadata.label_divisor
+            segments_info = []
+            for panoptic_label in np.unique(panoptic_seg.numpy()):
+                if panoptic_label == -1:
+                    # VOID region.
+                    continue
+                pred_class = panoptic_label // label_divisor
+                isthing = pred_class in metadata.thing_dataset_id_to_contiguous_id.values()
+                segments_info.append(
+                    {
+                        "id": int(panoptic_label),
+                        "category_id": int(pred_class),
+                        "isthing": bool(isthing),
+                    }
+                )
+        del metadata
+
+        self._seg = panoptic_seg
+
+        self._sinfo = {s["id"]: s for s in segments_info}  # seg id -> seg info
+        segment_ids, areas = torch.unique(panoptic_seg, sorted=True, return_counts=True)
+        areas = areas.numpy()
+        sorted_idxs = np.argsort(-areas)
+        self._seg_ids, self._seg_areas = segment_ids[sorted_idxs], areas[sorted_idxs]
+        self._seg_ids = self._seg_ids.tolist()
+        for sid, area in zip(self._seg_ids, self._seg_areas):
+            if sid in self._sinfo:
+                self._sinfo[sid]["area"] = float(area)
+
+    def non_empty_mask(self):
+        """
+        Returns:
+            (H, W) array, a mask for all pixels that have a prediction
+        """
+        empty_ids = []
+        for id in self._seg_ids:
+            if id not in self._sinfo:
+                empty_ids.append(id)
+        if len(empty_ids) == 0:
+            return np.zeros(self._seg.shape, dtype=np.uint8)
+        assert (
+            len(empty_ids) == 1
+        ), ">1 ids corresponds to no labels. This is currently not supported"
+        return (self._seg != empty_ids[0]).numpy().astype(np.bool)
+
+    def semantic_masks(self):
+        for sid in self._seg_ids:
+            sinfo = self._sinfo.get(sid)
+            if sinfo is None or sinfo["isthing"]:
+                # Some pixels (e.g. id 0 in PanopticFPN) have no instance or semantic predictions.
+                continue
+            yield (self._seg == sid).numpy().astype(np.bool), sinfo
+
+    def instance_masks(self):
+        for sid in self._seg_ids:
+            sinfo = self._sinfo.get(sid)
+            if sinfo is None or not sinfo["isthing"]:
+                continue
+            mask = (self._seg == sid).numpy().astype(np.bool)
+            if mask.sum() > 0:
+                yield mask, sinfo
+
+
+def _create_text_labels(classes, scores, class_names, is_crowd=None):
+    """
+    Args:
+        classes (list[int] or None):
+        scores (list[float] or None):
+        class_names (list[str] or None):
+        is_crowd (list[bool] or None):
+
+    Returns:
+        list[str] or None
+    """
+    labels = None
+    if classes is not None:
+        if class_names is not None and len(class_names) > 0:
+            labels = [class_names[i] for i in classes]
+        else:
+            labels = [str(i) for i in classes]
+    if scores is not None:
+        if labels is None:
+            labels = ["{:.0f}%".format(s * 100) for s in scores]
+        else:
+            labels = ["{} {:.0f}%".format(l, s * 100) for l, s in zip(labels, scores)]
+    if labels is not None and is_crowd is not None:
+        labels = [l + ("|crowd" if crowd else "") for l, crowd in zip(labels, is_crowd)]
+    return labels
+
+
+class VisImage:
+    def __init__(self, img, scale=1.0):
+        """
+        Args:
+            img (ndarray): an RGB image of shape (H, W, 3) in range [0, 255].
+            scale (float): scale the input image
+        """
+        self.img = img
+        self.scale = scale
+        self.width, self.height = img.shape[1], img.shape[0]
+        self._setup_figure(img)
+
+    def _setup_figure(self, img):
+        """
+        Args:
+            Same as in :meth:`__init__()`.
+
+        Returns:
+            fig (matplotlib.pyplot.figure): top level container for all the image plot elements.
+            ax (matplotlib.pyplot.Axes): contains figure elements and sets the coordinate system.
+        """
+        fig = mplfigure.Figure(frameon=False)
+        self.dpi = fig.get_dpi()
+        # add a small 1e-2 to avoid precision lost due to matplotlib's truncation
+        # (https://github.com/matplotlib/matplotlib/issues/15363)
+        fig.set_size_inches(
+            (self.width * self.scale + 1e-2) / self.dpi,
+            (self.height * self.scale + 1e-2) / self.dpi,
+        )
+        self.canvas = FigureCanvasAgg(fig)
+        # self.canvas = mpl.backends.backend_cairo.FigureCanvasCairo(fig)
+        ax = fig.add_axes([0.0, 0.0, 1.0, 1.0])
+        ax.axis("off")
+        self.fig = fig
+        self.ax = ax
+        self.reset_image(img)
+
+    def reset_image(self, img):
+        """
+        Args:
+            img: same as in __init__
+        """
+        img = img.astype("uint8")
+        self.ax.imshow(img, extent=(0, self.width, self.height, 0), interpolation="nearest")
+
+    def save(self, filepath):
+        """
+        Args:
+            filepath (str): a string that contains the absolute path, including the file name, where
+                the visualized image will be saved.
+        """
+        self.fig.savefig(filepath)
+
+    def get_image(self):
+        """
+        Returns:
+            ndarray:
+                the visualized image of shape (H, W, 3) (RGB) in uint8 type.
+                The shape is scaled w.r.t the input image using the given `scale` argument.
+        """
+        canvas = self.canvas
+        s, (width, height) = canvas.print_to_buffer()
+        # buf = io.BytesIO()  # works for cairo backend
+        # canvas.print_rgba(buf)
+        # width, height = self.width, self.height
+        # s = buf.getvalue()
+
+        buffer = np.frombuffer(s, dtype="uint8")
+
+        img_rgba = buffer.reshape(height, width, 4)
+        rgb, alpha = np.split(img_rgba, [3], axis=2)
+        return rgb.astype("uint8")
+
+
+class Visualizer:
+    """
+    Visualizer that draws data about detection/segmentation on images.
+
+    It contains methods like `draw_{text,box,circle,line,binary_mask,polygon}`
+    that draw primitive objects to images, as well as high-level wrappers like
+    `draw_{instance_predictions,sem_seg,panoptic_seg_predictions,dataset_dict}`
+    that draw composite data in some pre-defined style.
+
+    Note that the exact visualization style for the high-level wrappers are subject to change.
+    Style such as color, opacity, label contents, visibility of labels, or even the visibility
+    of objects themselves (e.g. when the object is too small) may change according
+    to different heuristics, as long as the results still look visually reasonable.
+
+    To obtain a consistent style, you can implement custom drawing functions with the
+    abovementioned primitive methods instead. If you need more customized visualization
+    styles, you can process the data yourself following their format documented in
+    tutorials (:doc:`/tutorials/models`, :doc:`/tutorials/datasets`). This class does not
+    intend to satisfy everyone's preference on drawing styles.
+
+    This visualizer focuses on high rendering quality rather than performance. It is not
+    designed to be used for real-time applications.
+    """
+
+    # TODO implement a fast, rasterized version using OpenCV
+
+    def __init__(self, img_rgb, metadata=None, scale=1.0, instance_mode=ColorMode.IMAGE):
+        """
+        Args:
+            img_rgb: a numpy array of shape (H, W, C), where H and W correspond to
+                the height and width of the image respectively. C is the number of
+                color channels. The image is required to be in RGB format since that
+                is a requirement of the Matplotlib library. The image is also expected
+                to be in the range [0, 255].
+            metadata (Metadata): dataset metadata (e.g. class names and colors)
+            instance_mode (ColorMode): defines one of the pre-defined style for drawing
+                instances on an image.
+        """
+        self.img = np.asarray(img_rgb).clip(0, 255).astype(np.uint8)
+        if metadata is None:
+            metadata = MetadataCatalog.get("__nonexist__")
+        self.metadata = metadata
+        self.output = VisImage(self.img, scale=scale)
+        self.cpu_device = torch.device("cpu")
+
+        # too small texts are useless, therefore clamp to 9
+        self._default_font_size = max(
+            np.sqrt(self.output.height * self.output.width) // 90, 10 // scale
+        )
+        self._default_font_size = 18
+        self._instance_mode = instance_mode
+        self.keypoint_threshold = _KEYPOINT_THRESHOLD
+
+    def draw_instance_predictions(self, predictions):
+        """
+        Draw instance-level prediction results on an image.
+
+        Args:
+            predictions (Instances): the output of an instance detection/segmentation
+                model. Following fields will be used to draw:
+                "pred_boxes", "pred_classes", "scores", "pred_masks" (or "pred_masks_rle").
+
+        Returns:
+            output (VisImage): image object with visualizations.
+        """
+        boxes = predictions.pred_boxes if predictions.has("pred_boxes") else None
+        scores = predictions.scores if predictions.has("scores") else None
+        classes = predictions.pred_classes.tolist() if predictions.has("pred_classes") else None
+        labels = _create_text_labels(classes, scores, self.metadata.get("thing_classes", None))
+        keypoints = predictions.pred_keypoints if predictions.has("pred_keypoints") else None
+        
+        keep = (scores > 0.8).cpu()
+        boxes = boxes[keep]
+        scores = scores[keep]
+        classes = np.array(classes)
+        classes = classes[np.array(keep)]
+        labels = np.array(labels)
+        labels = labels[np.array(keep)]
+
+        if predictions.has("pred_masks"):
+            masks = np.asarray(predictions.pred_masks)
+            masks = masks[np.array(keep)]
+            masks = [GenericMask(x, self.output.height, self.output.width) for x in masks]
+        else:
+            masks = None
+
+        if self._instance_mode == ColorMode.SEGMENTATION and self.metadata.get("thing_colors"):
+        # if self.metadata.get("thing_colors"):
+            colors = [
+                self._jitter([x / 255 for x in self.metadata.thing_colors[c]]) for c in classes
+            ]
+            alpha = 0.4
+        else:
+            colors = None
+            alpha = 0.4
+
+        if self._instance_mode == ColorMode.IMAGE_BW:
+            self.output.reset_image(
+                self._create_grayscale_image(
+                    (predictions.pred_masks.any(dim=0) > 0).numpy()
+                    if predictions.has("pred_masks")
+                    else None
+                )
+            )
+            alpha = 0.3
+        
+        self.overlay_instances(
+            masks=masks,
+            boxes=boxes,
+            labels=labels,
+            keypoints=keypoints,
+            assigned_colors=colors,
+            alpha=alpha,
+        )
+        return self.output
+
+    def draw_sem_seg(self, sem_seg, area_threshold=None, alpha=0.7):
+        """
+        Draw semantic segmentation predictions/labels.
+
+        Args:
+            sem_seg (Tensor or ndarray): the segmentation of shape (H, W).
+                Each value is the integer label of the pixel.
+            area_threshold (int): segments with less than `area_threshold` are not drawn.
+            alpha (float): the larger it is, the more opaque the segmentations are.
+
+        Returns:
+            output (VisImage): image object with visualizations.
+        """
+        if isinstance(sem_seg, torch.Tensor):
+            sem_seg = sem_seg.numpy()
+        labels, areas = np.unique(sem_seg, return_counts=True)
+        sorted_idxs = np.argsort(-areas).tolist()
+        labels = labels[sorted_idxs]
+        for label in filter(lambda l: l < len(self.metadata.stuff_classes), labels):
+            try:
+                mask_color = [x / 255 for x in self.metadata.stuff_colors[label]]
+            except (AttributeError, IndexError):
+                mask_color = None
+
+            binary_mask = (sem_seg == label).astype(np.uint8)
+            text = self.metadata.stuff_classes[label]
+            self.draw_binary_mask(
+                binary_mask,
+                color=mask_color,
+                edge_color=_OFF_WHITE,
+                text=text,
+                alpha=alpha,
+                area_threshold=area_threshold,
+            )
+        return self.output
+
+    def draw_panoptic_seg(self, panoptic_seg, segments_info, area_threshold=None, alpha=0.7):
+        """
+        Draw panoptic prediction annotations or results.
+
+        Args:
+            panoptic_seg (Tensor): of shape (height, width) where the values are ids for each
+                segment.
+            segments_info (list[dict] or None): Describe each segment in `panoptic_seg`.
+                If it is a ``list[dict]``, each dict contains keys "id", "category_id".
+                If None, category id of each pixel is computed by
+                ``pixel // metadata.label_divisor``.
+            area_threshold (int): stuff segments with less than `area_threshold` are not drawn.
+
+        Returns:
+            output (VisImage): image object with visualizations.
+        """
+        pred = _PanopticPrediction(panoptic_seg, segments_info, self.metadata)
+
+        if self._instance_mode == ColorMode.IMAGE_BW:
+            self.output.reset_image(self._create_grayscale_image(pred.non_empty_mask()))
+
+        # draw mask for all semantic segments first i.e. "stuff"
+        for mask, sinfo in pred.semantic_masks():
+            category_idx = sinfo["category_id"]
+            try:
+                mask_color = [x / 255 for x in self.metadata.stuff_colors[category_idx]]
+            except AttributeError:
+                mask_color = None
+
+            text = self.metadata.stuff_classes[category_idx]
+            self.draw_binary_mask(
+                mask,
+                color=mask_color,
+                edge_color=_OFF_WHITE,
+                text=text,
+                alpha=alpha,
+                area_threshold=area_threshold,
+            )
+
+        # draw mask for all instances second
+        all_instances = list(pred.instance_masks())
+        if len(all_instances) == 0:
+            return self.output
+        masks, sinfo = list(zip(*all_instances))
+        category_ids = [x["category_id"] for x in sinfo]
+
+        try:
+            scores = [x["score"] for x in sinfo]
+        except KeyError:
+            scores = None
+        labels = _create_text_labels(
+            category_ids, scores, self.metadata.thing_classes, [x.get("iscrowd", 0) for x in sinfo]
+        )
+
+        try:
+            colors = [
+                self._jitter([x / 255 for x in self.metadata.thing_colors[c]]) for c in category_ids
+            ]
+        except AttributeError:
+            colors = None
+        self.overlay_instances(masks=masks, labels=labels, assigned_colors=colors, alpha=alpha)
+
+        return self.output
+
+    draw_panoptic_seg_predictions = draw_panoptic_seg  # backward compatibility
+
+    def draw_dataset_dict(self, dic):
+        """
+        Draw annotations/segmentaions in Detectron2 Dataset format.
+
+        Args:
+            dic (dict): annotation/segmentation data of one image, in Detectron2 Dataset format.
+
+        Returns:
+            output (VisImage): image object with visualizations.
+        """
+        annos = dic.get("annotations", None)
+        if annos:
+            if "segmentation" in annos[0]:
+                masks = [x["segmentation"] for x in annos]
+            else:
+                masks = None
+            if "keypoints" in annos[0]:
+                keypts = [x["keypoints"] for x in annos]
+                keypts = np.array(keypts).reshape(len(annos), -1, 3)
+            else:
+                keypts = None
+
+            boxes = [
+                BoxMode.convert(x["bbox"], x["bbox_mode"], BoxMode.XYXY_ABS)
+                if len(x["bbox"]) == 4
+                else x["bbox"]
+                for x in annos
+            ]
+
+            colors = None
+            category_ids = [x["category_id"] for x in annos]
+            if self._instance_mode == ColorMode.SEGMENTATION and self.metadata.get("thing_colors"):
+                colors = [
+                    self._jitter([x / 255 for x in self.metadata.thing_colors[c]])
+                    for c in category_ids
+                ]
+            names = self.metadata.get("thing_classes", None)
+            labels = _create_text_labels(
+                category_ids,
+                scores=None,
+                class_names=names,
+                is_crowd=[x.get("iscrowd", 0) for x in annos],
+            )
+            self.overlay_instances(
+                labels=labels, boxes=boxes, masks=masks, keypoints=keypts, assigned_colors=colors
+            )
+
+        sem_seg = dic.get("sem_seg", None)
+        if sem_seg is None and "sem_seg_file_name" in dic:
+            with PathManager.open(dic["sem_seg_file_name"], "rb") as f:
+                sem_seg = Image.open(f)
+                sem_seg = np.asarray(sem_seg, dtype="uint8")
+        if sem_seg is not None:
+            self.draw_sem_seg(sem_seg, area_threshold=0, alpha=0.4)
+
+        pan_seg = dic.get("pan_seg", None)
+        if pan_seg is None and "pan_seg_file_name" in dic:
+            with PathManager.open(dic["pan_seg_file_name"], "rb") as f:
+                pan_seg = Image.open(f)
+                pan_seg = np.asarray(pan_seg)
+                from panopticapi.utils import rgb2id
+
+                pan_seg = rgb2id(pan_seg)
+        if pan_seg is not None:
+            segments_info = dic["segments_info"]
+            pan_seg = torch.tensor(pan_seg)
+            self.draw_panoptic_seg(pan_seg, segments_info, area_threshold=0, alpha=0.7)
+        return self.output
+
+    def overlay_instances(
+        self,
+        *,
+        boxes=None,
+        labels=None,
+        masks=None,
+        keypoints=None,
+        assigned_colors=None,
+        alpha=0.5,
+    ):
+        """
+        Args:
+            boxes (Boxes, RotatedBoxes or ndarray): either a :class:`Boxes`,
+                or an Nx4 numpy array of XYXY_ABS format for the N objects in a single image,
+                or a :class:`RotatedBoxes`,
+                or an Nx5 numpy array of (x_center, y_center, width, height, angle_degrees) format
+                for the N objects in a single image,
+            labels (list[str]): the text to be displayed for each instance.
+            masks (masks-like object): Supported types are:
+
+                * :class:`detectron2.structures.PolygonMasks`,
+                  :class:`detectron2.structures.BitMasks`.
+                * list[list[ndarray]]: contains the segmentation masks for all objects in one image.
+                  The first level of the list corresponds to individual instances. The second
+                  level to all the polygon that compose the instance, and the third level
+                  to the polygon coordinates. The third level should have the format of
+                  [x0, y0, x1, y1, ..., xn, yn] (n >= 3).
+                * list[ndarray]: each ndarray is a binary mask of shape (H, W).
+                * list[dict]: each dict is a COCO-style RLE.
+            keypoints (Keypoint or array like): an array-like object of shape (N, K, 3),
+                where the N is the number of instances and K is the number of keypoints.
+                The last dimension corresponds to (x, y, visibility or score).
+            assigned_colors (list[matplotlib.colors]): a list of colors, where each color
+                corresponds to each mask or box in the image. Refer to 'matplotlib.colors'
+                for full list of formats that the colors are accepted in.
+        Returns:
+            output (VisImage): image object with visualizations.
+        """
+        num_instances = 0
+        if boxes is not None:
+            boxes = self._convert_boxes(boxes)
+            num_instances = len(boxes)
+        if masks is not None:
+            masks = self._convert_masks(masks)
+            if num_instances:
+                assert len(masks) == num_instances
+            else:
+                num_instances = len(masks)
+        if keypoints is not None:
+            if num_instances:
+                assert len(keypoints) == num_instances
+            else:
+                num_instances = len(keypoints)
+            keypoints = self._convert_keypoints(keypoints)
+        if labels is not None:
+            assert len(labels) == num_instances
+        if assigned_colors is None:
+            assigned_colors = [random_color(rgb=True, maximum=1) for _ in range(num_instances)]
+        if num_instances == 0:
+            return self.output
+        if boxes is not None and boxes.shape[1] == 5:
+            return self.overlay_rotated_instances(
+                boxes=boxes, labels=labels, assigned_colors=assigned_colors
+            )
+
+        # Display in largest to smallest order to reduce occlusion.
+        areas = None
+        if boxes is not None:
+            areas = np.prod(boxes[:, 2:] - boxes[:, :2], axis=1)
+        elif masks is not None:
+            areas = np.asarray([x.area() for x in masks])
+
+        if areas is not None:
+            sorted_idxs = np.argsort(-areas).tolist()
+            # Re-order overlapped instances in descending order.
+            boxes = boxes[sorted_idxs] if boxes is not None else None
+            labels = [labels[k] for k in sorted_idxs] if labels is not None else None
+            masks = [masks[idx] for idx in sorted_idxs] if masks is not None else None
+            assigned_colors = [assigned_colors[idx] for idx in sorted_idxs]
+            keypoints = keypoints[sorted_idxs] if keypoints is not None else None
+
+        for i in range(num_instances):
+            color = assigned_colors[i]
+            if boxes is not None:
+                self.draw_box(boxes[i], edge_color=color)
+
+            if masks is not None:
+                for segment in masks[i].polygons:
+                    self.draw_polygon(segment.reshape(-1, 2), color, alpha=alpha)
+
+            if labels is not None:
+                # first get a box
+                if boxes is not None:
+                    x0, y0, x1, y1 = boxes[i]
+                    text_pos = (x0, y0)  # if drawing boxes, put text on the box corner.
+                    horiz_align = "left"
+                elif masks is not None:
+                    # skip small mask without polygon
+                    if len(masks[i].polygons) == 0:
+                        continue
+
+                    x0, y0, x1, y1 = masks[i].bbox()
+
+                    # draw text in the center (defined by median) when box is not drawn
+                    # median is less sensitive to outliers.
+                    text_pos = np.median(masks[i].mask.nonzero(), axis=1)[::-1]
+                    horiz_align = "center"
+                else:
+                    continue  # drawing the box confidence for keypoints isn't very useful.
+                # for small objects, draw text at the side to avoid occlusion
+                instance_area = (y1 - y0) * (x1 - x0)
+                if (
+                    instance_area < _SMALL_OBJECT_AREA_THRESH * self.output.scale
+                    or y1 - y0 < 40 * self.output.scale
+                ):
+                    if y1 >= self.output.height - 5:
+                        text_pos = (x1, y0)
+                    else:
+                        text_pos = (x0, y1)
+
+                height_ratio = (y1 - y0) / np.sqrt(self.output.height * self.output.width)
+                lighter_color = self._change_color_brightness(color, brightness_factor=0.7)
+                font_size = (
+                    np.clip((height_ratio - 0.02) / 0.08 + 1, 1.2, 2)
+                    * 0.5
+                    * self._default_font_size
+                )
+                self.draw_text(
+                    labels[i],
+                    text_pos,
+                    color=lighter_color,
+                    horizontal_alignment=horiz_align,
+                    font_size=font_size,
+                )
+
+        # draw keypoints
+        if keypoints is not None:
+            for keypoints_per_instance in keypoints:
+                self.draw_and_connect_keypoints(keypoints_per_instance)
+
+        return self.output
+
+    def overlay_rotated_instances(self, boxes=None, labels=None, assigned_colors=None):
+        """
+        Args:
+            boxes (ndarray): an Nx5 numpy array of
+                (x_center, y_center, width, height, angle_degrees) format
+                for the N objects in a single image.
+            labels (list[str]): the text to be displayed for each instance.
+            assigned_colors (list[matplotlib.colors]): a list of colors, where each color
+                corresponds to each mask or box in the image. Refer to 'matplotlib.colors'
+                for full list of formats that the colors are accepted in.
+
+        Returns:
+            output (VisImage): image object with visualizations.
+        """
+        num_instances = len(boxes)
+
+        if assigned_colors is None:
+            assigned_colors = [random_color(rgb=True, maximum=1) for _ in range(num_instances)]
+        if num_instances == 0:
+            return self.output
+
+        # Display in largest to smallest order to reduce occlusion.
+        if boxes is not None:
+            areas = boxes[:, 2] * boxes[:, 3]
+
+        sorted_idxs = np.argsort(-areas).tolist()
+        # Re-order overlapped instances in descending order.
+        boxes = boxes[sorted_idxs]
+        labels = [labels[k] for k in sorted_idxs] if labels is not None else None
+        colors = [assigned_colors[idx] for idx in sorted_idxs]
+
+        for i in range(num_instances):
+            self.draw_rotated_box_with_label(
+                boxes[i], edge_color=colors[i], label=labels[i] if labels is not None else None
+            )
+
+        return self.output
+
+    def draw_and_connect_keypoints(self, keypoints):
+        """
+        Draws keypoints of an instance and follows the rules for keypoint connections
+        to draw lines between appropriate keypoints. This follows color heuristics for
+        line color.
+
+        Args:
+            keypoints (Tensor): a tensor of shape (K, 3), where K is the number of keypoints
+                and the last dimension corresponds to (x, y, probability).
+
+        Returns:
+            output (VisImage): image object with visualizations.
+        """
+        visible = {}
+        keypoint_names = self.metadata.get("keypoint_names")
+        for idx, keypoint in enumerate(keypoints):
+
+            # draw keypoint
+            x, y, prob = keypoint
+            if prob > self.keypoint_threshold:
+                self.draw_circle((x, y), color=_RED)
+                if keypoint_names:
+                    keypoint_name = keypoint_names[idx]
+                    visible[keypoint_name] = (x, y)
+
+        if self.metadata.get("keypoint_connection_rules"):
+            for kp0, kp1, color in self.metadata.keypoint_connection_rules:
+                if kp0 in visible and kp1 in visible:
+                    x0, y0 = visible[kp0]
+                    x1, y1 = visible[kp1]
+                    color = tuple(x / 255.0 for x in color)
+                    self.draw_line([x0, x1], [y0, y1], color=color)
+
+        # draw lines from nose to mid-shoulder and mid-shoulder to mid-hip
+        # Note that this strategy is specific to person keypoints.
+        # For other keypoints, it should just do nothing
+        try:
+            ls_x, ls_y = visible["left_shoulder"]
+            rs_x, rs_y = visible["right_shoulder"]
+            mid_shoulder_x, mid_shoulder_y = (ls_x + rs_x) / 2, (ls_y + rs_y) / 2
+        except KeyError:
+            pass
+        else:
+            # draw line from nose to mid-shoulder
+            nose_x, nose_y = visible.get("nose", (None, None))
+            if nose_x is not None:
+                self.draw_line([nose_x, mid_shoulder_x], [nose_y, mid_shoulder_y], color=_RED)
+
+            try:
+                # draw line from mid-shoulder to mid-hip
+                lh_x, lh_y = visible["left_hip"]
+                rh_x, rh_y = visible["right_hip"]
+            except KeyError:
+                pass
+            else:
+                mid_hip_x, mid_hip_y = (lh_x + rh_x) / 2, (lh_y + rh_y) / 2
+                self.draw_line([mid_hip_x, mid_shoulder_x], [mid_hip_y, mid_shoulder_y], color=_RED)
+        return self.output
+
+    """
+    Primitive drawing functions:
+    """
+
+    def draw_text(
+        self,
+        text,
+        position,
+        *,
+        font_size=None,
+        color="g",
+        horizontal_alignment="center",
+        rotation=0,
+    ):
+        """
+        Args:
+            text (str): class label
+            position (tuple): a tuple of the x and y coordinates to place text on image.
+            font_size (int, optional): font of the text. If not provided, a font size
+                proportional to the image width is calculated and used.
+            color: color of the text. Refer to `matplotlib.colors` for full list
+                of formats that are accepted.
+            horizontal_alignment (str): see `matplotlib.text.Text`
+            rotation: rotation angle in degrees CCW
+
+        Returns:
+            output (VisImage): image object with text drawn.
+        """
+        if not font_size:
+            font_size = self._default_font_size
+
+        # since the text background is dark, we don't want the text to be dark
+        color = np.maximum(list(mplc.to_rgb(color)), 0.2)
+        color[np.argmax(color)] = max(0.8, np.max(color))
+
+        x, y = position
+        self.output.ax.text(
+            x,
+            y,
+            text,
+            size=font_size * self.output.scale,
+            family="sans-serif",
+            bbox={"facecolor": "black", "alpha": 0.8, "pad": 0.7, "edgecolor": "none"},
+            verticalalignment="top",
+            horizontalalignment=horizontal_alignment,
+            color=color,
+            zorder=10,
+            rotation=rotation,
+        )
+        return self.output
+
+    def draw_box(self, box_coord, alpha=0.5, edge_color="g", line_style="-"):
+        """
+        Args:
+            box_coord (tuple): a tuple containing x0, y0, x1, y1 coordinates, where x0 and y0
+                are the coordinates of the image's top left corner. x1 and y1 are the
+                coordinates of the image's bottom right corner.
+            alpha (float): blending efficient. Smaller values lead to more transparent masks.
+            edge_color: color of the outline of the box. Refer to `matplotlib.colors`
+                for full list of formats that are accepted.
+            line_style (string): the string to use to create the outline of the boxes.
+
+        Returns:
+            output (VisImage): image object with box drawn.
+        """
+        x0, y0, x1, y1 = box_coord
+        width = x1 - x0
+        height = y1 - y0
+
+        linewidth = max(self._default_font_size / 4, 1)
+
+        self.output.ax.add_patch(
+            mpl.patches.Rectangle(
+                (x0, y0),
+                width,
+                height,
+                fill=False,
+                edgecolor=edge_color,
+                linewidth=linewidth * self.output.scale,
+                alpha=alpha,
+                linestyle=line_style,
+            )
+        )
+        return self.output
+
+    def draw_rotated_box_with_label(
+        self, rotated_box, alpha=0.5, edge_color="g", line_style="-", label=None
+    ):
+        """
+        Draw a rotated box with label on its top-left corner.
+
+        Args:
+            rotated_box (tuple): a tuple containing (cnt_x, cnt_y, w, h, angle),
+                where cnt_x and cnt_y are the center coordinates of the box.
+                w and h are the width and height of the box. angle represents how
+                many degrees the box is rotated CCW with regard to the 0-degree box.
+            alpha (float): blending efficient. Smaller values lead to more transparent masks.
+            edge_color: color of the outline of the box. Refer to `matplotlib.colors`
+                for full list of formats that are accepted.
+            line_style (string): the string to use to create the outline of the boxes.
+            label (string): label for rotated box. It will not be rendered when set to None.
+
+        Returns:
+            output (VisImage): image object with box drawn.
+        """
+        cnt_x, cnt_y, w, h, angle = rotated_box
+        area = w * h
+        # use thinner lines when the box is small
+        linewidth = self._default_font_size / (
+            6 if area < _SMALL_OBJECT_AREA_THRESH * self.output.scale else 3
+        )
+
+        theta = angle * math.pi / 180.0
+        c = math.cos(theta)
+        s = math.sin(theta)
+        rect = [(-w / 2, h / 2), (-w / 2, -h / 2), (w / 2, -h / 2), (w / 2, h / 2)]
+        # x: left->right ; y: top->down
+        rotated_rect = [(s * yy + c * xx + cnt_x, c * yy - s * xx + cnt_y) for (xx, yy) in rect]
+        for k in range(4):
+            j = (k + 1) % 4
+            self.draw_line(
+                [rotated_rect[k][0], rotated_rect[j][0]],
+                [rotated_rect[k][1], rotated_rect[j][1]],
+                color=edge_color,
+                linestyle="--" if k == 1 else line_style,
+                linewidth=linewidth,
+            )
+
+        if label is not None:
+            text_pos = rotated_rect[1]  # topleft corner
+
+            height_ratio = h / np.sqrt(self.output.height * self.output.width)
+            label_color = self._change_color_brightness(edge_color, brightness_factor=0.7)
+            font_size = (
+                np.clip((height_ratio - 0.02) / 0.08 + 1, 1.2, 2) * 0.5 * self._default_font_size
+            )
+            self.draw_text(label, text_pos, color=label_color, font_size=font_size, rotation=angle)
+
+        return self.output
+
+    def draw_circle(self, circle_coord, color, radius=3):
+        """
+        Args:
+            circle_coord (list(int) or tuple(int)): contains the x and y coordinates
+                of the center of the circle.
+            color: color of the polygon. Refer to `matplotlib.colors` for a full list of
+                formats that are accepted.
+            radius (int): radius of the circle.
+
+        Returns:
+            output (VisImage): image object with box drawn.
+        """
+        x, y = circle_coord
+        self.output.ax.add_patch(
+            mpl.patches.Circle(circle_coord, radius=radius, fill=True, color=color)
+        )
+        return self.output
+
+    def draw_line(self, x_data, y_data, color, linestyle="-", linewidth=None):
+        """
+        Args:
+            x_data (list[int]): a list containing x values of all the points being drawn.
+                Length of list should match the length of y_data.
+            y_data (list[int]): a list containing y values of all the points being drawn.
+                Length of list should match the length of x_data.
+            color: color of the line. Refer to `matplotlib.colors` for a full list of
+                formats that are accepted.
+            linestyle: style of the line. Refer to `matplotlib.lines.Line2D`
+                for a full list of formats that are accepted.
+            linewidth (float or None): width of the line. When it's None,
+                a default value will be computed and used.
+
+        Returns:
+            output (VisImage): image object with line drawn.
+        """
+        if linewidth is None:
+            linewidth = self._default_font_size / 3
+        linewidth = max(linewidth, 1)
+        self.output.ax.add_line(
+            mpl.lines.Line2D(
+                x_data,
+                y_data,
+                linewidth=linewidth * self.output.scale,
+                color=color,
+                linestyle=linestyle,
+            )
+        )
+        return self.output
+
+    def draw_binary_mask(
+        self, binary_mask, color=None, *, edge_color=None, text=None, alpha=0.7, area_threshold=10
+    ):
+        """
+        Args:
+            binary_mask (ndarray): numpy array of shape (H, W), where H is the image height and
+                W is the image width. Each value in the array is either a 0 or 1 value of uint8
+                type.
+            color: color of the mask. Refer to `matplotlib.colors` for a full list of
+                formats that are accepted. If None, will pick a random color.
+            edge_color: color of the polygon edges. Refer to `matplotlib.colors` for a
+                full list of formats that are accepted.
+            text (str): if None, will be drawn on the object
+            alpha (float): blending efficient. Smaller values lead to more transparent masks.
+            area_threshold (float): a connected component smaller than this area will not be shown.
+
+        Returns:
+            output (VisImage): image object with mask drawn.
+        """
+        if color is None:
+            color = random_color(rgb=True, maximum=1)
+        color = mplc.to_rgb(color)
+
+        has_valid_segment = False
+        binary_mask = binary_mask.astype("uint8")  # opencv needs uint8
+        mask = GenericMask(binary_mask, self.output.height, self.output.width)
+        shape2d = (binary_mask.shape[0], binary_mask.shape[1])
+
+        if not mask.has_holes:
+            # draw polygons for regular masks
+            for segment in mask.polygons:
+                area = mask_util.area(mask_util.frPyObjects([segment], shape2d[0], shape2d[1]))
+                if area < (area_threshold or 0):
+                    continue
+                has_valid_segment = True
+                segment = segment.reshape(-1, 2)
+                self.draw_polygon(segment, color=color, edge_color=edge_color, alpha=alpha)
+        else:
+            # TODO: Use Path/PathPatch to draw vector graphics:
+            # https://stackoverflow.com/questions/8919719/how-to-plot-a-complex-polygon
+            rgba = np.zeros(shape2d + (4,), dtype="float32")
+            rgba[:, :, :3] = color
+            rgba[:, :, 3] = (mask.mask == 1).astype("float32") * alpha
+            has_valid_segment = True
+            self.output.ax.imshow(rgba, extent=(0, self.output.width, self.output.height, 0))
+
+        if text is not None and has_valid_segment:
+            lighter_color = self._change_color_brightness(color, brightness_factor=0.7)
+            self._draw_text_in_mask(binary_mask, text, lighter_color)
+        return self.output
+
+    def draw_soft_mask(self, soft_mask, color=None, *, text=None, alpha=0.5):
+        """
+        Args:
+            soft_mask (ndarray): float array of shape (H, W), each value in [0, 1].
+            color: color of the mask. Refer to `matplotlib.colors` for a full list of
+                formats that are accepted. If None, will pick a random color.
+            text (str): if None, will be drawn on the object
+            alpha (float): blending efficient. Smaller values lead to more transparent masks.
+
+        Returns:
+            output (VisImage): image object with mask drawn.
+        """
+        if color is None:
+            color = random_color(rgb=True, maximum=1)
+        color = mplc.to_rgb(color)
+
+        shape2d = (soft_mask.shape[0], soft_mask.shape[1])
+        rgba = np.zeros(shape2d + (4,), dtype="float32")
+        rgba[:, :, :3] = color
+        rgba[:, :, 3] = soft_mask * alpha
+        self.output.ax.imshow(rgba, extent=(0, self.output.width, self.output.height, 0))
+
+        if text is not None:
+            lighter_color = self._change_color_brightness(color, brightness_factor=0.7)
+            binary_mask = (soft_mask > 0.5).astype("uint8")
+            self._draw_text_in_mask(binary_mask, text, lighter_color)
+        return self.output
+
+    def draw_polygon(self, segment, color, edge_color=None, alpha=0.5):
+        """
+        Args:
+            segment: numpy array of shape Nx2, containing all the points in the polygon.
+            color: color of the polygon. Refer to `matplotlib.colors` for a full list of
+                formats that are accepted.
+            edge_color: color of the polygon edges. Refer to `matplotlib.colors` for a
+                full list of formats that are accepted. If not provided, a darker shade
+                of the polygon color will be used instead.
+            alpha (float): blending efficient. Smaller values lead to more transparent masks.
+
+        Returns:
+            output (VisImage): image object with polygon drawn.
+        """
+        if edge_color is None:
+            # make edge color darker than the polygon color
+            if alpha > 0.8:
+                edge_color = self._change_color_brightness(color, brightness_factor=-0.7)
+            else:
+                edge_color = color
+        edge_color = mplc.to_rgb(edge_color) + (1,)
+
+        polygon = mpl.patches.Polygon(
+            segment,
+            fill=True,
+            facecolor=mplc.to_rgb(color) + (alpha,),
+            edgecolor=edge_color,
+            linewidth=max(self._default_font_size // 15 * self.output.scale, 1),
+        )
+        self.output.ax.add_patch(polygon)
+        return self.output
+
+    """
+    Internal methods:
+    """
+
+    def _jitter(self, color):
+        """
+        Randomly modifies given color to produce a slightly different color than the color given.
+
+        Args:
+            color (tuple[double]): a tuple of 3 elements, containing the RGB values of the color
+                picked. The values in the list are in the [0.0, 1.0] range.
+
+        Returns:
+            jittered_color (tuple[double]): a tuple of 3 elements, containing the RGB values of the
+                color after being jittered. The values in the list are in the [0.0, 1.0] range.
+        """
+        color = mplc.to_rgb(color)
+        # np.random.seed(0)
+        vec = np.random.rand(3)
+        # better to do it in another color space
+        vec = vec / np.linalg.norm(vec) * 0.5
+        res = np.clip(vec + color, 0, 1)
+        return tuple(res)
+
+    def _create_grayscale_image(self, mask=None):
+        """
+        Create a grayscale version of the original image.
+        The colors in masked area, if given, will be kept.
+        """
+        img_bw = self.img.astype("f4").mean(axis=2)
+        img_bw = np.stack([img_bw] * 3, axis=2)
+        if mask is not None:
+            img_bw[mask] = self.img[mask]
+        return img_bw
+
+    def _change_color_brightness(self, color, brightness_factor):
+        """
+        Depending on the brightness_factor, gives a lighter or darker color i.e. a color with
+        less or more saturation than the original color.
+
+        Args:
+            color: color of the polygon. Refer to `matplotlib.colors` for a full list of
+                formats that are accepted.
+            brightness_factor (float): a value in [-1.0, 1.0] range. A lightness factor of
+                0 will correspond to no change, a factor in [-1.0, 0) range will result in
+                a darker color and a factor in (0, 1.0] range will result in a lighter color.
+
+        Returns:
+            modified_color (tuple[double]): a tuple containing the RGB values of the
+                modified color. Each value in the tuple is in the [0.0, 1.0] range.
+        """
+        assert brightness_factor >= -1.0 and brightness_factor <= 1.0
+        color = mplc.to_rgb(color)
+        polygon_color = colorsys.rgb_to_hls(*mplc.to_rgb(color))
+        modified_lightness = polygon_color[1] + (brightness_factor * polygon_color[1])
+        modified_lightness = 0.0 if modified_lightness < 0.0 else modified_lightness
+        modified_lightness = 1.0 if modified_lightness > 1.0 else modified_lightness
+        modified_color = colorsys.hls_to_rgb(polygon_color[0], modified_lightness, polygon_color[2])
+        return modified_color
+
+    def _convert_boxes(self, boxes):
+        """
+        Convert different format of boxes to an NxB array, where B = 4 or 5 is the box dimension.
+        """
+        if isinstance(boxes, Boxes) or isinstance(boxes, RotatedBoxes):
+            return boxes.tensor.detach().numpy()
+        else:
+            return np.asarray(boxes)
+
+    def _convert_masks(self, masks_or_polygons):
+        """
+        Convert different format of masks or polygons to a tuple of masks and polygons.
+
+        Returns:
+            list[GenericMask]:
+        """
+
+        m = masks_or_polygons
+        if isinstance(m, PolygonMasks):
+            m = m.polygons
+        if isinstance(m, BitMasks):
+            m = m.tensor.numpy()
+        if isinstance(m, torch.Tensor):
+            m = m.numpy()
+        ret = []
+        for x in m:
+            if isinstance(x, GenericMask):
+                ret.append(x)
+            else:
+                ret.append(GenericMask(x, self.output.height, self.output.width))
+        return ret
+
+    def _draw_text_in_mask(self, binary_mask, text, color):
+        """
+        Find proper places to draw text given a binary mask.
+        """
+        # TODO sometimes drawn on wrong objects. the heuristics here can improve.
+        _num_cc, cc_labels, stats, centroids = cv2.connectedComponentsWithStats(binary_mask, 8)
+        if stats[1:, -1].size == 0:
+            return
+        largest_component_id = np.argmax(stats[1:, -1]) + 1
+
+        # draw text on the largest component, as well as other very large components.
+        for cid in range(1, _num_cc):
+            if cid == largest_component_id or stats[cid, -1] > _LARGE_MASK_AREA_THRESH:
+                # median is more stable than centroid
+                # center = centroids[largest_component_id]
+                center = np.median((cc_labels == cid).nonzero(), axis=1)[::-1]
+                self.draw_text(text, center, color=color)
+
+    def _convert_keypoints(self, keypoints):
+        if isinstance(keypoints, Keypoints):
+            keypoints = keypoints.tensor
+        keypoints = np.asarray(keypoints)
+        return keypoints
+
+    def get_output(self):
+        """
+        Returns:
+            output (VisImage): the image output containing the visualizations added
+            to the image.
+        """
+        return self.output
\ No newline at end of file
diff --git a/v_emb.da b/v_emb.da
new file mode 100644
index 0000000000000000000000000000000000000000..6f2af1eb201a916fd973472c1b1cf7ba49f3a6d3
Binary files /dev/null and b/v_emb.da differ
diff --git a/xdecoder/BaseModel.py b/xdecoder/BaseModel.py
new file mode 100755
index 0000000000000000000000000000000000000000..cd0803f43d53554db6e718302ef28aa573bc05a5
--- /dev/null
+++ b/xdecoder/BaseModel.py
@@ -0,0 +1,37 @@
+# --------------------------------------------------------
+# X-Decoder -- Generalized Decoding for Pixel, Image, and Language
+# Copyright (c) 2022 Microsoft
+# Licensed under The MIT License [see LICENSE for details]
+# Written by Xueyan Zou (xueyan@cs.wisc.edu)
+# --------------------------------------------------------
+
+import os
+import logging
+
+import torch
+import torch.nn as nn
+
+from utils.model_loading import align_and_update_state_dicts
+
+logger = logging.getLogger(__name__)
+
+
+class BaseModel(nn.Module):
+    def __init__(self, opt, module: nn.Module):
+        super(BaseModel, self).__init__()
+        self.opt = opt
+        self.model = module
+
+    def forward(self, *inputs, **kwargs):
+        outputs = self.model(*inputs, **kwargs)
+        return outputs
+
+    def save_pretrained(self, save_dir):
+        save_path = os.path.join(save_dir, 'model_state_dict.pt')
+        torch.save(self.model.state_dict(), save_path)
+
+    def from_pretrained(self, load_path):
+        state_dict = torch.load(load_path, map_location=self.opt['device'])
+        state_dict = align_and_update_state_dicts(self.model.state_dict(), state_dict)
+        self.model.load_state_dict(state_dict, strict=False)
+        return self
\ No newline at end of file
diff --git a/xdecoder/__init__.py b/xdecoder/__init__.py
new file mode 100755
index 0000000000000000000000000000000000000000..47a369b587a83ac2691a90e583a4bbb5c0cb23e0
--- /dev/null
+++ b/xdecoder/__init__.py
@@ -0,0 +1,5 @@
+from __future__ import absolute_import
+from __future__ import division
+from __future__ import print_function
+
+from .architectures import build_model
\ No newline at end of file
diff --git a/xdecoder/__pycache__/BaseModel.cpython-38.pyc b/xdecoder/__pycache__/BaseModel.cpython-38.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..a0c87b95fe7c0f4f285509fbc5e0516136b9ef6e
Binary files /dev/null and b/xdecoder/__pycache__/BaseModel.cpython-38.pyc differ
diff --git a/xdecoder/__pycache__/__init__.cpython-38.pyc b/xdecoder/__pycache__/__init__.cpython-38.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..f6a928826f56e48b972a1cab1e315bee5d82b02f
Binary files /dev/null and b/xdecoder/__pycache__/__init__.cpython-38.pyc differ
diff --git a/xdecoder/architectures/__init__.py b/xdecoder/architectures/__init__.py
new file mode 100755
index 0000000000000000000000000000000000000000..7831efa29c9427175212c79734aa06b88651c53f
--- /dev/null
+++ b/xdecoder/architectures/__init__.py
@@ -0,0 +1,2 @@
+from .xdecoder_model import *
+from .build import build_model
\ No newline at end of file
diff --git a/xdecoder/architectures/__pycache__/__init__.cpython-38.pyc b/xdecoder/architectures/__pycache__/__init__.cpython-38.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..b3d45ff06a43f2e4a6f53c36a3425cb391639524
Binary files /dev/null and b/xdecoder/architectures/__pycache__/__init__.cpython-38.pyc differ
diff --git a/xdecoder/architectures/__pycache__/build.cpython-38.pyc b/xdecoder/architectures/__pycache__/build.cpython-38.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..ca54f4ebc5baf18c82aa2537bcf5ebe7a232966f
Binary files /dev/null and b/xdecoder/architectures/__pycache__/build.cpython-38.pyc differ
diff --git a/xdecoder/architectures/__pycache__/registry.cpython-38.pyc b/xdecoder/architectures/__pycache__/registry.cpython-38.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..31461626dc3a6d0bc30d1e50f2db44ca41160356
Binary files /dev/null and b/xdecoder/architectures/__pycache__/registry.cpython-38.pyc differ
diff --git a/xdecoder/architectures/__pycache__/xdecoder_model.cpython-38.pyc b/xdecoder/architectures/__pycache__/xdecoder_model.cpython-38.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..392660f44d7044b6da4cf5f8b268d6b184a4209a
Binary files /dev/null and b/xdecoder/architectures/__pycache__/xdecoder_model.cpython-38.pyc differ
diff --git a/xdecoder/architectures/build.py b/xdecoder/architectures/build.py
new file mode 100755
index 0000000000000000000000000000000000000000..c94201fe7ec172040ac092b7efe7d0a7b0adbd47
--- /dev/null
+++ b/xdecoder/architectures/build.py
@@ -0,0 +1,10 @@
+from .registry import model_entrypoints
+from .registry import is_model
+
+def build_model(config, **kwargs):
+    model_name = config['MODEL']['NAME']
+
+    if not is_model(model_name):
+        raise ValueError(f'Unkown model: {model_name}')
+
+    return model_entrypoints(model_name)(config, **kwargs)
\ No newline at end of file
diff --git a/xdecoder/architectures/registry.py b/xdecoder/architectures/registry.py
new file mode 100755
index 0000000000000000000000000000000000000000..940e4560f7d052aed4915187410266ab5a4cb4d0
--- /dev/null
+++ b/xdecoder/architectures/registry.py
@@ -0,0 +1,13 @@
+_model_entrypoints = {}
+
+def register_model(fn):
+    module_name_split = fn.__module__.split('.')
+    model_name = module_name_split[-1]
+    _model_entrypoints[model_name] = fn
+    return fn
+
+def model_entrypoints(model_name):
+    return _model_entrypoints[model_name]
+
+def is_model(model_name):
+    return model_name in _model_entrypoints
\ No newline at end of file
diff --git a/xdecoder/architectures/xdecoder_model.py b/xdecoder/architectures/xdecoder_model.py
new file mode 100755
index 0000000000000000000000000000000000000000..65ee51e84247861a4cd6690248e893d1d9c15ad3
--- /dev/null
+++ b/xdecoder/architectures/xdecoder_model.py
@@ -0,0 +1,622 @@
+# --------------------------------------------------------
+# X-Decoder -- Generalized Decoding for Pixel, Image, and Language
+# Copyright (c) 2022 Microsoft
+# Licensed under The MIT License [see LICENSE for details]
+# Written by Xueyan Zou (xueyan@cs.wisc.edu)
+# --------------------------------------------------------
+
+import random
+from typing import Tuple
+from unicodedata import name
+
+import torch
+from torch import nn
+from torch.nn import functional as F
+import numpy as np
+
+from .registry import register_model
+from ..utils import configurable
+from ..backbone import build_backbone, Backbone
+from ..body import build_xdecoder_head
+from ..modules import sem_seg_postprocess, bbox_postprocess
+from ..language import build_language_encoder
+from ..language.loss import vl_similarity
+
+from timm.models.layers import trunc_normal_
+from nltk.stem.lancaster import LancasterStemmer
+from detectron2.structures import Boxes, ImageList, Instances, BitMasks, BoxMode
+from detectron2.utils.memory import retry_if_cuda_oom
+from detectron2.data import MetadataCatalog
+from utils.misc import prompt_engineering
+
+st = LancasterStemmer()
+
+
+class X_Decoder_Model(nn.Module):
+    @configurable
+    def __init__(
+        self,
+        *,
+        backbone: Backbone,
+        sem_seg_head: nn.Module,
+        criterion: nn.Module,
+        losses: dict,
+        num_queries: int,
+        object_mask_threshold: float,
+        overlap_threshold: float,
+        metadata,
+        task_switch: dict,
+        phrase_prob: float,
+        size_divisibility: int,
+        sem_seg_postprocess_before_inference: bool,
+        pixel_mean: Tuple[float],
+        pixel_std: Tuple[float],
+        # inference
+        semantic_on: bool,
+        panoptic_on: bool,
+        instance_on: bool,
+        test_topk_per_image: int,
+        train_dataset_name: str,
+        retrieval_emsemble: bool,
+        backbone_dim: int,
+        dim_proj: int,
+    ):
+        super().__init__()
+        self.backbone = backbone
+        self.sem_seg_head = sem_seg_head
+        self.criterion = criterion
+        self.losses = losses
+        self.num_queries = num_queries
+        self.overlap_threshold = overlap_threshold
+        self.object_mask_threshold = object_mask_threshold
+        self.metadata = metadata
+        if size_divisibility < 0:
+            # use backbone size_divisibility if not set
+            size_divisibility = self.backbone.size_divisibility
+        self.size_divisibility = size_divisibility
+        self.sem_seg_postprocess_before_inference = sem_seg_postprocess_before_inference
+        self.register_buffer("pixel_mean", torch.Tensor(pixel_mean).view(-1, 1, 1), False)
+        self.register_buffer("pixel_std", torch.Tensor(pixel_std).view(-1, 1, 1), False)
+
+        # additional args
+        self.semantic_on = semantic_on
+        self.instance_on = instance_on
+        self.panoptic_on = panoptic_on
+
+        # caption argument
+        self.task_switch = task_switch
+        self.phrase_prob = phrase_prob
+
+        self.test_topk_per_image = test_topk_per_image
+        self.train_class_names = None
+
+        self.retrieval_emsemble = retrieval_emsemble
+        # backbone itc loss
+        if task_switch['retrieval'] and retrieval_emsemble:
+            self.backbone_proj = nn.Parameter(torch.empty(backbone_dim, dim_proj))
+            trunc_normal_(self.backbone_proj, std=.02)
+
+        if not self.semantic_on:
+            assert self.sem_seg_postprocess_before_inference
+
+    @classmethod
+    def from_config(cls, cfg):
+        enc_cfg = cfg['MODEL']['ENCODER']
+        dec_cfg = cfg['MODEL']['DECODER']
+
+        task_switch = {'bbox': dec_cfg.get('DETECTION', False),
+                       'mask': dec_cfg.get('MASK', True),
+                       'caption': dec_cfg['CAPTION'].get('ENABLED', False),
+                       'captioning': dec_cfg['CAPTIONING'].get('ENABLED', False),
+                       'retrieval': dec_cfg['RETRIEVAL'].get('ENABLED', False),
+                       'grounding': dec_cfg['GROUNDING'].get('ENABLED', False)}
+
+        # build model
+        extra = {'task_switch': task_switch}
+        backbone = build_backbone(cfg)
+        lang_encoder = build_language_encoder(cfg)        
+        sem_seg_head = build_xdecoder_head(cfg, backbone.output_shape(), lang_encoder, extra)
+
+        # Training Settings.
+        loss_weights = {}
+        matcher = None
+        losses = {}
+        weight_dict = {}        
+        grd_weight = {}
+        top_x_layers = {}
+        criterion = None
+        train_dataset_name = None
+        phrase_prob = None
+        # Loss parameters:
+        deep_supervision = None
+        no_object_weight = None
+
+        return {
+            "backbone": backbone,
+            "sem_seg_head": sem_seg_head,
+            "criterion": criterion,
+            "losses": losses,
+            "num_queries": dec_cfg['NUM_OBJECT_QUERIES'],
+            "object_mask_threshold": dec_cfg['TEST']['OBJECT_MASK_THRESHOLD'],
+            "overlap_threshold": dec_cfg['TEST']['OVERLAP_THRESHOLD'],
+            "metadata": None,
+            "size_divisibility": dec_cfg['SIZE_DIVISIBILITY'],
+            "sem_seg_postprocess_before_inference": (
+                dec_cfg['TEST']['SEM_SEG_POSTPROCESSING_BEFORE_INFERENCE']
+                or dec_cfg['TEST']['PANOPTIC_ON']
+                or dec_cfg['TEST']['INSTANCE_ON']
+            ),
+            "pixel_mean": cfg['INPUT']['PIXEL_MEAN'],
+            "pixel_std": cfg['INPUT']['PIXEL_STD'],
+            "task_switch": task_switch,
+            "phrase_prob": phrase_prob,
+            # inference
+            "semantic_on": dec_cfg['TEST']['SEMANTIC_ON'],
+            "instance_on": dec_cfg['TEST']['INSTANCE_ON'],
+            "panoptic_on": dec_cfg['TEST']['PANOPTIC_ON'],
+            "test_topk_per_image": cfg['MODEL']['DECODER']['TEST']['DETECTIONS_PER_IMAGE'],
+            "train_dataset_name": train_dataset_name,
+            "retrieval_emsemble": dec_cfg['RETRIEVAL']['ENSEMBLE'],
+            "backbone_dim": cfg['MODEL']['BACKBONE_DIM'],
+            "dim_proj": cfg['MODEL']['DIM_PROJ'],
+        }
+
+    @property
+    def device(self):
+        return self.pixel_mean.device
+
+    def forward(self, batched_inputs, mode=None):
+        if self.training:
+            assert False, "Not support trianing mode."
+        else:
+            if mode == 'retrieval':
+                return self.evaluate_retrieval(batched_inputs)
+            elif mode == 'captioning':
+                return self.evaluate_captioning(batched_inputs)
+            elif mode == 'classification':
+                return self.evaluate_classification(batched_inputs)
+            elif mode in ['grounding_phrasecut', 'grounding_refcoco']:
+                return self.evaluate_grounding(batched_inputs, mode)
+            else:
+                return self.evaluate(batched_inputs)
+        
+    def evaluate(self, batched_inputs):
+        images = [x["image"].to(self.device) for x in batched_inputs]
+        images = [(x - self.pixel_mean) / self.pixel_std for x in images]
+        
+        images = ImageList.from_tensors(images, self.size_divisibility)
+        img_bs = images.tensor.shape[0]
+
+        targets = targets_grounding = queries_grounding = None
+        features = self.backbone(images.tensor)
+        outputs = self.sem_seg_head(features, target_queries=queries_grounding)
+
+        mask_cls_results = outputs["pred_logits"]
+        mask_pred_results = outputs["pred_masks"]
+        box_pred_results = outputs["pred_boxes"] if self.task_switch['bbox'] else [None for i in range(len(mask_pred_results))]
+        caption_pred_results = outputs["pred_captions"] if self.task_switch['caption'] else [None for i in range(len(mask_pred_results))]
+
+        # upsample masks
+        mask_pred_results = F.interpolate(
+            mask_pred_results,
+            size=(images.tensor.shape[-2], images.tensor.shape[-1]),
+            mode="bilinear",
+            align_corners=False,
+        )
+
+        input_size = mask_pred_results.shape[-2:]
+        keep_sem_bgd = self.metadata.keep_sem_bgd if hasattr(self.metadata, 'keep_sem_bgd') else False
+        del outputs
+
+        processed_results = []
+        for mask_cls_result, mask_pred_result, box_pred_result, caption_pred_result, input_per_image, image_size in zip(
+            mask_cls_results, mask_pred_results, box_pred_results, caption_pred_results, batched_inputs, images.image_sizes
+        ):
+            height = input_per_image.get("height", image_size[0])
+            width = input_per_image.get("width", image_size[1])
+            processed_results.append({})
+
+            if self.sem_seg_postprocess_before_inference:
+                mask_pred_result = retry_if_cuda_oom(sem_seg_postprocess)(
+                    mask_pred_result, image_size, height, width
+                )
+                mask_cls_result = mask_cls_result.to(mask_pred_result)
+
+            # semantic segmentation inference
+            if self.semantic_on:
+                r = retry_if_cuda_oom(self.semantic_inference)(mask_cls_result, mask_pred_result, keep_sem_bgd)
+                if not self.sem_seg_postprocess_before_inference:
+                    r = retry_if_cuda_oom(sem_seg_postprocess)(r, image_size, height, width)
+                processed_results[-1]["sem_seg"] = r
+
+            # panoptic segmentation inference
+            if self.panoptic_on:
+                panoptic_r = retry_if_cuda_oom(self.panoptic_inference)(mask_cls_result, mask_pred_result)
+                processed_results[-1]["panoptic_seg"] = panoptic_r
+            
+            # instance segmentation inference
+            if self.instance_on:
+                if self.task_switch['bbox']:
+                    box_pred_result = bbox_postprocess(box_pred_result, input_size, image_size, height, width)
+                instance_r = retry_if_cuda_oom(self.instance_inference)(mask_cls_result, mask_pred_result, box_pred_result)
+                processed_results[-1]["instances"] = instance_r
+            if self.task_switch['caption']:
+                processed_results[-1]["captions"] = caption_pred_result
+                processed_results[-1]["masks"] = mask_pred_result
+
+        return processed_results
+
+
+    def evaluate_retrieval(self, batched_inputs):
+        images = [x["image"].to(self.device) for x in batched_inputs]
+        images = [(x - self.pixel_mean) / self.pixel_std for x in images]
+        images = ImageList.from_tensors(images, self.size_divisibility)
+        img_bs = images.tensor.shape[0]
+        
+        targets = targets_grounding = queries_grounding = None
+        features = self.backbone(images.tensor)
+        outputs = self.sem_seg_head(features, target_queries=queries_grounding)
+        v_emb_it = outputs['pred_captions'][:,-1]
+
+        # compute backbone score
+        if self.task_switch['retrieval'] and self.retrieval_emsemble:
+            _v_emb_it = features['res5']
+            bs,nc,_,_ = _v_emb_it.shape
+            _v_emb_it = _v_emb_it.reshape(bs,nc,-1)
+            _v_emb_it = F.adaptive_avg_pool1d(_v_emb_it, 1).reshape(bs,nc) @ self.backbone_proj
+
+        processed_results = []
+        for idx, batch_data in enumerate(batched_inputs):
+            caption_ids = []
+            t_emb_its = []
+            processed_results.append({})
+            for caption in batch_data['captions']:
+                lang_results = self.sem_seg_head.predictor.lang_encoder.get_text_token_embeddings(caption)
+                t_emb_it = lang_results['class_emb']
+                caption_ids.append(batch_data['image_id'])
+                t_emb_its.append(t_emb_it)
+
+            t_emb_it = torch.cat(t_emb_its, dim=0)
+
+            image_embeds = [v_emb_it[idx].unsqueeze(0)]
+            if self.task_switch['retrieval'] and self.retrieval_emsemble:
+                image_embeds += [_v_emb_it[idx].unsqueeze(0)]
+            caption_results = {
+                    'image_embeds': image_embeds,
+                    'text_embeds': t_emb_it,
+                    'caption_ids': caption_ids,
+                    'image_ids': batch_data['image_id'],
+                }
+            processed_results[-1]["caption"] = caption_results            
+        return processed_results
+
+    def evaluate_captioning(self, batched_inputs, extra={}):
+        images = [x["image"].to(self.device) for x in batched_inputs]
+        images = [(x - self.pixel_mean) / self.pixel_std for x in images]
+        images = ImageList.from_tensors(images, self.size_divisibility)
+        img_bs = images.tensor.shape[0]
+
+        if not hasattr(self, 'start_token'):
+            self.start_token = torch.tensor([[49406]*77], device=self.device)
+        
+        targets = targets_grounding = queries_grounding = None
+        features = self.backbone(images.tensor)
+
+        captioning_mask = None
+        if 'captioning_mask' in batched_inputs[-1]:
+            captioning_mask = torch.cat([x['captioning_mask'] for x in batched_inputs])
+
+        extra.update({'start_token': self.start_token, 'captioning_mask': captioning_mask})
+        outputs = self.sem_seg_head(features, target_queries=queries_grounding, task='captioning_infer', extra=extra)
+
+        processed_results = []
+        for idx, batch_data in enumerate(batched_inputs):
+            processed_results.append({})
+            processed_results[-1]["captioning_token"] = outputs['pred_captionings'][idx]
+            processed_results[-1]["captioning_text"] = outputs['pred_texts'][idx].split('.')[0]
+            processed_results[-1]["image_id"] = batched_inputs[idx]['image_id']
+            
+        return processed_results
+
+    def evaluate_classification(self, batched_inputs):
+        images = [x["image"].to(self.device) for x in batched_inputs]
+        images = [(x - self.pixel_mean) / self.pixel_std for x in images]
+        images = ImageList.from_tensors(images, self.size_divisibility)
+        img_bs = images.tensor.shape[0]
+        
+        targets = targets_grounding = queries_grounding = None
+        features = self.backbone(images.tensor)
+        outputs = self.sem_seg_head(features, target_queries=queries_grounding)
+
+        processed_results = []
+        for idx, batch_data in enumerate(batched_inputs):
+            processed_results.append({})
+            processed_results[-1]["pred_class"] = outputs['pred_logits'][idx,-1]
+        return processed_results
+
+    def evaluate_grounding_baseline(self, batched_inputs, mode):
+        images = [x["image"].to(self.device) for x in batched_inputs]
+        images = [(x - self.pixel_mean) / self.pixel_std for x in images]
+        images = ImageList.from_tensors(images, self.size_divisibility)
+        img_bs = images.tensor.shape[0]
+        
+        targets = targets_grounding = queries_grounding = None
+        features = self.backbone(images.tensor)
+        outputs = self.sem_seg_head(features, target_queries=queries_grounding)
+
+        mask_pred_results = outputs["pred_masks"]
+        caption_pred_results = outputs["pred_captions"] if self.task_switch['caption'] else [None for i in range(len(mask_pred_results))]
+
+        # upsample masks
+        mask_pred_results = F.interpolate(
+            mask_pred_results,
+            size=(images.tensor.shape[-2], images.tensor.shape[-1]),
+            mode="bilinear",
+            align_corners=False,
+        )
+
+        processed_results = []
+        for mask_pred_result, caption_pred_result, input_per_image, image_size in zip(
+            mask_pred_results, caption_pred_results, batched_inputs, images.image_sizes
+        ):
+            height = input_per_image.get("height", image_size[0])
+            width = input_per_image.get("width", image_size[1])
+            processed_results.append({})
+
+            mask_pred_result = retry_if_cuda_oom(sem_seg_postprocess)(
+                mask_pred_result, image_size, height, width
+            )[:-1]
+
+            texts_all = input_per_image['groundings']['texts']
+            grd_masks = []
+            for texts in texts_all:
+                if mode == 'grounding_refcoco':
+                    self.sem_seg_head.predictor.lang_encoder.get_text_embeddings(texts, name='grounding', prompt=False, is_eval=True)
+                elif mode == 'grounding_phrasecut':
+                    self.sem_seg_head.predictor.lang_encoder.get_text_embeddings(texts, name='grounding', prompt=True, is_eval=False)
+                t_emb = getattr(self.sem_seg_head.predictor.lang_encoder, "{}_text_embeddings".format('grounding')).t()
+                v_emb = caption_pred_result[:-1]
+                v_emb = v_emb / (v_emb.norm(dim=-1, keepdim=True) + 1e-7)
+                vt_sim = v_emb @ t_emb
+                max_id = vt_sim.max(0)[1][0]
+                grd_masks += [mask_pred_result[max_id]]
+            processed_results[-1]['grounding_mask'] = torch.stack(grd_masks)
+
+        return processed_results
+
+    def evaluate_grounding(self, batched_inputs, mode):
+        images = [x["image"].to(self.device) for x in batched_inputs]
+        images = [(x - self.pixel_mean) / self.pixel_std for x in images]
+        images = ImageList.from_tensors(images, self.size_divisibility)
+
+        extra = {}
+        # mask_pred_results = []
+        # for idx, batch_per_image in enumerate(batched_inputs):
+        #     grd_texts = batch_per_image['groundings']['texts']
+        #     grd_masks = []
+        #     for anno_text in grd_texts:
+        #         gtext = self.sem_seg_head.predictor.lang_encoder.get_text_token_embeddings([anno_text[0]], name='grounding', token=False, norm=False)
+        #         token_emb = gtext['token_emb']
+        #         tokens = gtext['tokens']
+            
+        #         grd_emb = token_emb[0][tokens['attention_mask'].bool()[0]]
+        #         extra['grounding_tokens'] = grd_emb[:,None]
+
+        #         assert len(images.tensor) == 1, "grounding evaluation only support single batch size now"
+        #         features = self.backbone(images.tensor)
+        #         outputs = self.sem_seg_head(features, extra=extra, task='grounding_eval')
+                
+        #         pred_gmasks = outputs['pred_masks'][idx,self.num_queries:2*self.num_queries-1]
+        #         v_emb = outputs['pred_captions'][idx,self.num_queries:2*self.num_queries-1]
+        #         t_emb = grd_emb[-1:]
+
+        #         t_emb = t_emb / (t_emb.norm(dim=-1, keepdim=True) + 1e-7)
+        #         v_emb = v_emb / (v_emb.norm(dim=-1, keepdim=True) + 1e-7)            
+
+        #         temperature = self.sem_seg_head.predictor.lang_encoder.logit_scale
+        #         out_prob = vl_similarity(v_emb, t_emb, temperature=temperature)
+                
+        #         matched_id = out_prob.max(0)[1]
+        #         grd_masks += [pred_gmasks[matched_id,:,:]]
+        #     mask_pred_results += [torch.cat(grd_masks)]
+
+        # comment for multi object inference.
+        mask_pred_results = []
+        for idx, batch_per_image in enumerate(batched_inputs):
+            grd_texts = batch_per_image['groundings']['texts']
+            grd_texts = [x[0] for x in grd_texts]
+
+            gtext = self.sem_seg_head.predictor.lang_encoder.get_text_token_embeddings(grd_texts, name='grounding', token=False, norm=False)
+            token_emb = gtext['token_emb']
+            tokens = gtext['tokens']
+            query_emb = token_emb[tokens['attention_mask'].bool()]
+            extra['grounding_tokens'] = query_emb[:,None]
+
+            features = self.backbone(images.tensor)
+            outputs = self.sem_seg_head(features, extra=extra, task='grounding_eval')
+
+            pred_gmasks = outputs['pred_masks'][idx,self.num_queries:2*self.num_queries-1]
+            v_emb = outputs['pred_captions'][idx,self.num_queries:2*self.num_queries-1]
+            t_emb = gtext['class_emb']
+
+            t_emb = t_emb / (t_emb.norm(dim=-1, keepdim=True) + 1e-7)
+            v_emb = v_emb / (v_emb.norm(dim=-1, keepdim=True) + 1e-7)            
+
+            temperature = self.sem_seg_head.predictor.lang_encoder.logit_scale
+            out_prob = vl_similarity(v_emb, t_emb, temperature=temperature)
+            
+            matched_id = out_prob.max(0)[1]
+            mask_pred_results += [pred_gmasks[matched_id,:,:]]
+
+        for i in range(len(mask_pred_results)):
+            # upsample masks
+            mask_pred_results[i] = F.interpolate(
+                mask_pred_results[i][None,],
+                size=(images.tensor.shape[-2], images.tensor.shape[-1]),
+                mode="bilinear",
+                align_corners=False,
+            )[0]
+
+        processed_results = []
+        for mask_pred_result, input_per_image, image_size in zip(
+            mask_pred_results, batched_inputs, images.image_sizes
+        ):
+            height = input_per_image.get("height", image_size[0])
+            width = input_per_image.get("width", image_size[1])
+            processed_results.append({})
+
+            mask_pred_result = retry_if_cuda_oom(sem_seg_postprocess)(
+                mask_pred_result, image_size, height, width
+            )
+            processed_results[-1]['grounding_mask'] = mask_pred_result
+
+            # compute bbox
+            # bbox = BitMasks(mask_pred_result > 0).get_bounding_boxes()
+            # bbox = BoxMode.convert(bbox.tensor, BoxMode.XYXY_ABS, BoxMode.XYWH_ABS)
+            # processed_results[-1]['grounding_box'] = bbox
+
+        return processed_results
+
+    def prepare_vlp_targets(self, batched_inputs, device):
+        input_ids = []
+        attention_mask = []
+        for cnt, x in enumerate(batched_inputs):
+            captions = x['captions']
+            randid = random.randint(0, len(captions)-1)
+            input_ids += x['tokens']['input_ids'][randid:randid+1]
+            attention_mask += x['tokens']['attention_mask'][randid:randid+1]
+
+        input_ids = torch.stack(input_ids)
+        attention_mask = torch.stack(attention_mask)
+        tokens = {"input_ids": input_ids, "attention_mask": attention_mask}
+        lang_results = self.sem_seg_head.predictor.lang_encoder.get_text_token_embeddings(tokens, token=True)
+
+        target_vlp = []
+        for cnt, x in enumerate(batched_inputs):
+            target_dict = {}
+            target_dict["caption_tokens"] = lang_results['token_emb'][cnt:cnt+1]
+            target_dict["caption_proj"] = lang_results['class_emb'][cnt:cnt+1]
+            target_dict["caption_tokenids"] = lang_results['tokens']['input_ids'][cnt:cnt+1]
+            target_dict["caption_mask"] = lang_results['tokens']['attention_mask'][cnt:cnt+1]            
+            target_vlp.append(target_dict)
+        return target_vlp
+
+    def semantic_inference(self, mask_cls, mask_pred, keep_sem_bgd=False):
+        if keep_sem_bgd:
+            mask_cls = F.softmax(mask_cls, dim=-1)
+        else:
+            mask_cls = F.softmax(mask_cls, dim=-1)[..., :-1]
+        mask_pred = mask_pred.sigmoid()
+        semseg = torch.einsum("qc,qhw->chw", mask_cls, mask_pred)
+        return semseg
+
+    def panoptic_inference(self, mask_cls, mask_pred):
+        scores, labels = F.softmax(mask_cls, dim=-1).max(-1)
+        mask_pred = mask_pred.sigmoid()
+
+        keep = labels.ne(self.sem_seg_head.num_classes) & (scores > self.object_mask_threshold)
+        cur_scores = scores[keep]
+        cur_classes = labels[keep]
+        cur_masks = mask_pred[keep]
+        cur_mask_cls = mask_cls[keep]
+        cur_mask_cls = cur_mask_cls[:, :-1]
+        cur_prob_masks = cur_scores.view(-1, 1, 1) * cur_masks
+
+        h, w = cur_masks.shape[-2:]
+        panoptic_seg = torch.zeros((h, w), dtype=torch.int32, device=cur_masks.device)
+        segments_info = []
+
+        current_segment_id = 0
+
+        if cur_masks.shape[0] == 0:
+            # We didn't detect any mask :(
+            return panoptic_seg, segments_info
+        else:
+            # take argmax
+            cur_mask_ids = cur_prob_masks.argmax(0)
+            stuff_memory_list = {}
+            thing_dataset_id_to_contiguous_id = self.metadata.thing_dataset_id_to_contiguous_id if hasattr(self.metadata, 'thing_dataset_id_to_contiguous_id') else {}
+            for k in range(cur_classes.shape[0]):
+                pred_class = cur_classes[k].item()
+                isthing = pred_class in thing_dataset_id_to_contiguous_id.values()
+                mask_area = (cur_mask_ids == k).sum().item()
+                original_area = (cur_masks[k] >= 0.5).sum().item()
+                mask = (cur_mask_ids == k) & (cur_masks[k] >= 0.5)
+
+                if mask_area > 0 and original_area > 0 and mask.sum().item() > 0:
+                    if mask_area / original_area < self.overlap_threshold:
+                        continue
+
+                    # merge stuff regions
+                    if not isthing:
+                        if int(pred_class) in stuff_memory_list.keys():
+                            panoptic_seg[mask] = stuff_memory_list[int(pred_class)]
+                            continue
+                        else:
+                            stuff_memory_list[int(pred_class)] = current_segment_id + 1
+
+                    current_segment_id += 1
+                    panoptic_seg[mask] = current_segment_id
+
+                    segments_info.append(
+                        {
+                            "id": current_segment_id,
+                            "isthing": bool(isthing),
+                            "category_id": int(pred_class),
+                        }
+                    )
+            return panoptic_seg, segments_info
+
+    def instance_inference(self, mask_cls, mask_pred, box_pred):
+        # mask_pred is already processed to have the same shape as original input
+        image_size = mask_pred.shape[-2:]
+
+        # [Q, K]
+        scores = F.softmax(mask_cls, dim=-1)[:, :-1]
+        labels = torch.arange(self.sem_seg_head.num_classes, device=self.device).unsqueeze(0).repeat(self.num_queries, 1).flatten(0, 1)
+        # scores_per_image, topk_indices = scores.flatten(0, 1).topk(self.num_queries, sorted=False)
+        scores_per_image, topk_indices = scores.flatten(0, 1).topk(self.test_topk_per_image, sorted=False)
+
+        labels_per_image = labels[topk_indices]
+        topk_indices = (topk_indices // self.sem_seg_head.num_classes)
+        # mask_pred = mask_pred.unsqueeze(1).repeat(1, self.sem_seg_head.num_classes, 1).flatten(0, 1)
+        mask_pred = mask_pred[topk_indices]
+        if box_pred is not None:
+            box_pred = box_pred[topk_indices]
+
+        # if this is panoptic segmentation, we only keep the "thing" classes
+        if self.panoptic_on:
+            thing_dataset_id_to_contiguous_id = self.metadata.thing_dataset_id_to_contiguous_id if hasattr(self.metadata, 'thing_dataset_id_to_contiguous_id') else {}
+            keep = torch.zeros_like(scores_per_image).bool()
+            for i, lab in enumerate(labels_per_image):
+                keep[i] = lab in thing_dataset_id_to_contiguous_id.values()
+
+            scores_per_image = scores_per_image[keep]
+            labels_per_image = labels_per_image[keep]
+            mask_pred = mask_pred[keep]
+
+            if box_pred is not None:
+                box_pred = box_pred[keep]
+
+        result = Instances(image_size)
+        # mask (before sigmoid)
+        result.pred_masks = (mask_pred > 0).float()
+        # result.pred_boxes = Boxes(torch.zeros(mask_pred.size(0), 4))
+        # Uncomment the following to get boxes from masks (this is slow)
+
+        if box_pred is not None:
+            result.pred_boxes = BitMasks(mask_pred > 0).get_bounding_boxes()
+        else:
+            result.pred_boxes = Boxes(torch.zeros(mask_pred.size(0), 4))
+
+        # calculate average mask prob
+        mask_scores_per_image = (mask_pred.sigmoid().flatten(1) * result.pred_masks.flatten(1)).sum(1) / (result.pred_masks.flatten(1).sum(1) + 1e-6)
+        result.scores = scores_per_image * mask_scores_per_image
+        result.pred_classes = labels_per_image
+
+        return result
+
+
+@register_model
+def get_segmentation_model(cfg, **kwargs):
+    return X_Decoder_Model(cfg)
\ No newline at end of file
diff --git a/xdecoder/backbone/__init__.py b/xdecoder/backbone/__init__.py
new file mode 100755
index 0000000000000000000000000000000000000000..aac67442cdce051f7f9de6068990eb388b8dd3bb
--- /dev/null
+++ b/xdecoder/backbone/__init__.py
@@ -0,0 +1,7 @@
+from .build import build_backbone
+
+from .resnet import *
+from .swin import *
+from .focal import *
+from .focal_dw import *
+from .backbone import *
\ No newline at end of file
diff --git a/xdecoder/backbone/__pycache__/__init__.cpython-38.pyc b/xdecoder/backbone/__pycache__/__init__.cpython-38.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..3bc2803bc74adb5e56bd8813e9613cd467866792
Binary files /dev/null and b/xdecoder/backbone/__pycache__/__init__.cpython-38.pyc differ
diff --git a/xdecoder/backbone/__pycache__/backbone.cpython-38.pyc b/xdecoder/backbone/__pycache__/backbone.cpython-38.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..d4841be625a3107ca3660cfd47bb8cbdb0b73ae9
Binary files /dev/null and b/xdecoder/backbone/__pycache__/backbone.cpython-38.pyc differ
diff --git a/xdecoder/backbone/__pycache__/build.cpython-38.pyc b/xdecoder/backbone/__pycache__/build.cpython-38.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..3a6eec7234669d3a1c23ba6f5089b33e535e7ca4
Binary files /dev/null and b/xdecoder/backbone/__pycache__/build.cpython-38.pyc differ
diff --git a/xdecoder/backbone/__pycache__/focal.cpython-38.pyc b/xdecoder/backbone/__pycache__/focal.cpython-38.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..2b30a1b496ac17b49140ba85b2dc71896f72f277
Binary files /dev/null and b/xdecoder/backbone/__pycache__/focal.cpython-38.pyc differ
diff --git a/xdecoder/backbone/__pycache__/focal_dw.cpython-38.pyc b/xdecoder/backbone/__pycache__/focal_dw.cpython-38.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..6564f15b345316c10577d47a4b060f611120de56
Binary files /dev/null and b/xdecoder/backbone/__pycache__/focal_dw.cpython-38.pyc differ
diff --git a/xdecoder/backbone/__pycache__/registry.cpython-38.pyc b/xdecoder/backbone/__pycache__/registry.cpython-38.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..262db2e1fa3699b90fd15f0d2e1ffe9d6e503d23
Binary files /dev/null and b/xdecoder/backbone/__pycache__/registry.cpython-38.pyc differ
diff --git a/xdecoder/backbone/__pycache__/resnet.cpython-38.pyc b/xdecoder/backbone/__pycache__/resnet.cpython-38.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..8b9ac54cec5ecda11a40a70d1602f454c9564182
Binary files /dev/null and b/xdecoder/backbone/__pycache__/resnet.cpython-38.pyc differ
diff --git a/xdecoder/backbone/__pycache__/swin.cpython-38.pyc b/xdecoder/backbone/__pycache__/swin.cpython-38.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..1b89ab8de1bdede2b3be3eca283f143719925207
Binary files /dev/null and b/xdecoder/backbone/__pycache__/swin.cpython-38.pyc differ
diff --git a/xdecoder/backbone/backbone.py b/xdecoder/backbone/backbone.py
new file mode 100755
index 0000000000000000000000000000000000000000..503f74a69288b3696bebf12992f21ad5781e47aa
--- /dev/null
+++ b/xdecoder/backbone/backbone.py
@@ -0,0 +1,51 @@
+# Copyright (c) Facebook, Inc. and its affiliates.
+import torch.nn as nn
+
+from detectron2.modeling import ShapeSpec
+
+__all__ = ["Backbone"]
+
+
+class Backbone(nn.Module):
+    """
+    Abstract base class for network backbones.
+    """
+
+    def __init__(self):
+        """
+        The `__init__` method of any subclass can specify its own set of arguments.
+        """
+        super().__init__()
+
+    def forward(self):
+        """
+        Subclasses must override this method, but adhere to the same return type.
+
+        Returns:
+            dict[str->Tensor]: mapping from feature name (e.g., "res2") to tensor
+        """
+        pass
+
+    @property
+    def size_divisibility(self) -> int:
+        """
+        Some backbones require the input height and width to be divisible by a
+        specific integer. This is typically true for encoder / decoder type networks
+        with lateral connection (e.g., FPN) for which feature maps need to match
+        dimension in the "bottom up" and "top down" paths. Set to 0 if no specific
+        input size divisibility is required.
+        """
+        return 0
+
+    def output_shape(self):
+        """
+        Returns:
+            dict[str->ShapeSpec]
+        """
+        # this is a backward-compatible default
+        return {
+            name: ShapeSpec(
+                channels=self._out_feature_channels[name], stride=self._out_feature_strides[name]
+            )
+            for name in self._out_features
+        }
diff --git a/xdecoder/backbone/build.py b/xdecoder/backbone/build.py
new file mode 100755
index 0000000000000000000000000000000000000000..a559fa6a010d3379ff5fcbeb43c510122988735f
--- /dev/null
+++ b/xdecoder/backbone/build.py
@@ -0,0 +1,11 @@
+from .registry import model_entrypoints
+from .registry import is_model
+
+from .backbone import *
+
+def build_backbone(config, **kwargs):
+    model_name = config['MODEL']['BACKBONE']['NAME']
+    if not is_model(model_name):
+        raise ValueError(f'Unkown model: {model_name}')
+
+    return model_entrypoints(model_name)(config, **kwargs)
\ No newline at end of file
diff --git a/xdecoder/backbone/focal.py b/xdecoder/backbone/focal.py
new file mode 100755
index 0000000000000000000000000000000000000000..eb08555d2f5a036d175ee94033d8cae30d0ff959
--- /dev/null
+++ b/xdecoder/backbone/focal.py
@@ -0,0 +1,692 @@
+# --------------------------------------------------------
+# FocalNet for Semantic Segmentation
+# Copyright (c) 2022 Microsoft
+# Licensed under The MIT License [see LICENSE for details]
+# Written by Jianwei Yang
+# --------------------------------------------------------
+import math
+import time
+import numpy as np
+import logging
+import torch
+import torch.nn as nn
+import torch.nn.functional as F
+import torch.utils.checkpoint as checkpoint
+from timm.models.layers import DropPath, to_2tuple, trunc_normal_
+
+from detectron2.utils.file_io import PathManager
+from detectron2.modeling import BACKBONE_REGISTRY, Backbone, ShapeSpec
+
+from .registry import register_backbone
+
+logger = logging.getLogger(__name__)
+
+class Mlp(nn.Module):
+    """ Multilayer perceptron."""
+
+    def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.):
+        super().__init__()
+        out_features = out_features or in_features
+        hidden_features = hidden_features or in_features
+        self.fc1 = nn.Linear(in_features, hidden_features)
+        self.act = act_layer()
+        self.fc2 = nn.Linear(hidden_features, out_features)
+        self.drop = nn.Dropout(drop)
+
+    def forward(self, x):
+        x = self.fc1(x)
+        x = self.act(x)
+        x = self.drop(x)
+        x = self.fc2(x)
+        x = self.drop(x)
+        return x
+
+class FocalModulation(nn.Module):
+    """ Focal Modulation
+
+    Args:
+        dim (int): Number of input channels.
+        proj_drop (float, optional): Dropout ratio of output. Default: 0.0
+        focal_level (int): Number of focal levels
+        focal_window (int): Focal window size at focal level 1
+        focal_factor (int, default=2): Step to increase the focal window
+        use_postln (bool, default=False): Whether use post-modulation layernorm
+    """
+
+    def __init__(self, dim, proj_drop=0., focal_level=2, focal_window=7, focal_factor=2, use_postln=False, use_postln_in_modulation=False, scaling_modulator=False):
+
+        super().__init__()
+        self.dim = dim
+
+        # specific args for focalv3
+        self.focal_level = focal_level
+        self.focal_window = focal_window
+        self.focal_factor = focal_factor
+        self.use_postln_in_modulation = use_postln_in_modulation
+        self.scaling_modulator = scaling_modulator
+
+        self.f = nn.Linear(dim, 2*dim+(self.focal_level+1), bias=True)
+        self.h = nn.Conv2d(dim, dim, kernel_size=1, stride=1, padding=0, groups=1, bias=True)
+
+        self.act = nn.GELU()
+        self.proj = nn.Linear(dim, dim)
+        self.proj_drop = nn.Dropout(proj_drop)
+        self.focal_layers = nn.ModuleList()
+
+        if self.use_postln_in_modulation:
+            self.ln = nn.LayerNorm(dim)
+
+        for k in range(self.focal_level):
+            kernel_size = self.focal_factor*k + self.focal_window
+            self.focal_layers.append(
+                nn.Sequential(
+                    nn.Conv2d(dim, dim, kernel_size=kernel_size, stride=1, groups=dim, 
+                        padding=kernel_size//2, bias=False),
+                    nn.GELU(),
+                    )
+                )
+
+    def forward(self, x):
+        """ Forward function.
+
+        Args:
+            x: input features with shape of (B, H, W, C)
+        """
+        B, nH, nW, C = x.shape
+        x = self.f(x)
+        x = x.permute(0, 3, 1, 2).contiguous()
+        q, ctx, gates = torch.split(x, (C, C, self.focal_level+1), 1)
+        
+        ctx_all = 0
+        for l in range(self.focal_level):                     
+            ctx = self.focal_layers[l](ctx)
+            ctx_all = ctx_all + ctx*gates[:, l:l+1]
+        ctx_global = self.act(ctx.mean(2, keepdim=True).mean(3, keepdim=True))
+        ctx_all = ctx_all + ctx_global*gates[:,self.focal_level:]
+
+        if self.scaling_modulator:
+            ctx_all = ctx_all / (self.focal_level + 1)
+
+        x_out = q * self.h(ctx_all)
+        x_out = x_out.permute(0, 2, 3, 1).contiguous()
+        if self.use_postln_in_modulation:
+            x_out = self.ln(x_out)            
+        x_out = self.proj(x_out)
+        x_out = self.proj_drop(x_out)
+        return x_out
+
+class FocalModulationBlock(nn.Module):
+    """ Focal Modulation Block.
+
+    Args:
+        dim (int): Number of input channels.
+        mlp_ratio (float): Ratio of mlp hidden dim to embedding dim.
+        drop (float, optional): Dropout rate. Default: 0.0
+        drop_path (float, optional): Stochastic depth rate. Default: 0.0
+        act_layer (nn.Module, optional): Activation layer. Default: nn.GELU
+        norm_layer (nn.Module, optional): Normalization layer.  Default: nn.LayerNorm
+        focal_level (int): number of focal levels
+        focal_window (int): focal kernel size at level 1
+    """
+
+    def __init__(self, dim, mlp_ratio=4., drop=0., drop_path=0., 
+                 act_layer=nn.GELU, norm_layer=nn.LayerNorm,
+                 focal_level=2, focal_window=9, 
+                 use_postln=False, use_postln_in_modulation=False,
+                 scaling_modulator=False, 
+                 use_layerscale=False, 
+                 layerscale_value=1e-4):
+        super().__init__()
+        self.dim = dim
+        self.mlp_ratio = mlp_ratio
+        self.focal_window = focal_window
+        self.focal_level = focal_level
+        self.use_postln = use_postln
+        self.use_layerscale = use_layerscale
+
+        self.norm1 = norm_layer(dim)
+        self.modulation = FocalModulation(
+            dim, focal_window=self.focal_window, focal_level=self.focal_level, proj_drop=drop, use_postln_in_modulation=use_postln_in_modulation, scaling_modulator=scaling_modulator
+        )            
+
+        self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
+        self.norm2 = norm_layer(dim)
+        mlp_hidden_dim = int(dim * mlp_ratio)
+        self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop)
+
+        self.H = None
+        self.W = None
+
+        self.gamma_1 = 1.0
+        self.gamma_2 = 1.0
+        if self.use_layerscale:
+            self.gamma_1 = nn.Parameter(layerscale_value * torch.ones((dim)), requires_grad=True)
+            self.gamma_2 = nn.Parameter(layerscale_value * torch.ones((dim)), requires_grad=True)
+
+    def forward(self, x):
+        """ Forward function.
+
+        Args:
+            x: Input feature, tensor size (B, H*W, C).
+            H, W: Spatial resolution of the input feature.
+        """
+        B, L, C = x.shape
+        H, W = self.H, self.W
+        assert L == H * W, "input feature has wrong size"
+
+        shortcut = x
+        if not self.use_postln:
+            x = self.norm1(x)
+        x = x.view(B, H, W, C)
+        
+        # FM
+        x = self.modulation(x).view(B, H * W, C)
+        if self.use_postln:
+            x = self.norm1(x)
+
+        # FFN
+        x = shortcut + self.drop_path(self.gamma_1 * x)
+
+        if self.use_postln:
+            x = x + self.drop_path(self.gamma_2 * self.norm2(self.mlp(x)))
+        else:
+            x = x + self.drop_path(self.gamma_2 * self.mlp(self.norm2(x)))
+
+        return x
+
+class BasicLayer(nn.Module):
+    """ A basic focal modulation layer for one stage.
+
+    Args:
+        dim (int): Number of feature channels
+        depth (int): Depths of this stage.
+        mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. Default: 4.
+        drop (float, optional): Dropout rate. Default: 0.0
+        drop_path (float | tuple[float], optional): Stochastic depth rate. Default: 0.0
+        norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm
+        downsample (nn.Module | None, optional): Downsample layer at the end of the layer. Default: None
+        focal_level (int): Number of focal levels
+        focal_window (int): Focal window size at focal level 1
+        use_conv_embed (bool): Use overlapped convolution for patch embedding or now. Default: False
+        use_checkpoint (bool): Whether to use checkpointing to save memory. Default: False
+    """
+
+    def __init__(self,
+                 dim,
+                 depth,
+                 mlp_ratio=4.,
+                 drop=0.,
+                 drop_path=0.,
+                 norm_layer=nn.LayerNorm,
+                 downsample=None,
+                 focal_window=9, 
+                 focal_level=2, 
+                 use_conv_embed=False,     
+                 use_postln=False,          
+                 use_postln_in_modulation=False, 
+                 scaling_modulator=False,
+                 use_layerscale=False,                   
+                 use_checkpoint=False
+        ):
+        super().__init__()
+        self.depth = depth
+        self.use_checkpoint = use_checkpoint
+
+        # build blocks
+        self.blocks = nn.ModuleList([
+            FocalModulationBlock(
+                dim=dim,
+                mlp_ratio=mlp_ratio,
+                drop=drop,
+                drop_path=drop_path[i] if isinstance(drop_path, list) else drop_path,
+                focal_window=focal_window, 
+                focal_level=focal_level, 
+                use_postln=use_postln, 
+                use_postln_in_modulation=use_postln_in_modulation, 
+                scaling_modulator=scaling_modulator,
+                use_layerscale=use_layerscale, 
+                norm_layer=norm_layer)
+            for i in range(depth)])
+
+        # patch merging layer
+        if downsample is not None:
+            self.downsample = downsample(
+                patch_size=2,
+                in_chans=dim, embed_dim=2*dim, 
+                use_conv_embed=use_conv_embed, 
+                norm_layer=norm_layer, 
+                is_stem=False
+            )
+
+        else:
+            self.downsample = None
+
+    def forward(self, x, H, W):
+        """ Forward function.
+
+        Args:
+            x: Input feature, tensor size (B, H*W, C).
+            H, W: Spatial resolution of the input feature.
+        """
+        for blk in self.blocks:
+            blk.H, blk.W = H, W
+            if self.use_checkpoint:
+                x = checkpoint.checkpoint(blk, x)
+            else:
+                x = blk(x)
+        if self.downsample is not None:
+            x_reshaped = x.transpose(1, 2).view(x.shape[0], x.shape[-1], H, W)
+            x_down = self.downsample(x_reshaped)   
+            x_down = x_down.flatten(2).transpose(1, 2)            
+            Wh, Ww = (H + 1) // 2, (W + 1) // 2
+            return x, H, W, x_down, Wh, Ww
+        else:
+            return x, H, W, x, H, W
+
+
+class PatchEmbed(nn.Module):
+    """ Image to Patch Embedding
+
+    Args:
+        patch_size (int): Patch token size. Default: 4.
+        in_chans (int): Number of input image channels. Default: 3.
+        embed_dim (int): Number of linear projection output channels. Default: 96.
+        norm_layer (nn.Module, optional): Normalization layer. Default: None
+        use_conv_embed (bool): Whether use overlapped convolution for patch embedding. Default: False
+        is_stem (bool): Is the stem block or not. 
+    """
+
+    def __init__(self, patch_size=4, in_chans=3, embed_dim=96, norm_layer=None, use_conv_embed=False, is_stem=False):
+        super().__init__()
+        patch_size = to_2tuple(patch_size)
+        self.patch_size = patch_size
+
+        self.in_chans = in_chans
+        self.embed_dim = embed_dim
+
+        if use_conv_embed:
+            # if we choose to use conv embedding, then we treat the stem and non-stem differently
+            if is_stem:
+                kernel_size = 7; padding = 2; stride = 4
+            else:
+                kernel_size = 3; padding = 1; stride = 2
+            self.proj = nn.Conv2d(in_chans, embed_dim, kernel_size=kernel_size, stride=stride, padding=padding)                    
+        else:
+            self.proj = nn.Conv2d(in_chans, embed_dim, kernel_size=patch_size, stride=patch_size)
+
+        if norm_layer is not None:
+            self.norm = norm_layer(embed_dim)
+        else:
+            self.norm = None
+
+    def forward(self, x):
+        """Forward function."""
+        _, _, H, W = x.size()
+        if W % self.patch_size[1] != 0:
+            x = F.pad(x, (0, self.patch_size[1] - W % self.patch_size[1]))
+        if H % self.patch_size[0] != 0:
+            x = F.pad(x, (0, 0, 0, self.patch_size[0] - H % self.patch_size[0]))
+
+        x = self.proj(x)  # B C Wh Ww
+        if self.norm is not None:
+            Wh, Ww = x.size(2), x.size(3)
+            x = x.flatten(2).transpose(1, 2)
+            x = self.norm(x)
+            x = x.transpose(1, 2).view(-1, self.embed_dim, Wh, Ww)
+
+        return x
+
+
+class FocalNet(nn.Module):
+    """ FocalNet backbone.
+
+    Args:
+        pretrain_img_size (int): Input image size for training the pretrained model,
+            used in absolute postion embedding. Default 224.
+        patch_size (int | tuple(int)): Patch size. Default: 4.
+        in_chans (int): Number of input image channels. Default: 3.
+        embed_dim (int): Number of linear projection output channels. Default: 96.
+        depths (tuple[int]): Depths of each Swin Transformer stage.
+        mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. Default: 4.
+        drop_rate (float): Dropout rate.
+        drop_path_rate (float): Stochastic depth rate. Default: 0.2.
+        norm_layer (nn.Module): Normalization layer. Default: nn.LayerNorm.
+        patch_norm (bool): If True, add normalization after patch embedding. Default: True.
+        out_indices (Sequence[int]): Output from which stages.
+        frozen_stages (int): Stages to be frozen (stop grad and set eval mode).
+            -1 means not freezing any parameters.
+        focal_levels (Sequence[int]): Number of focal levels at four stages
+        focal_windows (Sequence[int]): Focal window sizes at first focal level at four stages
+        use_conv_embed (bool): Whether use overlapped convolution for patch embedding
+        use_checkpoint (bool): Whether to use checkpointing to save memory. Default: False.
+    """
+
+    def __init__(self,
+                 pretrain_img_size=1600,
+                 patch_size=4,
+                 in_chans=3,
+                 embed_dim=96,
+                 depths=[2, 2, 6, 2],
+                 mlp_ratio=4.,
+                 drop_rate=0.,
+                 drop_path_rate=0.2,
+                 norm_layer=nn.LayerNorm,
+                 patch_norm=True,
+                 out_indices=[0, 1, 2, 3],
+                 frozen_stages=-1,
+                 focal_levels=[2,2,2,2], 
+                 focal_windows=[9,9,9,9],
+                 use_conv_embed=False, 
+                 use_postln=False, 
+                 use_postln_in_modulation=False, 
+                 scaling_modulator=False,
+                 use_layerscale=False, 
+                 use_checkpoint=False, 
+        ):
+        super().__init__()
+
+        self.pretrain_img_size = pretrain_img_size
+        self.num_layers = len(depths)
+        self.embed_dim = embed_dim
+        self.patch_norm = patch_norm
+        self.out_indices = out_indices
+        self.frozen_stages = frozen_stages
+
+        # split image into non-overlapping patches
+        self.patch_embed = PatchEmbed(
+            patch_size=patch_size, in_chans=in_chans, embed_dim=embed_dim,
+            norm_layer=norm_layer if self.patch_norm else None, 
+            use_conv_embed=use_conv_embed, is_stem=True)
+
+        self.pos_drop = nn.Dropout(p=drop_rate)
+
+        # stochastic depth
+        dpr = [x.item() for x in torch.linspace(0, drop_path_rate, sum(depths))]  # stochastic depth decay rule
+
+        # build layers
+        self.layers = nn.ModuleList()
+        for i_layer in range(self.num_layers):
+            layer = BasicLayer(
+                dim=int(embed_dim * 2 ** i_layer),
+                depth=depths[i_layer],
+                mlp_ratio=mlp_ratio,
+                drop=drop_rate,
+                drop_path=dpr[sum(depths[:i_layer]):sum(depths[:i_layer + 1])],
+                norm_layer=norm_layer,
+                downsample=PatchEmbed if (i_layer < self.num_layers - 1) else None,
+                focal_window=focal_windows[i_layer], 
+                focal_level=focal_levels[i_layer], 
+                use_conv_embed=use_conv_embed,
+                use_postln=use_postln, 
+                use_postln_in_modulation=use_postln_in_modulation,
+                scaling_modulator=scaling_modulator,
+                use_layerscale=use_layerscale, 
+                use_checkpoint=use_checkpoint)
+            self.layers.append(layer)
+
+        num_features = [int(embed_dim * 2 ** i) for i in range(self.num_layers)]
+        self.num_features = num_features
+
+        # add a norm layer for each output
+        for i_layer in out_indices:
+            layer = norm_layer(num_features[i_layer])
+            layer_name = f'norm{i_layer}'
+            self.add_module(layer_name, layer)
+
+        self._freeze_stages()
+
+    def _freeze_stages(self):
+        if self.frozen_stages >= 0:
+            self.patch_embed.eval()
+            for param in self.patch_embed.parameters():
+                param.requires_grad = False
+
+        if self.frozen_stages >= 2:
+            self.pos_drop.eval()
+            for i in range(0, self.frozen_stages - 1):
+                m = self.layers[i]
+                m.eval()
+                for param in m.parameters():
+                    param.requires_grad = False
+
+    def init_weights(self, pretrained=None):
+        """Initialize the weights in backbone.
+
+        Args:
+            pretrained (str, optional): Path to pre-trained weights.
+                Defaults to None.
+        """
+
+        def _init_weights(m):
+            if isinstance(m, nn.Linear):
+                trunc_normal_(m.weight, std=.02)
+                if isinstance(m, nn.Linear) and m.bias is not None:
+                    nn.init.constant_(m.bias, 0)
+            elif isinstance(m, nn.LayerNorm):
+                nn.init.constant_(m.bias, 0)
+                nn.init.constant_(m.weight, 1.0)
+
+        if isinstance(pretrained, str):
+            self.apply(_init_weights)
+            logger = get_root_logger()
+            load_checkpoint(self, pretrained, strict=False, logger=logger)
+        elif pretrained is None:
+            self.apply(_init_weights)
+        else:
+            raise TypeError('pretrained must be a str or None')
+
+    def load_weights(self, pretrained_dict=None, pretrained_layers=[], verbose=True):
+        model_dict = self.state_dict()
+
+        missed_dict = [k for k in model_dict.keys() if k not in pretrained_dict]
+        logger.info(f'=> Missed keys {missed_dict}')
+        unexpected_dict = [k for k in pretrained_dict.keys() if k not in model_dict]
+        logger.info(f'=> Unexpected keys {unexpected_dict}')
+
+        pretrained_dict = {
+            k: v for k, v in pretrained_dict.items()
+            if k in model_dict.keys()
+        }
+        
+        need_init_state_dict = {}
+        for k, v in pretrained_dict.items():
+            need_init = (
+                (
+                    k.split('.')[0] in pretrained_layers
+                    or pretrained_layers[0] == '*'
+                )
+                and 'relative_position_index' not in k
+                and 'attn_mask' not in k
+            )
+
+            if need_init:
+                # if verbose:
+                #     logger.info(f'=> init {k} from {pretrained}')
+
+                if ('pool_layers' in k) or ('focal_layers' in k) and v.size() != model_dict[k].size():
+                    table_pretrained = v
+                    table_current = model_dict[k]
+                    fsize1 = table_pretrained.shape[2]
+                    fsize2 = table_current.shape[2]
+
+                    # NOTE: different from interpolation used in self-attention, we use padding or clipping for focal conv
+                    if fsize1 < fsize2:
+                        table_pretrained_resized = torch.zeros(table_current.shape)
+                        table_pretrained_resized[:, :, (fsize2-fsize1)//2:-(fsize2-fsize1)//2, (fsize2-fsize1)//2:-(fsize2-fsize1)//2] = table_pretrained
+                        v = table_pretrained_resized
+                    elif fsize1 > fsize2:
+                        table_pretrained_resized = table_pretrained[:, :, (fsize1-fsize2)//2:-(fsize1-fsize2)//2, (fsize1-fsize2)//2:-(fsize1-fsize2)//2]
+                        v = table_pretrained_resized
+
+
+                if ("modulation.f" in k or "pre_conv" in k): 
+                    table_pretrained = v
+                    table_current = model_dict[k]
+                    if table_pretrained.shape != table_current.shape:
+                        if len(table_pretrained.shape) == 2:
+                            dim = table_pretrained.shape[1]
+                            assert table_current.shape[1] == dim
+                            L1 = table_pretrained.shape[0]
+                            L2 = table_current.shape[0]
+
+                            if L1 < L2:
+                                table_pretrained_resized = torch.zeros(table_current.shape)
+                                # copy for linear project
+                                table_pretrained_resized[:2*dim] = table_pretrained[:2*dim]
+                                # copy for global token gating
+                                table_pretrained_resized[-1] = table_pretrained[-1]
+                                # copy for first multiple focal levels
+                                table_pretrained_resized[2*dim:2*dim+(L1-2*dim-1)] = table_pretrained[2*dim:-1]
+                                # reassign pretrained weights
+                                v = table_pretrained_resized
+                            elif L1 > L2:
+                                raise NotImplementedError
+                        elif len(table_pretrained.shape) == 1:
+                            dim = table_pretrained.shape[0]
+                            L1 = table_pretrained.shape[0]
+                            L2 = table_current.shape[0]
+                            if L1 < L2:
+                                table_pretrained_resized = torch.zeros(table_current.shape)
+                                # copy for linear project
+                                table_pretrained_resized[:dim] = table_pretrained[:dim]
+                                # copy for global token gating
+                                table_pretrained_resized[-1] = table_pretrained[-1]
+                                # copy for first multiple focal levels
+                                # table_pretrained_resized[dim:2*dim+(L1-2*dim-1)] = table_pretrained[2*dim:-1]
+                                # reassign pretrained weights
+                                v = table_pretrained_resized
+                            elif L1 > L2:
+                                raise NotImplementedError    
+
+                need_init_state_dict[k] = v
+        
+        self.load_state_dict(need_init_state_dict, strict=False)
+
+
+    def forward(self, x):
+        """Forward function."""
+        tic = time.time()
+        x = self.patch_embed(x)
+        Wh, Ww = x.size(2), x.size(3)
+
+        x = x.flatten(2).transpose(1, 2)
+        x = self.pos_drop(x)
+
+        outs = {}
+        for i in range(self.num_layers):
+            layer = self.layers[i]
+            x_out, H, W, x, Wh, Ww = layer(x, Wh, Ww)
+            if i in self.out_indices:
+                norm_layer = getattr(self, f'norm{i}')
+                x_out = norm_layer(x_out)
+
+                out = x_out.view(-1, H, W, self.num_features[i]).permute(0, 3, 1, 2).contiguous()
+                outs["res{}".format(i + 2)] = out
+                
+        if len(self.out_indices) == 0:
+            outs["res5"] = x_out.view(-1, H, W, self.num_features[i]).permute(0, 3, 1, 2).contiguous()
+
+        toc = time.time()
+        return outs
+
+    def train(self, mode=True):
+        """Convert the model into training mode while keep layers freezed."""
+        super(FocalNet, self).train(mode)
+        self._freeze_stages()
+
+
+class D2FocalNet(FocalNet, Backbone):
+    def __init__(self, cfg, input_shape):
+
+        pretrain_img_size = cfg['BACKBONE']['FOCAL']['PRETRAIN_IMG_SIZE']
+        patch_size = cfg['BACKBONE']['FOCAL']['PATCH_SIZE']
+        in_chans = 3
+        embed_dim = cfg['BACKBONE']['FOCAL']['EMBED_DIM']
+        depths = cfg['BACKBONE']['FOCAL']['DEPTHS']
+        mlp_ratio = cfg['BACKBONE']['FOCAL']['MLP_RATIO']
+        drop_rate = cfg['BACKBONE']['FOCAL']['DROP_RATE']
+        drop_path_rate = cfg['BACKBONE']['FOCAL']['DROP_PATH_RATE']
+        norm_layer = nn.LayerNorm
+        patch_norm = cfg['BACKBONE']['FOCAL']['PATCH_NORM']
+        use_checkpoint = cfg['BACKBONE']['FOCAL']['USE_CHECKPOINT']
+        out_indices = cfg['BACKBONE']['FOCAL']['OUT_INDICES']
+        scaling_modulator = cfg['BACKBONE']['FOCAL'].get('SCALING_MODULATOR', False)
+
+        super().__init__(
+            pretrain_img_size,
+            patch_size,
+            in_chans,
+            embed_dim,
+            depths,
+            mlp_ratio,
+            drop_rate,
+            drop_path_rate,
+            norm_layer,
+            patch_norm,
+            out_indices,
+            focal_levels=cfg['BACKBONE']['FOCAL']['FOCAL_LEVELS'],
+            focal_windows=cfg['BACKBONE']['FOCAL']['FOCAL_WINDOWS'],   
+            use_conv_embed=cfg['BACKBONE']['FOCAL']['USE_CONV_EMBED'],    
+            use_postln=cfg['BACKBONE']['FOCAL']['USE_POSTLN'],       
+            use_postln_in_modulation=cfg['BACKBONE']['FOCAL']['USE_POSTLN_IN_MODULATION'], 
+            scaling_modulator=scaling_modulator,
+            use_layerscale=cfg['BACKBONE']['FOCAL']['USE_LAYERSCALE'], 
+            use_checkpoint=use_checkpoint,
+        )
+
+        self._out_features = cfg['BACKBONE']['FOCAL']['OUT_FEATURES']
+
+        self._out_feature_strides = {
+            "res2": 4,
+            "res3": 8,
+            "res4": 16,
+            "res5": 32,
+        }
+        self._out_feature_channels = {
+            "res2": self.num_features[0],
+            "res3": self.num_features[1],
+            "res4": self.num_features[2],
+            "res5": self.num_features[3],
+        }
+
+    def forward(self, x):
+        """
+        Args:
+            x: Tensor of shape (N,C,H,W). H, W must be a multiple of ``self.size_divisibility``.
+        Returns:
+            dict[str->Tensor]: names and the corresponding features
+        """
+        assert (
+            x.dim() == 4
+        ), f"SwinTransformer takes an input of shape (N, C, H, W). Got {x.shape} instead!"
+        outputs = {}
+        y = super().forward(x)
+        for k in y.keys():
+            if k in self._out_features:
+                outputs[k] = y[k]
+        return outputs
+
+    def output_shape(self):
+        return {
+            name: ShapeSpec(
+                channels=self._out_feature_channels[name], stride=self._out_feature_strides[name]
+            )
+            for name in self._out_features
+        }
+
+    @property
+    def size_divisibility(self):
+        return 32
+
+@register_backbone
+def get_focal_backbone(cfg):
+    focal = D2FocalNet(cfg['MODEL'], 224)    
+
+    if cfg['MODEL']['BACKBONE']['LOAD_PRETRAINED'] is True:
+        filename = cfg['MODEL']['BACKBONE']['PRETRAINED']
+        logger.info(f'=> init from {filename}')
+        with PathManager.open(filename, "rb") as f:
+            ckpt = torch.load(f)['model']
+        focal.load_weights(ckpt, cfg['MODEL']['BACKBONE']['FOCAL'].get('PRETRAINED_LAYERS', ['*']), cfg['VERBOSE'])
+
+    return focal
\ No newline at end of file
diff --git a/xdecoder/backbone/focal_dw.py b/xdecoder/backbone/focal_dw.py
new file mode 100755
index 0000000000000000000000000000000000000000..4306ec6fc347a8e5798f79ba9e08e1a1d687fbb5
--- /dev/null
+++ b/xdecoder/backbone/focal_dw.py
@@ -0,0 +1,789 @@
+# --------------------------------------------------------
+# FocalNet for Semantic Segmentation
+# Copyright (c) 2022 Microsoft
+# Licensed under The MIT License [see LICENSE for details]
+# Written by Jianwei Yang
+# --------------------------------------------------------
+import math
+import time
+import numpy as np
+import logging
+import torch
+import torch.nn as nn
+import torch.nn.functional as F
+import torch.utils.checkpoint as checkpoint
+from timm.models.layers import DropPath, to_2tuple, trunc_normal_
+
+from detectron2.utils.file_io import PathManager
+from detectron2.modeling import BACKBONE_REGISTRY, Backbone, ShapeSpec
+
+from .registry import register_backbone
+
+logger = logging.getLogger(__name__)
+
+class Mlp(nn.Module):
+    """ Multilayer perceptron."""
+
+    def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.):
+        super().__init__()
+        out_features = out_features or in_features
+        hidden_features = hidden_features or in_features
+        self.fc1 = nn.Linear(in_features, hidden_features)
+        self.act = act_layer()
+        self.fc2 = nn.Linear(hidden_features, out_features)
+        self.drop = nn.Dropout(drop)
+
+    def forward(self, x):
+        x = self.fc1(x)
+        x = self.act(x)
+        x = self.drop(x)
+        x = self.fc2(x)
+        x = self.drop(x)
+        return x
+
+class FocalModulation(nn.Module):
+    """ Focal Modulation
+
+    Args:
+        dim (int): Number of input channels.
+        proj_drop (float, optional): Dropout ratio of output. Default: 0.0
+        focal_level (int): Number of focal levels
+        focal_window (int): Focal window size at focal level 1
+        focal_factor (int, default=2): Step to increase the focal window
+        use_postln (bool, default=False): Whether use post-modulation layernorm
+    """
+
+    def __init__(self, dim, proj_drop=0., focal_level=2, focal_window=7, focal_factor=2, use_postln=False, use_postln_in_modulation=False, scaling_modulator=False):
+
+        super().__init__()
+        self.dim = dim
+
+        # specific args for focalv3
+        self.focal_level = focal_level
+        self.focal_window = focal_window
+        self.focal_factor = focal_factor
+        self.use_postln_in_modulation = use_postln_in_modulation
+        self.scaling_modulator = scaling_modulator
+
+        self.f = nn.Linear(dim, 2*dim+(self.focal_level+1), bias=True)
+        self.h = nn.Conv2d(dim, dim, kernel_size=1, stride=1, padding=0, groups=1, bias=True)
+
+        self.act = nn.GELU()
+        self.proj = nn.Linear(dim, dim)
+        self.proj_drop = nn.Dropout(proj_drop)
+        self.focal_layers = nn.ModuleList()
+
+        if self.use_postln_in_modulation:
+            self.ln = nn.LayerNorm(dim)
+
+        for k in range(self.focal_level):
+            kernel_size = self.focal_factor*k + self.focal_window
+            self.focal_layers.append(
+                nn.Sequential(
+                    nn.Conv2d(dim, dim, kernel_size=kernel_size, stride=1, groups=dim, 
+                        padding=kernel_size//2, bias=False),
+                    nn.GELU(),
+                    )
+                )
+
+    def forward(self, x):
+        """ Forward function.
+
+        Args:
+            x: input features with shape of (B, H, W, C)
+        """
+        B, nH, nW, C = x.shape
+        x = self.f(x)
+        x = x.permute(0, 3, 1, 2).contiguous()
+        q, ctx, gates = torch.split(x, (C, C, self.focal_level+1), 1)
+        
+        ctx_all = 0
+        for l in range(self.focal_level):                     
+            ctx = self.focal_layers[l](ctx)
+            ctx_all = ctx_all + ctx*gates[:, l:l+1]
+        ctx_global = self.act(ctx.mean(2, keepdim=True).mean(3, keepdim=True))
+        ctx_all = ctx_all + ctx_global*gates[:,self.focal_level:]
+
+        if self.scaling_modulator:
+            ctx_all = ctx_all / (self.focal_level + 1)
+
+        x_out = q * self.h(ctx_all)
+        x_out = x_out.permute(0, 2, 3, 1).contiguous()
+        if self.use_postln_in_modulation:
+            x_out = self.ln(x_out)            
+        x_out = self.proj(x_out)
+        x_out = self.proj_drop(x_out)
+        return x_out
+
+class FocalModulationBlock(nn.Module):
+    """ Focal Modulation Block.
+
+    Args:
+        dim (int): Number of input channels.
+        mlp_ratio (float): Ratio of mlp hidden dim to embedding dim.
+        drop (float, optional): Dropout rate. Default: 0.0
+        drop_path (float, optional): Stochastic depth rate. Default: 0.0
+        act_layer (nn.Module, optional): Activation layer. Default: nn.GELU
+        norm_layer (nn.Module, optional): Normalization layer.  Default: nn.LayerNorm
+        focal_level (int): number of focal levels
+        focal_window (int): focal kernel size at level 1
+    """
+
+    def __init__(self, dim, mlp_ratio=4., drop=0., drop_path=0., 
+                 act_layer=nn.GELU, norm_layer=nn.LayerNorm,
+                 focal_level=2, focal_window=9, 
+                 use_postln=False, use_postln_in_modulation=False,
+                 scaling_modulator=False, 
+                 use_layerscale=False, 
+                 layerscale_value=1e-4):
+        super().__init__()
+        self.dim = dim
+        self.mlp_ratio = mlp_ratio
+        self.focal_window = focal_window
+        self.focal_level = focal_level
+        self.use_postln = use_postln
+        self.use_layerscale = use_layerscale
+
+        self.dw1 = nn.Conv2d(dim, dim, kernel_size=3, stride=1, padding=1, groups=dim)
+        self.norm1 = norm_layer(dim)
+        self.modulation = FocalModulation(
+            dim, focal_window=self.focal_window, focal_level=self.focal_level, proj_drop=drop, use_postln_in_modulation=use_postln_in_modulation, scaling_modulator=scaling_modulator
+        )            
+
+        self.dw2 = nn.Conv2d(dim, dim, kernel_size=3, stride=1, padding=1, groups=dim)
+        self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
+        self.norm2 = norm_layer(dim)
+        mlp_hidden_dim = int(dim * mlp_ratio)
+        self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop)
+
+        self.H = None
+        self.W = None
+
+        self.gamma_1 = 1.0
+        self.gamma_2 = 1.0
+        if self.use_layerscale:
+            self.gamma_1 = nn.Parameter(layerscale_value * torch.ones((dim)), requires_grad=True)
+            self.gamma_2 = nn.Parameter(layerscale_value * torch.ones((dim)), requires_grad=True)
+
+    def forward(self, x):
+        """ Forward function.
+
+        Args:
+            x: Input feature, tensor size (B, H*W, C).
+            H, W: Spatial resolution of the input feature.
+        """
+        B, L, C = x.shape
+        H, W = self.H, self.W
+        assert L == H * W, "input feature has wrong size"
+
+        x = x.view(B, H, W, C).permute(0, 3, 1, 2).contiguous()
+        x = x + self.dw1(x)
+        x = x.permute(0, 2, 3, 1).contiguous().view(B, L, C)
+
+        shortcut = x
+        if not self.use_postln:
+            x = self.norm1(x)
+        x = x.view(B, H, W, C)
+        
+        # FM
+        x = self.modulation(x).view(B, H * W, C)
+        x = shortcut + self.drop_path(self.gamma_1 * x)
+        if self.use_postln:
+            x = self.norm1(x)
+
+        x = x.view(B, H, W, C).permute(0, 3, 1, 2).contiguous()
+        x = x + self.dw2(x)
+        x = x.permute(0, 2, 3, 1).contiguous().view(B, L, C)
+
+        if not self.use_postln:
+            x = x + self.drop_path(self.gamma_2 * self.mlp(self.norm2(x)))        
+        else:
+            x = x + self.drop_path(self.gamma_2 * self.mlp(x))
+            x = self.norm2(x)
+
+        return x
+
+class BasicLayer(nn.Module):
+    """ A basic focal modulation layer for one stage.
+
+    Args:
+        dim (int): Number of feature channels
+        depth (int): Depths of this stage.
+        mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. Default: 4.
+        drop (float, optional): Dropout rate. Default: 0.0
+        drop_path (float | tuple[float], optional): Stochastic depth rate. Default: 0.0
+        norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm
+        downsample (nn.Module | None, optional): Downsample layer at the end of the layer. Default: None
+        focal_level (int): Number of focal levels
+        focal_window (int): Focal window size at focal level 1
+        use_conv_embed (bool): Use overlapped convolution for patch embedding or now. Default: False
+        use_checkpoint (bool): Whether to use checkpointing to save memory. Default: False
+    """
+
+    def __init__(self,
+                 dim,
+                 depth,
+                 mlp_ratio=4.,
+                 drop=0.,
+                 drop_path=0.,
+                 norm_layer=nn.LayerNorm,
+                 downsample=None,
+                 focal_window=9, 
+                 focal_level=2, 
+                 use_conv_embed=False,     
+                 use_postln=False,          
+                 use_postln_in_modulation=False, 
+                 scaling_modulator=False,
+                 use_layerscale=False,                   
+                 use_checkpoint=False, 
+                 use_pre_norm=False, 
+        ):
+        super().__init__()
+        self.depth = depth
+        self.use_checkpoint = use_checkpoint
+
+        # build blocks
+        self.blocks = nn.ModuleList([
+            FocalModulationBlock(
+                dim=dim,
+                mlp_ratio=mlp_ratio,
+                drop=drop,
+                drop_path=drop_path[i] if isinstance(drop_path, list) else drop_path,
+                focal_window=focal_window, 
+                focal_level=focal_level, 
+                use_postln=use_postln, 
+                use_postln_in_modulation=use_postln_in_modulation, 
+                scaling_modulator=scaling_modulator,
+                use_layerscale=use_layerscale, 
+                norm_layer=norm_layer)
+            for i in range(depth)])
+
+        # patch merging layer
+        if downsample is not None:
+            self.downsample = downsample(
+                patch_size=2,
+                in_chans=dim, embed_dim=2*dim, 
+                use_conv_embed=use_conv_embed, 
+                norm_layer=norm_layer, 
+                is_stem=False, 
+                use_pre_norm=use_pre_norm
+            )
+
+        else:
+            self.downsample = None
+
+    def forward(self, x, H, W):
+        """ Forward function.
+
+        Args:
+            x: Input feature, tensor size (B, H*W, C).
+            H, W: Spatial resolution of the input feature.
+        """
+        for blk in self.blocks:
+            blk.H, blk.W = H, W
+            if self.use_checkpoint:
+                x = checkpoint.checkpoint(blk, x)
+            else:
+                x = blk(x)
+        if self.downsample is not None:
+            x_reshaped = x.transpose(1, 2).view(x.shape[0], x.shape[-1], H, W)
+            x_down = self.downsample(x_reshaped)   
+            x_down = x_down.flatten(2).transpose(1, 2)            
+            Wh, Ww = (H + 1) // 2, (W + 1) // 2
+            return x, H, W, x_down, Wh, Ww
+        else:
+            return x, H, W, x, H, W
+
+
+# class PatchEmbed(nn.Module):
+#     r""" Image to Patch Embedding
+
+#     Args:
+#         img_size (int): Image size.  Default: 224.
+#         patch_size (int): Patch token size. Default: 4.
+#         in_chans (int): Number of input image channels. Default: 3.
+#         embed_dim (int): Number of linear projection output channels. Default: 96.
+#         norm_layer (nn.Module, optional): Normalization layer. Default: None
+#     """
+
+#     def __init__(self, img_size=(224, 224), patch_size=4, in_chans=3, embed_dim=96, 
+#         use_conv_embed=False, norm_layer=None, is_stem=False, use_pre_norm=False):
+#         super().__init__()
+#         patch_size = to_2tuple(patch_size)
+#         patches_resolution = [img_size[0] // patch_size[0], img_size[1] // patch_size[1]]
+#         self.img_size = img_size
+#         self.patch_size = patch_size
+#         self.patches_resolution = patches_resolution
+#         self.num_patches = patches_resolution[0] * patches_resolution[1]
+
+#         self.in_chans = in_chans
+#         self.embed_dim = embed_dim
+#         self.use_pre_norm = use_pre_norm
+
+#         if use_conv_embed:
+#             # if we choose to use conv embedding, then we treat the stem and non-stem differently
+#             if is_stem:
+#                 kernel_size = 7; padding = 3; stride = 4
+#             else:
+#                 kernel_size = 3; padding = 1; stride = 2
+#             self.proj = nn.Conv2d(in_chans, embed_dim, kernel_size=kernel_size, stride=stride, padding=padding)
+#         else:
+#             self.proj = nn.Conv2d(in_chans, embed_dim, kernel_size=patch_size, stride=patch_size)
+        
+#         if self.use_pre_norm:
+#             if norm_layer is not None:
+#                 self.norm = norm_layer(in_chans)
+#             else:
+#                 self.norm = None
+#         else:
+#             if norm_layer is not None:
+#                 self.norm = norm_layer(embed_dim)
+#             else:
+#                 self.norm = None
+
+#     def forward(self, x):
+#         B, C, H, W = x.shape
+#         # FIXME look at relaxing size constraints
+#         assert H == self.img_size[0] and W == self.img_size[1], \
+#             f"Input image size ({H}*{W}) doesn't match model ({self.img_size[0]}*{self.img_size[1]})."
+        
+#         if self.use_pre_norm:
+#             if self.norm is not None:
+#                 x = x.flatten(2).transpose(1, 2)  # B Ph*Pw C
+#                 x = self.norm(x).transpose(1, 2).view(B, C, H, W)
+#             x = self.proj(x).flatten(2).transpose(1, 2)
+#         else:
+#             x = self.proj(x).flatten(2).transpose(1, 2)  # B Ph*Pw C
+#             if self.norm is not None:
+#                 x = self.norm(x)
+#         return x
+
+#     def flops(self):
+#         Ho, Wo = self.patches_resolution
+#         flops = Ho * Wo * self.embed_dim * self.in_chans * (self.patch_size[0] * self.patch_size[1])
+#         if self.norm is not None:
+#             flops += Ho * Wo * self.embed_dim
+#         return flops
+
+class PatchEmbed(nn.Module):
+    """ Image to Patch Embedding
+
+    Args:
+        patch_size (int): Patch token size. Default: 4.
+        in_chans (int): Number of input image channels. Default: 3.
+        embed_dim (int): Number of linear projection output channels. Default: 96.
+        norm_layer (nn.Module, optional): Normalization layer. Default: None
+        use_conv_embed (bool): Whether use overlapped convolution for patch embedding. Default: False
+        is_stem (bool): Is the stem block or not. 
+    """
+
+    def __init__(self, patch_size=4, in_chans=3, embed_dim=96, norm_layer=None, use_conv_embed=False, is_stem=False, use_pre_norm=False):
+        super().__init__()
+        patch_size = to_2tuple(patch_size)
+        self.patch_size = patch_size
+
+        self.in_chans = in_chans
+        self.embed_dim = embed_dim
+        self.use_pre_norm = use_pre_norm
+
+        if use_conv_embed:
+            # if we choose to use conv embedding, then we treat the stem and non-stem differently
+            if is_stem:
+                kernel_size = 7; padding = 3; stride = 4
+            else:
+                kernel_size = 3; padding = 1; stride = 2
+            self.proj = nn.Conv2d(in_chans, embed_dim, kernel_size=kernel_size, stride=stride, padding=padding)                    
+        else:
+            self.proj = nn.Conv2d(in_chans, embed_dim, kernel_size=patch_size, stride=patch_size)
+
+        if self.use_pre_norm:
+            if norm_layer is not None:
+                self.norm = norm_layer(in_chans)
+            else:
+                self.norm = None       
+        else:
+            if norm_layer is not None:
+                self.norm = norm_layer(embed_dim)
+            else:
+                self.norm = None
+
+    def forward(self, x):
+        """Forward function."""
+        B, C, H, W = x.size()
+        if W % self.patch_size[1] != 0:
+            x = F.pad(x, (0, self.patch_size[1] - W % self.patch_size[1]))
+        if H % self.patch_size[0] != 0:
+            x = F.pad(x, (0, 0, 0, self.patch_size[0] - H % self.patch_size[0]))
+
+        if self.use_pre_norm:
+            if self.norm is not None:
+                x = x.flatten(2).transpose(1, 2)  # B Ph*Pw C
+                x = self.norm(x).transpose(1, 2).view(B, C, H, W)
+            x = self.proj(x)
+        else:
+            x = self.proj(x)  # B C Wh Ww
+            if self.norm is not None:
+                Wh, Ww = x.size(2), x.size(3)
+                x = x.flatten(2).transpose(1, 2)
+                x = self.norm(x)
+                x = x.transpose(1, 2).view(-1, self.embed_dim, Wh, Ww)
+
+        return x
+
+
+class FocalNet(nn.Module):
+    """ FocalNet backbone.
+
+    Args:
+        pretrain_img_size (int): Input image size for training the pretrained model,
+            used in absolute postion embedding. Default 224.
+        patch_size (int | tuple(int)): Patch size. Default: 4.
+        in_chans (int): Number of input image channels. Default: 3.
+        embed_dim (int): Number of linear projection output channels. Default: 96.
+        depths (tuple[int]): Depths of each Swin Transformer stage.
+        mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. Default: 4.
+        drop_rate (float): Dropout rate.
+        drop_path_rate (float): Stochastic depth rate. Default: 0.2.
+        norm_layer (nn.Module): Normalization layer. Default: nn.LayerNorm.
+        patch_norm (bool): If True, add normalization after patch embedding. Default: True.
+        out_indices (Sequence[int]): Output from which stages.
+        frozen_stages (int): Stages to be frozen (stop grad and set eval mode).
+            -1 means not freezing any parameters.
+        focal_levels (Sequence[int]): Number of focal levels at four stages
+        focal_windows (Sequence[int]): Focal window sizes at first focal level at four stages
+        use_conv_embed (bool): Whether use overlapped convolution for patch embedding
+        use_checkpoint (bool): Whether to use checkpointing to save memory. Default: False.
+    """
+
+    def __init__(self,
+                 pretrain_img_size=1600,
+                 patch_size=4,
+                 in_chans=3,
+                 embed_dim=96,
+                 depths=[2, 2, 6, 2],
+                 mlp_ratio=4.,
+                 drop_rate=0.,
+                 drop_path_rate=0.2,
+                 norm_layer=nn.LayerNorm,
+                 patch_norm=True,
+                 out_indices=[0, 1, 2, 3],
+                 frozen_stages=-1,
+                 focal_levels=[2,2,2,2], 
+                 focal_windows=[9,9,9,9],
+                 use_pre_norms=[False, False, False, False], 
+                 use_conv_embed=False, 
+                 use_postln=False, 
+                 use_postln_in_modulation=False, 
+                 scaling_modulator=False,
+                 use_layerscale=False, 
+                 use_checkpoint=False, 
+        ):
+        super().__init__()
+
+        self.pretrain_img_size = pretrain_img_size
+        self.num_layers = len(depths)
+        self.embed_dim = embed_dim
+        self.patch_norm = patch_norm
+        self.out_indices = out_indices
+        self.frozen_stages = frozen_stages
+
+        # split image into non-overlapping patches
+        self.patch_embed = PatchEmbed(
+            patch_size=patch_size, in_chans=in_chans, embed_dim=embed_dim,
+            norm_layer=norm_layer if self.patch_norm else None, 
+            use_conv_embed=use_conv_embed, is_stem=True, use_pre_norm=False)
+
+        self.pos_drop = nn.Dropout(p=drop_rate)
+
+        # stochastic depth
+        dpr = [x.item() for x in torch.linspace(0, drop_path_rate, sum(depths))]  # stochastic depth decay rule
+
+        # build layers
+        self.layers = nn.ModuleList()
+        for i_layer in range(self.num_layers):
+            layer = BasicLayer(
+                dim=int(embed_dim * 2 ** i_layer),
+                depth=depths[i_layer],
+                mlp_ratio=mlp_ratio,
+                drop=drop_rate,
+                drop_path=dpr[sum(depths[:i_layer]):sum(depths[:i_layer + 1])],
+                norm_layer=norm_layer,
+                downsample=PatchEmbed if (i_layer < self.num_layers - 1) else None,
+                focal_window=focal_windows[i_layer], 
+                focal_level=focal_levels[i_layer], 
+                use_pre_norm=use_pre_norms[i_layer], 
+                use_conv_embed=use_conv_embed,
+                use_postln=use_postln, 
+                use_postln_in_modulation=use_postln_in_modulation,
+                scaling_modulator=scaling_modulator,
+                use_layerscale=use_layerscale, 
+                use_checkpoint=use_checkpoint)
+            self.layers.append(layer)
+
+        num_features = [int(embed_dim * 2 ** i) for i in range(self.num_layers)]
+        self.num_features = num_features        
+        # self.norm = norm_layer(num_features[-1])
+
+        # add a norm layer for each output
+        for i_layer in self.out_indices:
+            layer = norm_layer(num_features[i_layer])
+            layer_name = f'norm{i_layer}'
+            self.add_module(layer_name, layer)
+
+        self._freeze_stages()
+
+    def _freeze_stages(self):
+        if self.frozen_stages >= 0:
+            self.patch_embed.eval()
+            for param in self.patch_embed.parameters():
+                param.requires_grad = False
+
+        if self.frozen_stages >= 2:
+            self.pos_drop.eval()
+            for i in range(0, self.frozen_stages - 1):
+                m = self.layers[i]
+                m.eval()
+                for param in m.parameters():
+                    param.requires_grad = False
+
+    def init_weights(self, pretrained=None):
+        """Initialize the weights in backbone.
+
+        Args:
+            pretrained (str, optional): Path to pre-trained weights.
+                Defaults to None.
+        """
+
+        def _init_weights(m):
+            if isinstance(m, nn.Linear):
+                trunc_normal_(m.weight, std=.02)
+                if isinstance(m, nn.Linear) and m.bias is not None:
+                    nn.init.constant_(m.bias, 0)
+            elif isinstance(m, nn.LayerNorm):
+                nn.init.constant_(m.bias, 0)
+                nn.init.constant_(m.weight, 1.0)
+
+        if isinstance(pretrained, str):
+            self.apply(_init_weights)
+            logger = get_root_logger()
+            load_checkpoint(self, pretrained, strict=False, logger=logger)
+        elif pretrained is None:
+            self.apply(_init_weights)
+        else:
+            raise TypeError('pretrained must be a str or None')
+
+    def load_weights(self, pretrained_dict=None, pretrained_layers=[], verbose=True):
+        model_dict = self.state_dict()
+
+        missed_dict = [k for k in model_dict.keys() if k not in pretrained_dict]
+        logger.info(f'=> Missed keys {missed_dict}')
+        unexpected_dict = [k for k in pretrained_dict.keys() if k not in model_dict]
+        logger.info(f'=> Unexpected keys {unexpected_dict}')
+
+        pretrained_dict = {
+            k: v for k, v in pretrained_dict.items()
+            if k in model_dict.keys()
+        }
+        
+        need_init_state_dict = {}
+        for k, v in pretrained_dict.items():
+            need_init = (
+                (
+                    k.split('.')[0] in pretrained_layers
+                    or pretrained_layers[0] == '*'
+                )
+                and 'relative_position_index' not in k
+                and 'attn_mask' not in k
+            )
+
+            if need_init:
+                # if verbose:
+                #     logger.info(f'=> init {k} from {pretrained}')
+
+                if ('pool_layers' in k) or ('focal_layers' in k) and v.size() != model_dict[k].size():
+                    table_pretrained = v
+                    table_current = model_dict[k]
+                    fsize1 = table_pretrained.shape[2]
+                    fsize2 = table_current.shape[2]
+
+                    # NOTE: different from interpolation used in self-attention, we use padding or clipping for focal conv
+                    if fsize1 < fsize2:
+                        table_pretrained_resized = torch.zeros(table_current.shape)
+                        table_pretrained_resized[:, :, (fsize2-fsize1)//2:-(fsize2-fsize1)//2, (fsize2-fsize1)//2:-(fsize2-fsize1)//2] = table_pretrained
+                        v = table_pretrained_resized
+                    elif fsize1 > fsize2:
+                        table_pretrained_resized = table_pretrained[:, :, (fsize1-fsize2)//2:-(fsize1-fsize2)//2, (fsize1-fsize2)//2:-(fsize1-fsize2)//2]
+                        v = table_pretrained_resized
+
+
+                if ("modulation.f" in k or "pre_conv" in k): 
+                    table_pretrained = v
+                    table_current = model_dict[k]
+                    if table_pretrained.shape != table_current.shape:
+                        if len(table_pretrained.shape) == 2:
+                            dim = table_pretrained.shape[1]
+                            assert table_current.shape[1] == dim
+                            L1 = table_pretrained.shape[0]
+                            L2 = table_current.shape[0]
+
+                            if L1 < L2:
+                                table_pretrained_resized = torch.zeros(table_current.shape)
+                                # copy for linear project
+                                table_pretrained_resized[:2*dim] = table_pretrained[:2*dim]
+                                # copy for global token gating
+                                table_pretrained_resized[-1] = table_pretrained[-1]
+                                # copy for first multiple focal levels
+                                table_pretrained_resized[2*dim:2*dim+(L1-2*dim-1)] = table_pretrained[2*dim:-1]
+                                # reassign pretrained weights
+                                v = table_pretrained_resized
+                            elif L1 > L2:
+                                raise NotImplementedError
+                        elif len(table_pretrained.shape) == 1:
+                            dim = table_pretrained.shape[0]
+                            L1 = table_pretrained.shape[0]
+                            L2 = table_current.shape[0]
+                            if L1 < L2:
+                                table_pretrained_resized = torch.zeros(table_current.shape)
+                                # copy for linear project
+                                table_pretrained_resized[:dim] = table_pretrained[:dim]
+                                # copy for global token gating
+                                table_pretrained_resized[-1] = table_pretrained[-1]
+                                # copy for first multiple focal levels
+                                # table_pretrained_resized[dim:2*dim+(L1-2*dim-1)] = table_pretrained[2*dim:-1]
+                                # reassign pretrained weights
+                                v = table_pretrained_resized
+                            elif L1 > L2:
+                                raise NotImplementedError    
+
+                need_init_state_dict[k] = v
+        
+        self.load_state_dict(need_init_state_dict, strict=False)
+
+
+    def forward(self, x):
+        """Forward function."""
+        tic = time.time()
+        x = self.patch_embed(x)
+        Wh, Ww = x.size(2), x.size(3)
+
+        x = x.flatten(2).transpose(1, 2)
+        x = self.pos_drop(x)
+
+        outs = {}
+        for i in range(self.num_layers):
+            layer = self.layers[i]
+            x_out, H, W, x, Wh, Ww = layer(x, Wh, Ww)
+            if i in self.out_indices:
+                norm_layer = getattr(self, f'norm{i}')
+                x_out = norm_layer(x_out)
+
+                out = x_out.view(-1, H, W, self.num_features[i]).permute(0, 3, 1, 2).contiguous()
+                outs["res{}".format(i + 2)] = out
+                
+        if len(self.out_indices) == 0:
+            outs["res5"] = x_out.view(-1, H, W, self.num_features[i]).permute(0, 3, 1, 2).contiguous()
+
+        toc = time.time()
+        return outs
+
+    def train(self, mode=True):
+        """Convert the model into training mode while keep layers freezed."""
+        super(FocalNet, self).train(mode)
+        self._freeze_stages()
+
+
+class D2FocalNet(FocalNet, Backbone):
+    def __init__(self, cfg, input_shape):
+
+        pretrain_img_size = cfg['BACKBONE']['FOCAL']['PRETRAIN_IMG_SIZE']
+        patch_size = cfg['BACKBONE']['FOCAL']['PATCH_SIZE']
+        in_chans = 3
+        embed_dim = cfg['BACKBONE']['FOCAL']['EMBED_DIM']
+        depths = cfg['BACKBONE']['FOCAL']['DEPTHS']
+        mlp_ratio = cfg['BACKBONE']['FOCAL']['MLP_RATIO']
+        drop_rate = cfg['BACKBONE']['FOCAL']['DROP_RATE']
+        drop_path_rate = cfg['BACKBONE']['FOCAL']['DROP_PATH_RATE']
+        norm_layer = nn.LayerNorm
+        patch_norm = cfg['BACKBONE']['FOCAL']['PATCH_NORM']
+        use_checkpoint = cfg['BACKBONE']['FOCAL']['USE_CHECKPOINT']
+        out_indices = cfg['BACKBONE']['FOCAL']['OUT_INDICES']
+        scaling_modulator = cfg['BACKBONE']['FOCAL'].get('SCALING_MODULATOR', False)
+
+        super().__init__(
+            pretrain_img_size,
+            patch_size,
+            in_chans,
+            embed_dim,
+            depths,
+            mlp_ratio,
+            drop_rate,
+            drop_path_rate,
+            norm_layer,
+            patch_norm,
+            out_indices,
+            focal_levels=cfg['BACKBONE']['FOCAL']['FOCAL_LEVELS'],
+            focal_windows=cfg['BACKBONE']['FOCAL']['FOCAL_WINDOWS'],   
+            use_conv_embed=cfg['BACKBONE']['FOCAL']['USE_CONV_EMBED'],    
+            use_postln=cfg['BACKBONE']['FOCAL']['USE_POSTLN'],       
+            use_postln_in_modulation=cfg['BACKBONE']['FOCAL']['USE_POSTLN_IN_MODULATION'], 
+            scaling_modulator=scaling_modulator,
+            use_layerscale=cfg['BACKBONE']['FOCAL']['USE_LAYERSCALE'], 
+            use_checkpoint=use_checkpoint,
+        )
+
+        self._out_features = cfg['BACKBONE']['FOCAL']['OUT_FEATURES']
+
+        self._out_feature_strides = {
+            "res2": 4,
+            "res3": 8,
+            "res4": 16,
+            "res5": 32,
+        }
+        self._out_feature_channels = {
+            "res2": self.num_features[0],
+            "res3": self.num_features[1],
+            "res4": self.num_features[2],
+            "res5": self.num_features[3],
+        }
+
+    def forward(self, x):
+        """
+        Args:
+            x: Tensor of shape (N,C,H,W). H, W must be a multiple of ``self.size_divisibility``.
+        Returns:
+            dict[str->Tensor]: names and the corresponding features
+        """
+        assert (
+            x.dim() == 4
+        ), f"SwinTransformer takes an input of shape (N, C, H, W). Got {x.shape} instead!"
+        outputs = {}
+        y = super().forward(x)
+        for k in y.keys():
+            if k in self._out_features:
+                outputs[k] = y[k]
+        return outputs
+
+    def output_shape(self):
+        return {
+            name: ShapeSpec(
+                channels=self._out_feature_channels[name], stride=self._out_feature_strides[name]
+            )
+            for name in self._out_features
+        }
+
+    @property
+    def size_divisibility(self):
+        return 32
+
+@register_backbone
+def get_focal_backbone(cfg):
+    focal = D2FocalNet(cfg['MODEL'], 224)    
+
+    if cfg['MODEL']['BACKBONE']['LOAD_PRETRAINED'] is True:
+        filename = cfg['MODEL']['BACKBONE']['PRETRAINED']
+        logger.info(f'=> init from {filename}')
+        with PathManager.open(filename, "rb") as f:
+            ckpt = torch.load(f)['model']
+        focal.load_weights(ckpt, cfg['MODEL']['BACKBONE']['FOCAL'].get('PRETRAINED_LAYERS', ['*']), cfg['VERBOSE'])
+
+    return focal
\ No newline at end of file
diff --git a/xdecoder/backbone/registry.py b/xdecoder/backbone/registry.py
new file mode 100755
index 0000000000000000000000000000000000000000..9e19cc8068fff5f5de219c0739594b404d837e00
--- /dev/null
+++ b/xdecoder/backbone/registry.py
@@ -0,0 +1,14 @@
+_model_entrypoints = {}
+
+
+def register_backbone(fn):
+    module_name_split = fn.__module__.split('.')
+    model_name = module_name_split[-1]
+    _model_entrypoints[model_name] = fn
+    return fn
+
+def model_entrypoints(model_name):
+    return _model_entrypoints[model_name]
+
+def is_model(model_name):
+    return model_name in _model_entrypoints
diff --git a/xdecoder/backbone/resnet.py b/xdecoder/backbone/resnet.py
new file mode 100755
index 0000000000000000000000000000000000000000..dbfaa85ccb7937b93fc7f8a0ca57cc2e785ec2e6
--- /dev/null
+++ b/xdecoder/backbone/resnet.py
@@ -0,0 +1,731 @@
+# Copyright (c) Facebook, Inc. and its affiliates.
+import pickle
+import numpy as np
+from typing import Any, Dict
+import fvcore.nn.weight_init as weight_init
+import torch
+import torch.nn.functional as F
+from torch import nn
+
+
+from .backbone import Backbone
+from .registry import register_backbone
+
+from detectron2.layers import (
+    CNNBlockBase,
+    Conv2d,
+    DeformConv,
+    ModulatedDeformConv,
+    ShapeSpec,
+    get_norm,
+)
+from detectron2.utils.file_io import PathManager
+
+__all__ = [
+    "ResNetBlockBase",
+    "BasicBlock",
+    "BottleneckBlock",
+    "DeformBottleneckBlock",
+    "BasicStem",
+    "ResNet",
+    "make_stage",
+    "get_resnet_backbone",
+]
+
+
+class BasicBlock(CNNBlockBase):
+    """
+    The basic residual block for ResNet-18 and ResNet-34 defined in :paper:`ResNet`,
+    with two 3x3 conv layers and a projection shortcut if needed.
+    """
+
+    def __init__(self, in_channels, out_channels, *, stride=1, norm="BN"):
+        """
+        Args:
+            in_channels (int): Number of input channels.
+            out_channels (int): Number of output channels.
+            stride (int): Stride for the first conv.
+            norm (str or callable): normalization for all conv layers.
+                See :func:`layers.get_norm` for supported format.
+        """
+        super().__init__(in_channels, out_channels, stride)
+
+        if in_channels != out_channels:
+            self.shortcut = Conv2d(
+                in_channels,
+                out_channels,
+                kernel_size=1,
+                stride=stride,
+                bias=False,
+                norm=get_norm(norm, out_channels),
+            )
+        else:
+            self.shortcut = None
+
+        self.conv1 = Conv2d(
+            in_channels,
+            out_channels,
+            kernel_size=3,
+            stride=stride,
+            padding=1,
+            bias=False,
+            norm=get_norm(norm, out_channels),
+        )
+
+        self.conv2 = Conv2d(
+            out_channels,
+            out_channels,
+            kernel_size=3,
+            stride=1,
+            padding=1,
+            bias=False,
+            norm=get_norm(norm, out_channels),
+        )
+
+        for layer in [self.conv1, self.conv2, self.shortcut]:
+            if layer is not None:  # shortcut can be None
+                weight_init.c2_msra_fill(layer)
+
+    def forward(self, x):
+        out = self.conv1(x)
+        out = F.relu_(out)
+        out = self.conv2(out)
+
+        if self.shortcut is not None:
+            shortcut = self.shortcut(x)
+        else:
+            shortcut = x
+
+        out += shortcut
+        out = F.relu_(out)
+        return out
+
+
+class BottleneckBlock(CNNBlockBase):
+    """
+    The standard bottleneck residual block used by ResNet-50, 101 and 152
+    defined in :paper:`ResNet`.  It contains 3 conv layers with kernels
+    1x1, 3x3, 1x1, and a projection shortcut if needed.
+    """
+
+    def __init__(
+        self,
+        in_channels,
+        out_channels,
+        *,
+        bottleneck_channels,
+        stride=1,
+        num_groups=1,
+        norm="BN",
+        stride_in_1x1=False,
+        dilation=1,
+    ):
+        """
+        Args:
+            bottleneck_channels (int): number of output channels for the 3x3
+                "bottleneck" conv layers.
+            num_groups (int): number of groups for the 3x3 conv layer.
+            norm (str or callable): normalization for all conv layers.
+                See :func:`layers.get_norm` for supported format.
+            stride_in_1x1 (bool): when stride>1, whether to put stride in the
+                first 1x1 convolution or the bottleneck 3x3 convolution.
+            dilation (int): the dilation rate of the 3x3 conv layer.
+        """
+        super().__init__(in_channels, out_channels, stride)
+
+        if in_channels != out_channels:
+            self.shortcut = Conv2d(
+                in_channels,
+                out_channels,
+                kernel_size=1,
+                stride=stride,
+                bias=False,
+                norm=get_norm(norm, out_channels),
+            )
+        else:
+            self.shortcut = None
+
+        # The original MSRA ResNet models have stride in the first 1x1 conv
+        # The subsequent fb.torch.resnet and Caffe2 ResNe[X]t implementations have
+        # stride in the 3x3 conv
+        stride_1x1, stride_3x3 = (stride, 1) if stride_in_1x1 else (1, stride)
+
+        self.conv1 = Conv2d(
+            in_channels,
+            bottleneck_channels,
+            kernel_size=1,
+            stride=stride_1x1,
+            bias=False,
+            norm=get_norm(norm, bottleneck_channels),
+        )
+
+        self.conv2 = Conv2d(
+            bottleneck_channels,
+            bottleneck_channels,
+            kernel_size=3,
+            stride=stride_3x3,
+            padding=1 * dilation,
+            bias=False,
+            groups=num_groups,
+            dilation=dilation,
+            norm=get_norm(norm, bottleneck_channels),
+        )
+
+        self.conv3 = Conv2d(
+            bottleneck_channels,
+            out_channels,
+            kernel_size=1,
+            bias=False,
+            norm=get_norm(norm, out_channels),
+        )
+
+        for layer in [self.conv1, self.conv2, self.conv3, self.shortcut]:
+            if layer is not None:  # shortcut can be None
+                weight_init.c2_msra_fill(layer)
+
+        # Zero-initialize the last normalization in each residual branch,
+        # so that at the beginning, the residual branch starts with zeros,
+        # and each residual block behaves like an identity.
+        # See Sec 5.1 in "Accurate, Large Minibatch SGD: Training ImageNet in 1 Hour":
+        # "For BN layers, the learnable scaling coefficient γ is initialized
+        # to be 1, except for each residual block's last BN
+        # where γ is initialized to be 0."
+
+        # nn.init.constant_(self.conv3.norm.weight, 0)
+        # TODO this somehow hurts performance when training GN models from scratch.
+        # Add it as an option when we need to use this code to train a backbone.
+
+    def forward(self, x):
+        out = self.conv1(x)
+        out = F.relu_(out)
+
+        out = self.conv2(out)
+        out = F.relu_(out)
+
+        out = self.conv3(out)
+
+        if self.shortcut is not None:
+            shortcut = self.shortcut(x)
+        else:
+            shortcut = x
+
+        out += shortcut
+        out = F.relu_(out)
+        return out
+
+
+class DeformBottleneckBlock(CNNBlockBase):
+    """
+    Similar to :class:`BottleneckBlock`, but with :paper:`deformable conv <deformconv>`
+    in the 3x3 convolution.
+    """
+
+    def __init__(
+        self,
+        in_channels,
+        out_channels,
+        *,
+        bottleneck_channels,
+        stride=1,
+        num_groups=1,
+        norm="BN",
+        stride_in_1x1=False,
+        dilation=1,
+        deform_modulated=False,
+        deform_num_groups=1,
+    ):
+        super().__init__(in_channels, out_channels, stride)
+        self.deform_modulated = deform_modulated
+
+        if in_channels != out_channels:
+            self.shortcut = Conv2d(
+                in_channels,
+                out_channels,
+                kernel_size=1,
+                stride=stride,
+                bias=False,
+                norm=get_norm(norm, out_channels),
+            )
+        else:
+            self.shortcut = None
+
+        stride_1x1, stride_3x3 = (stride, 1) if stride_in_1x1 else (1, stride)
+
+        self.conv1 = Conv2d(
+            in_channels,
+            bottleneck_channels,
+            kernel_size=1,
+            stride=stride_1x1,
+            bias=False,
+            norm=get_norm(norm, bottleneck_channels),
+        )
+
+        if deform_modulated:
+            deform_conv_op = ModulatedDeformConv
+            # offset channels are 2 or 3 (if with modulated) * kernel_size * kernel_size
+            offset_channels = 27
+        else:
+            deform_conv_op = DeformConv
+            offset_channels = 18
+
+        self.conv2_offset = Conv2d(
+            bottleneck_channels,
+            offset_channels * deform_num_groups,
+            kernel_size=3,
+            stride=stride_3x3,
+            padding=1 * dilation,
+            dilation=dilation,
+        )
+        self.conv2 = deform_conv_op(
+            bottleneck_channels,
+            bottleneck_channels,
+            kernel_size=3,
+            stride=stride_3x3,
+            padding=1 * dilation,
+            bias=False,
+            groups=num_groups,
+            dilation=dilation,
+            deformable_groups=deform_num_groups,
+            norm=get_norm(norm, bottleneck_channels),
+        )
+
+        self.conv3 = Conv2d(
+            bottleneck_channels,
+            out_channels,
+            kernel_size=1,
+            bias=False,
+            norm=get_norm(norm, out_channels),
+        )
+
+        for layer in [self.conv1, self.conv2, self.conv3, self.shortcut]:
+            if layer is not None:  # shortcut can be None
+                weight_init.c2_msra_fill(layer)
+
+        nn.init.constant_(self.conv2_offset.weight, 0)
+        nn.init.constant_(self.conv2_offset.bias, 0)
+
+    def forward(self, x):
+        out = self.conv1(x)
+        out = F.relu_(out)
+
+        if self.deform_modulated:
+            offset_mask = self.conv2_offset(out)
+            offset_x, offset_y, mask = torch.chunk(offset_mask, 3, dim=1)
+            offset = torch.cat((offset_x, offset_y), dim=1)
+            mask = mask.sigmoid()
+            out = self.conv2(out, offset, mask)
+        else:
+            offset = self.conv2_offset(out)
+            out = self.conv2(out, offset)
+        out = F.relu_(out)
+
+        out = self.conv3(out)
+
+        if self.shortcut is not None:
+            shortcut = self.shortcut(x)
+        else:
+            shortcut = x
+
+        out += shortcut
+        out = F.relu_(out)
+        return out
+
+
+class BasicStem(CNNBlockBase):
+    """
+    The standard ResNet stem (layers before the first residual block),
+    with a conv, relu and max_pool.
+    """
+
+    def __init__(self, in_channels=3, out_channels=64, norm="BN"):
+        """
+        Args:
+            norm (str or callable): norm after the first conv layer.
+                See :func:`layers.get_norm` for supported format.
+        """
+        super().__init__(in_channels, out_channels, 4)
+        self.in_channels = in_channels
+        self.conv1 = Conv2d(
+            in_channels,
+            out_channels,
+            kernel_size=7,
+            stride=2,
+            padding=3,
+            bias=False,
+            norm=get_norm(norm, out_channels),
+        )
+        weight_init.c2_msra_fill(self.conv1)
+
+    def forward(self, x):
+        x = self.conv1(x)
+        x = F.relu_(x)
+        x = F.max_pool2d(x, kernel_size=3, stride=2, padding=1)
+        return x
+
+
+class ResNet(Backbone):
+    """
+    Implement :paper:`ResNet`.
+    """
+
+    def __init__(self, stem, stages, num_classes=None, out_features=None, freeze_at=0):
+        """
+        Args:
+            stem (nn.Module): a stem module
+            stages (list[list[CNNBlockBase]]): several (typically 4) stages,
+                each contains multiple :class:`CNNBlockBase`.
+            num_classes (None or int): if None, will not perform classification.
+                Otherwise, will create a linear layer.
+            out_features (list[str]): name of the layers whose outputs should
+                be returned in forward. Can be anything in "stem", "linear", or "res2" ...
+                If None, will return the output of the last layer.
+            freeze_at (int): The number of stages at the beginning to freeze.
+                see :meth:`freeze` for detailed explanation.
+        """
+        super().__init__()
+        self.stem = stem
+        self.num_classes = num_classes
+
+        current_stride = self.stem.stride
+        self._out_feature_strides = {"stem": current_stride}
+        self._out_feature_channels = {"stem": self.stem.out_channels}
+
+        self.stage_names, self.stages = [], []
+
+        if out_features is not None:
+            # Avoid keeping unused layers in this module. They consume extra memory
+            # and may cause allreduce to fail
+            num_stages = max(
+                [{"res2": 1, "res3": 2, "res4": 3, "res5": 4}.get(f, 0) for f in out_features]
+            )
+            stages = stages[:num_stages]
+        for i, blocks in enumerate(stages):
+            assert len(blocks) > 0, len(blocks)
+            for block in blocks:
+                assert isinstance(block, CNNBlockBase), block
+
+            name = "res" + str(i + 2)
+            stage = nn.Sequential(*blocks)
+
+            self.add_module(name, stage)
+            self.stage_names.append(name)
+            self.stages.append(stage)
+
+            self._out_feature_strides[name] = current_stride = int(
+                current_stride * np.prod([k.stride for k in blocks])
+            )
+            self._out_feature_channels[name] = curr_channels = blocks[-1].out_channels
+        self.stage_names = tuple(self.stage_names)  # Make it static for scripting
+
+        if num_classes is not None:
+            self.avgpool = nn.AdaptiveAvgPool2d((1, 1))
+            self.linear = nn.Linear(curr_channels, num_classes)
+
+            # Sec 5.1 in "Accurate, Large Minibatch SGD: Training ImageNet in 1 Hour":
+            # "The 1000-way fully-connected layer is initialized by
+            # drawing weights from a zero-mean Gaussian with standard deviation of 0.01."
+            nn.init.normal_(self.linear.weight, std=0.01)
+            name = "linear"
+
+        if out_features is None:
+            out_features = [name]
+        self._out_features = out_features
+        assert len(self._out_features)
+        children = [x[0] for x in self.named_children()]
+        for out_feature in self._out_features:
+            assert out_feature in children, "Available children: {}".format(", ".join(children))
+        self.freeze(freeze_at)
+
+    def forward(self, x):
+        """
+        Args:
+            x: Tensor of shape (N,C,H,W). H, W must be a multiple of ``self.size_divisibility``.
+
+        Returns:
+            dict[str->Tensor]: names and the corresponding features
+        """
+        assert x.dim() == 4, f"ResNet takes an input of shape (N, C, H, W). Got {x.shape} instead!"
+        outputs = {}
+        x = self.stem(x)
+        if "stem" in self._out_features:
+            outputs["stem"] = x
+        for name, stage in zip(self.stage_names, self.stages):
+            x = stage(x)
+            if name in self._out_features:
+                outputs[name] = x
+        if self.num_classes is not None:
+            x = self.avgpool(x)
+            x = torch.flatten(x, 1)
+            x = self.linear(x)
+            if "linear" in self._out_features:
+                outputs["linear"] = x
+        return outputs
+
+    def output_shape(self):
+        return {
+            name: ShapeSpec(
+                channels=self._out_feature_channels[name], stride=self._out_feature_strides[name]
+            )
+            for name in self._out_features
+        }
+
+    def freeze(self, freeze_at=0):
+        """
+        Freeze the first several stages of the ResNet. Commonly used in
+        fine-tuning.
+
+        Layers that produce the same feature map spatial size are defined as one
+        "stage" by :paper:`FPN`.
+
+        Args:
+            freeze_at (int): number of stages to freeze.
+                `1` means freezing the stem. `2` means freezing the stem and
+                one residual stage, etc.
+
+        Returns:
+            nn.Module: this ResNet itself
+        """
+        if freeze_at >= 1:
+            self.stem.freeze()
+        for idx, stage in enumerate(self.stages, start=2):
+            if freeze_at >= idx:
+                for block in stage.children():
+                    block.freeze()
+        return self
+
+    @staticmethod
+    def make_stage(block_class, num_blocks, *, in_channels, out_channels, **kwargs):
+        """
+        Create a list of blocks of the same type that forms one ResNet stage.
+
+        Args:
+            block_class (type): a subclass of CNNBlockBase that's used to create all blocks in this
+                stage. A module of this type must not change spatial resolution of inputs unless its
+                stride != 1.
+            num_blocks (int): number of blocks in this stage
+            in_channels (int): input channels of the entire stage.
+            out_channels (int): output channels of **every block** in the stage.
+            kwargs: other arguments passed to the constructor of
+                `block_class`. If the argument name is "xx_per_block", the
+                argument is a list of values to be passed to each block in the
+                stage. Otherwise, the same argument is passed to every block
+                in the stage.
+
+        Returns:
+            list[CNNBlockBase]: a list of block module.
+
+        Examples:
+        ::
+            stage = ResNet.make_stage(
+                BottleneckBlock, 3, in_channels=16, out_channels=64,
+                bottleneck_channels=16, num_groups=1,
+                stride_per_block=[2, 1, 1],
+                dilations_per_block=[1, 1, 2]
+            )
+
+        Usually, layers that produce the same feature map spatial size are defined as one
+        "stage" (in :paper:`FPN`). Under such definition, ``stride_per_block[1:]`` should
+        all be 1.
+        """
+        blocks = []
+        for i in range(num_blocks):
+            curr_kwargs = {}
+            for k, v in kwargs.items():
+                if k.endswith("_per_block"):
+                    assert len(v) == num_blocks, (
+                        f"Argument '{k}' of make_stage should have the "
+                        f"same length as num_blocks={num_blocks}."
+                    )
+                    newk = k[: -len("_per_block")]
+                    assert newk not in kwargs, f"Cannot call make_stage with both {k} and {newk}!"
+                    curr_kwargs[newk] = v[i]
+                else:
+                    curr_kwargs[k] = v
+
+            blocks.append(
+                block_class(in_channels=in_channels, out_channels=out_channels, **curr_kwargs)
+            )
+            in_channels = out_channels
+        return blocks
+
+    @staticmethod
+    def make_default_stages(depth, block_class=None, **kwargs):
+        """
+        Created list of ResNet stages from pre-defined depth (one of 18, 34, 50, 101, 152).
+        If it doesn't create the ResNet variant you need, please use :meth:`make_stage`
+        instead for fine-grained customization.
+
+        Args:
+            depth (int): depth of ResNet
+            block_class (type): the CNN block class. Has to accept
+                `bottleneck_channels` argument for depth > 50.
+                By default it is BasicBlock or BottleneckBlock, based on the
+                depth.
+            kwargs:
+                other arguments to pass to `make_stage`. Should not contain
+                stride and channels, as they are predefined for each depth.
+
+        Returns:
+            list[list[CNNBlockBase]]: modules in all stages; see arguments of
+                :class:`ResNet.__init__`.
+        """
+        num_blocks_per_stage = {
+            18: [2, 2, 2, 2],
+            34: [3, 4, 6, 3],
+            50: [3, 4, 6, 3],
+            101: [3, 4, 23, 3],
+            152: [3, 8, 36, 3],
+        }[depth]
+        if block_class is None:
+            block_class = BasicBlock if depth < 50 else BottleneckBlock
+        if depth < 50:
+            in_channels = [64, 64, 128, 256]
+            out_channels = [64, 128, 256, 512]
+        else:
+            in_channels = [64, 256, 512, 1024]
+            out_channels = [256, 512, 1024, 2048]
+        ret = []
+        for (n, s, i, o) in zip(num_blocks_per_stage, [1, 2, 2, 2], in_channels, out_channels):
+            if depth >= 50:
+                kwargs["bottleneck_channels"] = o // 4
+            ret.append(
+                ResNet.make_stage(
+                    block_class=block_class,
+                    num_blocks=n,
+                    stride_per_block=[s] + [1] * (n - 1),
+                    in_channels=i,
+                    out_channels=o,
+                    **kwargs,
+                )
+            )
+        return ret
+
+
+ResNetBlockBase = CNNBlockBase
+"""
+Alias for backward compatibiltiy.
+"""
+
+
+def make_stage(*args, **kwargs):
+    """
+    Deprecated alias for backward compatibiltiy.
+    """
+    return ResNet.make_stage(*args, **kwargs)
+
+
+def _convert_ndarray_to_tensor(state_dict: Dict[str, Any]) -> None:
+    """
+    In-place convert all numpy arrays in the state_dict to torch tensor.
+    Args:
+        state_dict (dict): a state-dict to be loaded to the model.
+            Will be modified.
+    """
+    # model could be an OrderedDict with _metadata attribute
+    # (as returned by Pytorch's state_dict()). We should preserve these
+    # properties.
+    for k in list(state_dict.keys()):
+        v = state_dict[k]
+        if not isinstance(v, np.ndarray) and not isinstance(v, torch.Tensor):
+            raise ValueError(
+                "Unsupported type found in checkpoint! {}: {}".format(k, type(v))
+            )
+        if not isinstance(v, torch.Tensor):
+            state_dict[k] = torch.from_numpy(v)
+
+
+@register_backbone
+def get_resnet_backbone(cfg):
+    """
+    Create a ResNet instance from config.
+
+    Returns:
+        ResNet: a :class:`ResNet` instance.
+    """
+    res_cfg = cfg['MODEL']['BACKBONE']['RESNETS']
+
+    # need registration of new blocks/stems?
+    norm = res_cfg['NORM']
+    stem = BasicStem(
+        in_channels=res_cfg['STEM_IN_CHANNELS'],
+        out_channels=res_cfg['STEM_OUT_CHANNELS'],
+        norm=norm,
+    )
+
+    # fmt: off
+    freeze_at           = res_cfg['FREEZE_AT']
+    out_features        = res_cfg['OUT_FEATURES']
+    depth               = res_cfg['DEPTH']
+    num_groups          = res_cfg['NUM_GROUPS']
+    width_per_group     = res_cfg['WIDTH_PER_GROUP']
+    bottleneck_channels = num_groups * width_per_group
+    in_channels         = res_cfg['STEM_OUT_CHANNELS']
+    out_channels        = res_cfg['RES2_OUT_CHANNELS']
+    stride_in_1x1       = res_cfg['STRIDE_IN_1X1']
+    res5_dilation       = res_cfg['RES5_DILATION']
+    deform_on_per_stage = res_cfg['DEFORM_ON_PER_STAGE']
+    deform_modulated    = res_cfg['DEFORM_MODULATED']
+    deform_num_groups   = res_cfg['DEFORM_NUM_GROUPS']
+    # fmt: on
+    assert res5_dilation in {1, 2}, "res5_dilation cannot be {}.".format(res5_dilation)
+
+    num_blocks_per_stage = {
+        18: [2, 2, 2, 2],
+        34: [3, 4, 6, 3],
+        50: [3, 4, 6, 3],
+        101: [3, 4, 23, 3],
+        152: [3, 8, 36, 3],
+    }[depth]
+
+    if depth in [18, 34]:
+        assert out_channels == 64, "Must set MODEL.RESNETS.RES2_OUT_CHANNELS = 64 for R18/R34"
+        assert not any(
+            deform_on_per_stage
+        ), "MODEL.RESNETS.DEFORM_ON_PER_STAGE unsupported for R18/R34"
+        assert res5_dilation == 1, "Must set MODEL.RESNETS.RES5_DILATION = 1 for R18/R34"
+        assert num_groups == 1, "Must set MODEL.RESNETS.NUM_GROUPS = 1 for R18/R34"
+
+    stages = []
+
+    for idx, stage_idx in enumerate(range(2, 6)):
+        # res5_dilation is used this way as a convention in R-FCN & Deformable Conv paper
+        dilation = res5_dilation if stage_idx == 5 else 1
+        first_stride = 1 if idx == 0 or (stage_idx == 5 and dilation == 2) else 2
+        stage_kargs = {
+            "num_blocks": num_blocks_per_stage[idx],
+            "stride_per_block": [first_stride] + [1] * (num_blocks_per_stage[idx] - 1),
+            "in_channels": in_channels,
+            "out_channels": out_channels,
+            "norm": norm,
+        }
+        # Use BasicBlock for R18 and R34.
+        if depth in [18, 34]:
+            stage_kargs["block_class"] = BasicBlock
+        else:
+            stage_kargs["bottleneck_channels"] = bottleneck_channels
+            stage_kargs["stride_in_1x1"] = stride_in_1x1
+            stage_kargs["dilation"] = dilation
+            stage_kargs["num_groups"] = num_groups
+            if deform_on_per_stage[idx]:
+                stage_kargs["block_class"] = DeformBottleneckBlock
+                stage_kargs["deform_modulated"] = deform_modulated
+                stage_kargs["deform_num_groups"] = deform_num_groups
+            else:
+                stage_kargs["block_class"] = BottleneckBlock
+        blocks = ResNet.make_stage(**stage_kargs)
+        in_channels = out_channels
+        out_channels *= 2
+        bottleneck_channels *= 2
+        stages.append(blocks)
+    backbone = ResNet(stem, stages, out_features=out_features, freeze_at=freeze_at)
+
+    if cfg['MODEL']['BACKBONE']['LOAD_PRETRAINED'] is True:
+        filename = cfg['MODEL']['BACKBONE']['PRETRAINED']
+        with PathManager.open(filename, "rb") as f:
+            ckpt = pickle.load(f, encoding="latin1")['model']
+        _convert_ndarray_to_tensor(ckpt)
+        ckpt.pop('stem.fc.weight')
+        ckpt.pop('stem.fc.bias')
+        backbone.load_state_dict(ckpt)
+
+    return backbone
diff --git a/xdecoder/backbone/swin.py b/xdecoder/backbone/swin.py
new file mode 100755
index 0000000000000000000000000000000000000000..ed66e670a10762d7faf1e16bb2d6d80691182aca
--- /dev/null
+++ b/xdecoder/backbone/swin.py
@@ -0,0 +1,892 @@
+# --------------------------------------------------------
+# Swin Transformer
+# Copyright (c) 2021 Microsoft
+# Licensed under The MIT License [see LICENSE for details]
+# Written by Ze Liu, Yutong Lin, Yixuan Wei
+# --------------------------------------------------------
+
+# Copyright (c) Facebook, Inc. and its affiliates.
+# Modified by Bowen Cheng from https://github.com/SwinTransformer/Swin-Transformer-Semantic-Segmentation/blob/main/mmseg/models/backbones/swin_transformer.py
+import logging
+import numpy as np
+import torch
+import torch.nn as nn
+import torch.nn.functional as F
+import torch.utils.checkpoint as checkpoint
+from timm.models.layers import DropPath, to_2tuple, trunc_normal_
+
+from detectron2.modeling import Backbone, ShapeSpec
+from detectron2.utils.file_io import PathManager
+
+from .registry import register_backbone
+
+logger = logging.getLogger(__name__)
+
+
+class Mlp(nn.Module):
+    """Multilayer perceptron."""
+
+    def __init__(
+        self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.0
+    ):
+        super().__init__()
+        out_features = out_features or in_features
+        hidden_features = hidden_features or in_features
+        self.fc1 = nn.Linear(in_features, hidden_features)
+        self.act = act_layer()
+        self.fc2 = nn.Linear(hidden_features, out_features)
+        self.drop = nn.Dropout(drop)
+
+    def forward(self, x):
+        x = self.fc1(x)
+        x = self.act(x)
+        x = self.drop(x)
+        x = self.fc2(x)
+        x = self.drop(x)
+        return x
+
+
+def window_partition(x, window_size):
+    """
+    Args:
+        x: (B, H, W, C)
+        window_size (int): window size
+    Returns:
+        windows: (num_windows*B, window_size, window_size, C)
+    """
+    B, H, W, C = x.shape
+    x = x.view(B, H // window_size, window_size, W // window_size, window_size, C)
+    windows = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(-1, window_size, window_size, C)
+    return windows
+
+
+def window_reverse(windows, window_size, H, W):
+    """
+    Args:
+        windows: (num_windows*B, window_size, window_size, C)
+        window_size (int): Window size
+        H (int): Height of image
+        W (int): Width of image
+    Returns:
+        x: (B, H, W, C)
+    """
+    B = int(windows.shape[0] / (H * W / window_size / window_size))
+    x = windows.view(B, H // window_size, W // window_size, window_size, window_size, -1)
+    x = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(B, H, W, -1)
+    return x
+
+
+class WindowAttention(nn.Module):
+    """Window based multi-head self attention (W-MSA) module with relative position bias.
+    It supports both of shifted and non-shifted window.
+    Args:
+        dim (int): Number of input channels.
+        window_size (tuple[int]): The height and width of the window.
+        num_heads (int): Number of attention heads.
+        qkv_bias (bool, optional):  If True, add a learnable bias to query, key, value. Default: True
+        qk_scale (float | None, optional): Override default qk scale of head_dim ** -0.5 if set
+        attn_drop (float, optional): Dropout ratio of attention weight. Default: 0.0
+        proj_drop (float, optional): Dropout ratio of output. Default: 0.0
+    """
+
+    def __init__(
+        self,
+        dim,
+        window_size,
+        num_heads,
+        qkv_bias=True,
+        qk_scale=None,
+        attn_drop=0.0,
+        proj_drop=0.0,
+    ):
+
+        super().__init__()
+        self.dim = dim
+        self.window_size = window_size  # Wh, Ww
+        self.num_heads = num_heads
+        head_dim = dim // num_heads
+        self.scale = qk_scale or head_dim ** -0.5
+
+        # define a parameter table of relative position bias
+        self.relative_position_bias_table = nn.Parameter(
+            torch.zeros((2 * window_size[0] - 1) * (2 * window_size[1] - 1), num_heads)
+        )  # 2*Wh-1 * 2*Ww-1, nH
+
+        # get pair-wise relative position index for each token inside the window
+        coords_h = torch.arange(self.window_size[0])
+        coords_w = torch.arange(self.window_size[1])
+        coords = torch.stack(torch.meshgrid([coords_h, coords_w]))  # 2, Wh, Ww
+        coords_flatten = torch.flatten(coords, 1)  # 2, Wh*Ww
+        relative_coords = coords_flatten[:, :, None] - coords_flatten[:, None, :]  # 2, Wh*Ww, Wh*Ww
+        relative_coords = relative_coords.permute(1, 2, 0).contiguous()  # Wh*Ww, Wh*Ww, 2
+        relative_coords[:, :, 0] += self.window_size[0] - 1  # shift to start from 0
+        relative_coords[:, :, 1] += self.window_size[1] - 1
+        relative_coords[:, :, 0] *= 2 * self.window_size[1] - 1
+        relative_position_index = relative_coords.sum(-1)  # Wh*Ww, Wh*Ww
+        self.register_buffer("relative_position_index", relative_position_index)
+
+        self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
+        self.attn_drop = nn.Dropout(attn_drop)
+        self.proj = nn.Linear(dim, dim)
+        self.proj_drop = nn.Dropout(proj_drop)
+
+        trunc_normal_(self.relative_position_bias_table, std=0.02)
+        self.softmax = nn.Softmax(dim=-1)
+
+    def forward(self, x, mask=None):
+        """Forward function.
+        Args:
+            x: input features with shape of (num_windows*B, N, C)
+            mask: (0/-inf) mask with shape of (num_windows, Wh*Ww, Wh*Ww) or None
+        """
+        B_, N, C = x.shape
+        qkv = (
+            self.qkv(x)
+            .reshape(B_, N, 3, self.num_heads, C // self.num_heads)
+            .permute(2, 0, 3, 1, 4)
+        )
+        q, k, v = qkv[0], qkv[1], qkv[2]  # make torchscript happy (cannot use tensor as tuple)
+
+        q = q * self.scale
+        attn = q @ k.transpose(-2, -1)
+        
+        relative_position_bias = self.relative_position_bias_table[
+            self.relative_position_index.view(-1)
+        ].view(
+            self.window_size[0] * self.window_size[1], self.window_size[0] * self.window_size[1], -1
+        )  # Wh*Ww,Wh*Ww,nH
+        relative_position_bias = relative_position_bias.permute(
+            2, 0, 1
+        ).contiguous()  # nH, Wh*Ww, Wh*Ww
+        attn = attn + relative_position_bias.unsqueeze(0)
+
+        if mask is not None:
+            nW = mask.shape[0]
+            attn = attn.view(B_ // nW, nW, self.num_heads, N, N) + mask.unsqueeze(1).unsqueeze(0)
+            attn = attn.view(-1, self.num_heads, N, N)
+            attn = self.softmax(attn)
+        else:
+            attn = self.softmax(attn)
+
+        attn = self.attn_drop(attn)
+
+        x = (attn @ v).transpose(1, 2).reshape(B_, N, C)
+        x = self.proj(x)
+        x = self.proj_drop(x)
+
+        return x
+
+
+class SwinTransformerBlock(nn.Module):
+    """Swin Transformer Block.
+    Args:
+        dim (int): Number of input channels.
+        num_heads (int): Number of attention heads.
+        window_size (int): Window size.
+        shift_size (int): Shift size for SW-MSA.
+        mlp_ratio (float): Ratio of mlp hidden dim to embedding dim.
+        qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True
+        qk_scale (float | None, optional): Override default qk scale of head_dim ** -0.5 if set.
+        drop (float, optional): Dropout rate. Default: 0.0
+        attn_drop (float, optional): Attention dropout rate. Default: 0.0
+        drop_path (float, optional): Stochastic depth rate. Default: 0.0
+        act_layer (nn.Module, optional): Activation layer. Default: nn.GELU
+        norm_layer (nn.Module, optional): Normalization layer.  Default: nn.LayerNorm
+    """
+
+    def __init__(
+        self,
+        dim,
+        num_heads,
+        window_size=7,
+        shift_size=0,
+        mlp_ratio=4.0,
+        qkv_bias=True,
+        qk_scale=None,
+        drop=0.0,
+        attn_drop=0.0,
+        drop_path=0.0,
+        act_layer=nn.GELU,
+        norm_layer=nn.LayerNorm,
+    ):
+        super().__init__()
+        self.dim = dim
+        self.num_heads = num_heads
+        self.window_size = window_size
+        self.shift_size = shift_size
+        self.mlp_ratio = mlp_ratio
+        assert 0 <= self.shift_size < self.window_size, "shift_size must in 0-window_size"
+
+        self.norm1 = norm_layer(dim)
+        self.attn = WindowAttention(
+            dim,
+            window_size=to_2tuple(self.window_size),
+            num_heads=num_heads,
+            qkv_bias=qkv_bias,
+            qk_scale=qk_scale,
+            attn_drop=attn_drop,
+            proj_drop=drop,
+        )
+
+        self.drop_path = DropPath(drop_path) if drop_path > 0.0 else nn.Identity()
+        self.norm2 = norm_layer(dim)
+        mlp_hidden_dim = int(dim * mlp_ratio)
+        self.mlp = Mlp(
+            in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop
+        )
+
+        self.H = None
+        self.W = None
+
+    def forward(self, x, mask_matrix):
+        """Forward function.
+        Args:
+            x: Input feature, tensor size (B, H*W, C).
+            H, W: Spatial resolution of the input feature.
+            mask_matrix: Attention mask for cyclic shift.
+        """
+        B, L, C = x.shape
+        H, W = self.H, self.W
+        assert L == H * W, "input feature has wrong size"
+
+        # HACK model will not upsampling
+        # if min([H, W]) <= self.window_size:
+            # if window size is larger than input resolution, we don't partition windows
+            # self.shift_size = 0
+            # self.window_size = min([H,W])
+
+        shortcut = x
+        x = self.norm1(x)
+        x = x.view(B, H, W, C)
+
+        # pad feature maps to multiples of window size
+        pad_l = pad_t = 0
+        pad_r = (self.window_size - W % self.window_size) % self.window_size
+        pad_b = (self.window_size - H % self.window_size) % self.window_size
+        x = F.pad(x, (0, 0, pad_l, pad_r, pad_t, pad_b))
+        _, Hp, Wp, _ = x.shape
+
+        # cyclic shift
+        if self.shift_size > 0:
+            shifted_x = torch.roll(x, shifts=(-self.shift_size, -self.shift_size), dims=(1, 2))
+            attn_mask = mask_matrix
+        else:
+            shifted_x = x
+            attn_mask = None
+
+        # partition windows
+        x_windows = window_partition(
+            shifted_x, self.window_size
+        )  # nW*B, window_size, window_size, C
+        x_windows = x_windows.view(
+            -1, self.window_size * self.window_size, C
+        )  # nW*B, window_size*window_size, C
+
+        # W-MSA/SW-MSA
+        attn_windows = self.attn(x_windows, mask=attn_mask)  # nW*B, window_size*window_size, C
+
+        # merge windows
+        attn_windows = attn_windows.view(-1, self.window_size, self.window_size, C)
+        shifted_x = window_reverse(attn_windows, self.window_size, Hp, Wp)  # B H' W' C
+
+        # reverse cyclic shift
+        if self.shift_size > 0:
+            x = torch.roll(shifted_x, shifts=(self.shift_size, self.shift_size), dims=(1, 2))
+        else:
+            x = shifted_x
+
+        if pad_r > 0 or pad_b > 0:
+            x = x[:, :H, :W, :].contiguous()
+
+        x = x.view(B, H * W, C)
+
+        # FFN
+        x = shortcut + self.drop_path(x)
+        x = x + self.drop_path(self.mlp(self.norm2(x)))
+        return x
+
+
+class PatchMerging(nn.Module):
+    """Patch Merging Layer
+    Args:
+        dim (int): Number of input channels.
+        norm_layer (nn.Module, optional): Normalization layer.  Default: nn.LayerNorm
+    """
+
+    def __init__(self, dim, norm_layer=nn.LayerNorm):
+        super().__init__()
+        self.dim = dim
+        self.reduction = nn.Linear(4 * dim, 2 * dim, bias=False)
+        self.norm = norm_layer(4 * dim)
+
+    def forward(self, x, H, W):
+        """Forward function.
+        Args:
+            x: Input feature, tensor size (B, H*W, C).
+            H, W: Spatial resolution of the input feature.
+        """
+        B, L, C = x.shape
+        assert L == H * W, "input feature has wrong size"
+
+        x = x.view(B, H, W, C)
+
+        # padding
+        pad_input = (H % 2 == 1) or (W % 2 == 1)
+        if pad_input:
+            x = F.pad(x, (0, 0, 0, W % 2, 0, H % 2))
+
+        x0 = x[:, 0::2, 0::2, :]  # B H/2 W/2 C
+        x1 = x[:, 1::2, 0::2, :]  # B H/2 W/2 C
+        x2 = x[:, 0::2, 1::2, :]  # B H/2 W/2 C
+        x3 = x[:, 1::2, 1::2, :]  # B H/2 W/2 C
+        x = torch.cat([x0, x1, x2, x3], -1)  # B H/2 W/2 4*C
+        x = x.view(B, -1, 4 * C)  # B H/2*W/2 4*C
+
+        x = self.norm(x)
+        x = self.reduction(x)
+
+        return x
+
+
+class BasicLayer(nn.Module):
+    """A basic Swin Transformer layer for one stage.
+    Args:
+        dim (int): Number of feature channels
+        depth (int): Depths of this stage.
+        num_heads (int): Number of attention head.
+        window_size (int): Local window size. Default: 7.
+        mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. Default: 4.
+        qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True
+        qk_scale (float | None, optional): Override default qk scale of head_dim ** -0.5 if set.
+        drop (float, optional): Dropout rate. Default: 0.0
+        attn_drop (float, optional): Attention dropout rate. Default: 0.0
+        drop_path (float | tuple[float], optional): Stochastic depth rate. Default: 0.0
+        norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm
+        downsample (nn.Module | None, optional): Downsample layer at the end of the layer. Default: None
+        use_checkpoint (bool): Whether to use checkpointing to save memory. Default: False.
+    """
+
+    def __init__(
+        self,
+        dim,
+        depth,
+        num_heads,
+        window_size=7,
+        mlp_ratio=4.0,
+        qkv_bias=True,
+        qk_scale=None,
+        drop=0.0,
+        attn_drop=0.0,
+        drop_path=0.0,
+        norm_layer=nn.LayerNorm,
+        downsample=None,
+        use_checkpoint=False,
+    ):
+        super().__init__()
+        self.window_size = window_size
+        self.shift_size = window_size // 2
+        self.depth = depth
+        self.use_checkpoint = use_checkpoint
+
+        # build blocks
+        self.blocks = nn.ModuleList(
+            [
+                SwinTransformerBlock(
+                    dim=dim,
+                    num_heads=num_heads,
+                    window_size=window_size,
+                    shift_size=0 if (i % 2 == 0) else window_size // 2,
+                    mlp_ratio=mlp_ratio,
+                    qkv_bias=qkv_bias,
+                    qk_scale=qk_scale,
+                    drop=drop,
+                    attn_drop=attn_drop,
+                    drop_path=drop_path[i] if isinstance(drop_path, list) else drop_path,
+                    norm_layer=norm_layer,
+                )
+                for i in range(depth)
+            ]
+        )
+
+        # patch merging layer
+        if downsample is not None:
+            self.downsample = downsample(dim=dim, norm_layer=norm_layer)
+        else:
+            self.downsample = None
+
+    def forward(self, x, H, W):
+        """Forward function.
+        Args:
+            x: Input feature, tensor size (B, H*W, C).
+            H, W: Spatial resolution of the input feature.
+        """
+
+        # calculate attention mask for SW-MSA
+        Hp = int(np.ceil(H / self.window_size)) * self.window_size
+        Wp = int(np.ceil(W / self.window_size)) * self.window_size
+        img_mask = torch.zeros((1, Hp, Wp, 1), device=x.device)  # 1 Hp Wp 1
+        h_slices = (
+            slice(0, -self.window_size),
+            slice(-self.window_size, -self.shift_size),
+            slice(-self.shift_size, None),
+        )
+        w_slices = (
+            slice(0, -self.window_size),
+            slice(-self.window_size, -self.shift_size),
+            slice(-self.shift_size, None),
+        )
+        cnt = 0
+        for h in h_slices:
+            for w in w_slices:
+                img_mask[:, h, w, :] = cnt
+                cnt += 1
+
+        mask_windows = window_partition(
+            img_mask, self.window_size
+        )  # nW, window_size, window_size, 1
+        mask_windows = mask_windows.view(-1, self.window_size * self.window_size)
+        attn_mask = mask_windows.unsqueeze(1) - mask_windows.unsqueeze(2)
+        attn_mask = attn_mask.masked_fill(attn_mask != 0, float(-100.0)).masked_fill(
+            attn_mask == 0, float(0.0)
+        ).type(x.dtype)
+        
+        for blk in self.blocks:
+            blk.H, blk.W = H, W
+            if self.use_checkpoint:
+                x = checkpoint.checkpoint(blk, x, attn_mask)
+            else:
+                x = blk(x, attn_mask)
+        if self.downsample is not None:
+            x_down = self.downsample(x, H, W)
+            Wh, Ww = (H + 1) // 2, (W + 1) // 2
+            return x, H, W, x_down, Wh, Ww
+        else:
+            return x, H, W, x, H, W
+
+
+class PatchEmbed(nn.Module):
+    """Image to Patch Embedding
+    Args:
+        patch_size (int): Patch token size. Default: 4.
+        in_chans (int): Number of input image channels. Default: 3.
+        embed_dim (int): Number of linear projection output channels. Default: 96.
+        norm_layer (nn.Module, optional): Normalization layer. Default: None
+    """
+
+    def __init__(self, patch_size=4, in_chans=3, embed_dim=96, norm_layer=None):
+        super().__init__()
+        patch_size = to_2tuple(patch_size)
+        self.patch_size = patch_size
+
+        self.in_chans = in_chans
+        self.embed_dim = embed_dim
+
+        self.proj = nn.Conv2d(in_chans, embed_dim, kernel_size=patch_size, stride=patch_size)
+        if norm_layer is not None:
+            self.norm = norm_layer(embed_dim)
+        else:
+            self.norm = None
+
+    def forward(self, x):
+        """Forward function."""
+        # padding
+        _, _, H, W = x.size()
+        if W % self.patch_size[1] != 0:
+            x = F.pad(x, (0, self.patch_size[1] - W % self.patch_size[1]))
+        if H % self.patch_size[0] != 0:
+            x = F.pad(x, (0, 0, 0, self.patch_size[0] - H % self.patch_size[0]))
+
+        x = self.proj(x)  # B C Wh Ww
+        if self.norm is not None:
+            Wh, Ww = x.size(2), x.size(3)
+            x = x.flatten(2).transpose(1, 2)
+            x = self.norm(x)
+            x = x.transpose(1, 2).view(-1, self.embed_dim, Wh, Ww)
+
+        return x
+
+
+class SwinTransformer(nn.Module):
+    """Swin Transformer backbone.
+        A PyTorch impl of : `Swin Transformer: Hierarchical Vision Transformer using Shifted Windows`  -
+          https://arxiv.org/pdf/2103.14030
+    Args:
+        pretrain_img_size (int): Input image size for training the pretrained model,
+            used in absolute postion embedding. Default 224.
+        patch_size (int | tuple(int)): Patch size. Default: 4.
+        in_chans (int): Number of input image channels. Default: 3.
+        embed_dim (int): Number of linear projection output channels. Default: 96.
+        depths (tuple[int]): Depths of each Swin Transformer stage.
+        num_heads (tuple[int]): Number of attention head of each stage.
+        window_size (int): Window size. Default: 7.
+        mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. Default: 4.
+        qkv_bias (bool): If True, add a learnable bias to query, key, value. Default: True
+        qk_scale (float): Override default qk scale of head_dim ** -0.5 if set.
+        drop_rate (float): Dropout rate.
+        attn_drop_rate (float): Attention dropout rate. Default: 0.
+        drop_path_rate (float): Stochastic depth rate. Default: 0.2.
+        norm_layer (nn.Module): Normalization layer. Default: nn.LayerNorm.
+        ape (bool): If True, add absolute position embedding to the patch embedding. Default: False.
+        patch_norm (bool): If True, add normalization after patch embedding. Default: True.
+        out_indices (Sequence[int]): Output from which stages.
+        frozen_stages (int): Stages to be frozen (stop grad and set eval mode).
+            -1 means not freezing any parameters.
+        use_checkpoint (bool): Whether to use checkpointing to save memory. Default: False.
+    """
+
+    def __init__(
+        self,
+        pretrain_img_size=224,
+        patch_size=4,
+        in_chans=3,
+        embed_dim=96,
+        depths=[2, 2, 6, 2],
+        num_heads=[3, 6, 12, 24],
+        window_size=7,
+        mlp_ratio=4.0,
+        qkv_bias=True,
+        qk_scale=None,
+        drop_rate=0.0,
+        attn_drop_rate=0.0,
+        drop_path_rate=0.2,
+        norm_layer=nn.LayerNorm,
+        ape=False,
+        patch_norm=True,
+        out_indices=(0, 1, 2, 3),
+        frozen_stages=-1,
+        use_checkpoint=False,
+    ):
+        super().__init__()
+
+        self.pretrain_img_size = pretrain_img_size
+        self.num_layers = len(depths)
+        self.embed_dim = embed_dim
+        self.ape = ape
+        self.patch_norm = patch_norm
+        self.out_indices = out_indices
+        self.frozen_stages = frozen_stages
+
+        # split image into non-overlapping patches
+        self.patch_embed = PatchEmbed(
+            patch_size=patch_size,
+            in_chans=in_chans,
+            embed_dim=embed_dim,
+            norm_layer=norm_layer if self.patch_norm else None,
+        )
+
+        # absolute position embedding
+        if self.ape:
+            pretrain_img_size = to_2tuple(pretrain_img_size)
+            patch_size = to_2tuple(patch_size)
+            patches_resolution = [
+                pretrain_img_size[0] // patch_size[0],
+                pretrain_img_size[1] // patch_size[1],
+            ]
+
+            self.absolute_pos_embed = nn.Parameter(
+                torch.zeros(1, embed_dim, patches_resolution[0], patches_resolution[1])
+            )
+            trunc_normal_(self.absolute_pos_embed, std=0.02)
+
+        self.pos_drop = nn.Dropout(p=drop_rate)
+
+        # stochastic depth
+        dpr = [
+            x.item() for x in torch.linspace(0, drop_path_rate, sum(depths))
+        ]  # stochastic depth decay rule
+
+        # build layers
+        self.layers = nn.ModuleList()
+        for i_layer in range(self.num_layers):
+            layer = BasicLayer(
+                dim=int(embed_dim * 2 ** i_layer),
+                depth=depths[i_layer],
+                num_heads=num_heads[i_layer],
+                window_size=window_size,
+                mlp_ratio=mlp_ratio,
+                qkv_bias=qkv_bias,
+                qk_scale=qk_scale,
+                drop=drop_rate,
+                attn_drop=attn_drop_rate,
+                drop_path=dpr[sum(depths[:i_layer]) : sum(depths[: i_layer + 1])],
+                norm_layer=norm_layer,
+                downsample=PatchMerging if (i_layer < self.num_layers - 1) else None,
+                use_checkpoint=use_checkpoint,
+            )
+            self.layers.append(layer)
+
+        num_features = [int(embed_dim * 2 ** i) for i in range(self.num_layers)]
+        self.num_features = num_features
+
+        # add a norm layer for each output
+        for i_layer in out_indices:
+            layer = norm_layer(num_features[i_layer])
+            layer_name = f"norm{i_layer}"
+            self.add_module(layer_name, layer)
+
+        self._freeze_stages()
+
+    def _freeze_stages(self):
+        if self.frozen_stages >= 0:
+            self.patch_embed.eval()
+            for param in self.patch_embed.parameters():
+                param.requires_grad = False
+
+        if self.frozen_stages >= 1 and self.ape:
+            self.absolute_pos_embed.requires_grad = False
+
+        if self.frozen_stages >= 2:
+            self.pos_drop.eval()
+            for i in range(0, self.frozen_stages - 1):
+                m = self.layers[i]
+                m.eval()
+                for param in m.parameters():
+                    param.requires_grad = False
+
+    def init_weights(self, pretrained=None):
+        """Initialize the weights in backbone.
+        Args:
+            pretrained (str, optional): Path to pre-trained weights.
+                Defaults to None.
+        """
+
+        def _init_weights(m):
+            if isinstance(m, nn.Linear):
+                trunc_normal_(m.weight, std=0.02)
+                if isinstance(m, nn.Linear) and m.bias is not None:
+                    nn.init.constant_(m.bias, 0)
+            elif isinstance(m, nn.LayerNorm):
+                nn.init.constant_(m.bias, 0)
+                nn.init.constant_(m.weight, 1.0)
+
+
+    def load_weights(self, pretrained_dict=None, pretrained_layers=[], verbose=True):
+        model_dict = self.state_dict()
+        pretrained_dict = {
+            k: v for k, v in pretrained_dict.items()
+            if k in model_dict.keys()
+        }
+        need_init_state_dict = {}
+        for k, v in pretrained_dict.items():
+            need_init = (
+                    (
+                            k.split('.')[0] in pretrained_layers
+                            or pretrained_layers[0] == '*'
+                    )
+                    and 'relative_position_index' not in k
+                    and 'attn_mask' not in k
+            )
+
+            if need_init:
+                # if verbose:
+                #     logger.info(f'=> init {k} from {pretrained}')
+
+                if 'relative_position_bias_table' in k and v.size() != model_dict[k].size():
+                    relative_position_bias_table_pretrained = v
+                    relative_position_bias_table_current = model_dict[k]
+                    L1, nH1 = relative_position_bias_table_pretrained.size()
+                    L2, nH2 = relative_position_bias_table_current.size()
+                    if nH1 != nH2:
+                        logger.info(f"Error in loading {k}, passing")
+                    else:
+                        if L1 != L2:
+                            logger.info(
+                                '=> load_pretrained: resized variant: {} to {}'
+                                    .format((L1, nH1), (L2, nH2))
+                            )
+                            S1 = int(L1 ** 0.5)
+                            S2 = int(L2 ** 0.5)
+                            relative_position_bias_table_pretrained_resized = torch.nn.functional.interpolate(
+                                relative_position_bias_table_pretrained.permute(1, 0).view(1, nH1, S1, S1),
+                                size=(S2, S2),
+                                mode='bicubic')
+                            v = relative_position_bias_table_pretrained_resized.view(nH2, L2).permute(1, 0)
+
+                if 'absolute_pos_embed' in k and v.size() != model_dict[k].size():
+                    absolute_pos_embed_pretrained = v
+                    absolute_pos_embed_current = model_dict[k]
+                    _, L1, C1 = absolute_pos_embed_pretrained.size()
+                    _, L2, C2 = absolute_pos_embed_current.size()
+                    if C1 != C1:
+                        logger.info(f"Error in loading {k}, passing")
+                    else:
+                        if L1 != L2:
+                            logger.info(
+                                '=> load_pretrained: resized variant: {} to {}'
+                                    .format((1, L1, C1), (1, L2, C2))
+                            )
+                            S1 = int(L1 ** 0.5)
+                            S2 = int(L2 ** 0.5)
+                            absolute_pos_embed_pretrained = absolute_pos_embed_pretrained.reshape(-1, S1, S1, C1)
+                            absolute_pos_embed_pretrained = absolute_pos_embed_pretrained.permute(0, 3, 1, 2)
+                            absolute_pos_embed_pretrained_resized = torch.nn.functional.interpolate(
+                                absolute_pos_embed_pretrained, size=(S2, S2), mode='bicubic')
+                            v = absolute_pos_embed_pretrained_resized.permute(0, 2, 3, 1).flatten(1, 2)
+
+                need_init_state_dict[k] = v
+        self.load_state_dict(need_init_state_dict, strict=False)
+
+
+    def forward(self, x):
+        """Forward function."""
+        x = self.patch_embed(x)
+
+        Wh, Ww = x.size(2), x.size(3)
+        if self.ape:
+            # interpolate the position embedding to the corresponding size
+            absolute_pos_embed = F.interpolate(
+                self.absolute_pos_embed, size=(Wh, Ww), mode="bicubic"
+            )
+            x = (x + absolute_pos_embed).flatten(2).transpose(1, 2)  # B Wh*Ww C
+        else:
+            x = x.flatten(2).transpose(1, 2)
+        x = self.pos_drop(x)
+
+        outs = {}
+        for i in range(self.num_layers):
+            layer = self.layers[i]
+            x_out, H, W, x, Wh, Ww = layer(x, Wh, Ww)
+
+            if i in self.out_indices:
+                norm_layer = getattr(self, f"norm{i}")
+                x_out = norm_layer(x_out)
+
+                out = x_out.view(-1, H, W, self.num_features[i]).permute(0, 3, 1, 2).contiguous()
+                outs["res{}".format(i + 2)] = out
+
+        if len(self.out_indices) == 0:
+            outs["res5"] = x_out.view(-1, H, W, self.num_features[i]).permute(0, 3, 1, 2).contiguous()
+        
+
+        return outs
+
+    def train(self, mode=True):
+        """Convert the model into training mode while keep layers freezed."""
+        super(SwinTransformer, self).train(mode)
+        self._freeze_stages()
+
+
+class D2SwinTransformer(SwinTransformer, Backbone):
+    def __init__(self, cfg, pretrain_img_size, patch_size, in_chans, embed_dim, 
+                 depths, num_heads, window_size, mlp_ratio, qkv_bias, qk_scale,
+                 drop_rate, attn_drop_rate, drop_path_rate, norm_layer, ape, 
+                 patch_norm, out_indices, use_checkpoint):
+        super().__init__(
+            pretrain_img_size,
+            patch_size,
+            in_chans,
+            embed_dim,
+            depths,
+            num_heads,
+            window_size,
+            mlp_ratio,
+            qkv_bias,
+            qk_scale,
+            drop_rate,
+            attn_drop_rate,
+            drop_path_rate,
+            norm_layer,
+            ape,
+            patch_norm,
+            out_indices,
+            use_checkpoint=use_checkpoint,
+        )
+
+        self._out_features = cfg['OUT_FEATURES']
+
+        self._out_feature_strides = {
+            "res2": 4,
+            "res3": 8,
+            "res4": 16,
+            "res5": 32,
+        }
+        self._out_feature_channels = {
+            "res2": self.num_features[0],
+            "res3": self.num_features[1],
+            "res4": self.num_features[2],
+            "res5": self.num_features[3],
+        }
+
+    def forward(self, x):
+        """
+        Args:
+            x: Tensor of shape (N,C,H,W). H, W must be a multiple of ``self.size_divisibility``.
+        Returns:
+            dict[str->Tensor]: names and the corresponding features
+        """
+        assert (
+            x.dim() == 4
+        ), f"SwinTransformer takes an input of shape (N, C, H, W). Got {x.shape} instead!"
+        outputs = {}
+        y = super().forward(x)
+        for k in y.keys():
+            if k in self._out_features:
+                outputs[k] = y[k]
+        return outputs
+
+    def output_shape(self):
+        feature_names = list(set(self._out_feature_strides.keys()) & set(self._out_features))
+        return {
+            name: ShapeSpec(
+                channels=self._out_feature_channels[name], stride=self._out_feature_strides[name]
+            )
+            for name in feature_names
+        }
+
+    @property
+    def size_divisibility(self):
+        return 32
+
+
+@register_backbone
+def get_swin_backbone(cfg):
+    swin_cfg = cfg['MODEL']['BACKBONE']['SWIN']
+
+    pretrain_img_size = swin_cfg['PRETRAIN_IMG_SIZE']
+    patch_size = swin_cfg['PATCH_SIZE']
+    in_chans = 3
+    embed_dim = swin_cfg['EMBED_DIM']
+    depths = swin_cfg['DEPTHS']
+    num_heads = swin_cfg['NUM_HEADS']
+    window_size = swin_cfg['WINDOW_SIZE']
+    mlp_ratio = swin_cfg['MLP_RATIO']
+    qkv_bias = swin_cfg['QKV_BIAS']
+    qk_scale = swin_cfg['QK_SCALE']
+    drop_rate = swin_cfg['DROP_RATE']
+    attn_drop_rate = swin_cfg['ATTN_DROP_RATE']
+    drop_path_rate = swin_cfg['DROP_PATH_RATE']
+    norm_layer = nn.LayerNorm
+    ape = swin_cfg['APE']
+    patch_norm = swin_cfg['PATCH_NORM']
+    use_checkpoint = swin_cfg['USE_CHECKPOINT']
+    out_indices = swin_cfg.get('OUT_INDICES', [0,1,2,3])
+    
+    swin = D2SwinTransformer(
+        swin_cfg,
+        pretrain_img_size,
+        patch_size,
+        in_chans,
+        embed_dim,
+        depths,
+        num_heads,
+        window_size,
+        mlp_ratio,
+        qkv_bias,
+        qk_scale,
+        drop_rate,
+        attn_drop_rate,
+        drop_path_rate,
+        norm_layer,
+        ape,
+        patch_norm,
+        out_indices,
+        use_checkpoint=use_checkpoint,
+    )    
+
+    if cfg['MODEL']['BACKBONE']['LOAD_PRETRAINED'] is True:
+        filename = cfg['MODEL']['BACKBONE']['PRETRAINED']
+        with PathManager.open(filename, "rb") as f:
+            ckpt = torch.load(f, map_location=cfg['device'])['model']
+        swin.load_weights(ckpt, swin_cfg.get('PRETRAINED_LAYERS', ['*']), cfg['VERBOSE'])
+
+    return swin
\ No newline at end of file
diff --git a/xdecoder/body/__init__.py b/xdecoder/body/__init__.py
new file mode 100755
index 0000000000000000000000000000000000000000..5b5e32900735a900cc4daef04bb5038cf9f178c9
--- /dev/null
+++ b/xdecoder/body/__init__.py
@@ -0,0 +1 @@
+from .build import build_xdecoder_head
\ No newline at end of file
diff --git a/xdecoder/body/__pycache__/__init__.cpython-38.pyc b/xdecoder/body/__pycache__/__init__.cpython-38.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..35cff7617c3dd01830c345f3ab9a30ceedd163ec
Binary files /dev/null and b/xdecoder/body/__pycache__/__init__.cpython-38.pyc differ
diff --git a/xdecoder/body/__pycache__/build.cpython-38.pyc b/xdecoder/body/__pycache__/build.cpython-38.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..429a977683b969e4f9d12b740008284a99c80745
Binary files /dev/null and b/xdecoder/body/__pycache__/build.cpython-38.pyc differ
diff --git a/xdecoder/body/__pycache__/registry.cpython-38.pyc b/xdecoder/body/__pycache__/registry.cpython-38.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..cb72baf7a11d3db535d70f058d575405210b5549
Binary files /dev/null and b/xdecoder/body/__pycache__/registry.cpython-38.pyc differ
diff --git a/xdecoder/body/__pycache__/transformer_blocks.cpython-38.pyc b/xdecoder/body/__pycache__/transformer_blocks.cpython-38.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..1b0757911c4be23ec8c407ba123ba293c3181fff
Binary files /dev/null and b/xdecoder/body/__pycache__/transformer_blocks.cpython-38.pyc differ
diff --git a/xdecoder/body/__pycache__/xdecoder_head.cpython-38.pyc b/xdecoder/body/__pycache__/xdecoder_head.cpython-38.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..11d0996ec01c3eeaae2603f0dcbf55515741b69a
Binary files /dev/null and b/xdecoder/body/__pycache__/xdecoder_head.cpython-38.pyc differ
diff --git a/xdecoder/body/build.py b/xdecoder/body/build.py
new file mode 100755
index 0000000000000000000000000000000000000000..fb35e4cc266c64418f4b21e9d95c7844417a2a56
--- /dev/null
+++ b/xdecoder/body/build.py
@@ -0,0 +1,13 @@
+from .registry import model_entrypoints
+from .registry import is_model
+
+from .xdecoder_head import *
+
+
+def build_xdecoder_head(config, *args, **kwargs):
+    model_name = config['MODEL']['HEAD']
+    if not is_model(model_name):
+        raise ValueError(f'Unkown model: {model_name}')
+
+    body = model_entrypoints(model_name)(config, *args, **kwargs)
+    return body
\ No newline at end of file
diff --git a/xdecoder/body/decoder/__init__.py b/xdecoder/body/decoder/__init__.py
new file mode 100755
index 0000000000000000000000000000000000000000..bbce50aad955329e5cba93e1d4d2f25e3cf694c7
--- /dev/null
+++ b/xdecoder/body/decoder/__init__.py
@@ -0,0 +1 @@
+from .build import build_decoder
\ No newline at end of file
diff --git a/xdecoder/body/decoder/__pycache__/__init__.cpython-38.pyc b/xdecoder/body/decoder/__pycache__/__init__.cpython-38.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..17e2763dc8636feb56c6ab25c6653ea7b0537219
Binary files /dev/null and b/xdecoder/body/decoder/__pycache__/__init__.cpython-38.pyc differ
diff --git a/xdecoder/body/decoder/__pycache__/build.cpython-38.pyc b/xdecoder/body/decoder/__pycache__/build.cpython-38.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..ae14b364d608b8e3ec8c10ef853f12724c11aca9
Binary files /dev/null and b/xdecoder/body/decoder/__pycache__/build.cpython-38.pyc differ
diff --git a/xdecoder/body/decoder/__pycache__/registry.cpython-38.pyc b/xdecoder/body/decoder/__pycache__/registry.cpython-38.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..0b3d678f6fe8e24ed217f9a9591bac543e9d59ad
Binary files /dev/null and b/xdecoder/body/decoder/__pycache__/registry.cpython-38.pyc differ
diff --git a/xdecoder/body/decoder/__pycache__/xdecoder.cpython-38.pyc b/xdecoder/body/decoder/__pycache__/xdecoder.cpython-38.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..9dff5c512d382b351ca8e967f24d06d6383a791f
Binary files /dev/null and b/xdecoder/body/decoder/__pycache__/xdecoder.cpython-38.pyc differ
diff --git a/xdecoder/body/decoder/build.py b/xdecoder/body/decoder/build.py
new file mode 100755
index 0000000000000000000000000000000000000000..c5c9be6f177885315a53845a624175430fa48ff1
--- /dev/null
+++ b/xdecoder/body/decoder/build.py
@@ -0,0 +1,12 @@
+from .registry import model_entrypoints
+from .registry import is_model
+
+from .xdecoder import *
+
+def build_decoder(config, *args, **kwargs):
+    model_name = config['MODEL']['DECODER']['NAME']
+
+    if not is_model(model_name):
+        raise ValueError(f'Unkown model: {model_name}')
+
+    return model_entrypoints(model_name)(config, *args, **kwargs)
\ No newline at end of file
diff --git a/xdecoder/body/decoder/registry.py b/xdecoder/body/decoder/registry.py
new file mode 100755
index 0000000000000000000000000000000000000000..bd9a7453d5bace3cdd892226f2f40c1a0be1fdb6
--- /dev/null
+++ b/xdecoder/body/decoder/registry.py
@@ -0,0 +1,13 @@
+_model_entrypoints = {}
+
+def register_decoder(fn):
+    module_name_split = fn.__module__.split('.')
+    model_name = module_name_split[-1]
+    _model_entrypoints[model_name] = fn
+    return fn
+
+def model_entrypoints(model_name):
+    return _model_entrypoints[model_name]
+
+def is_model(model_name):
+    return model_name in _model_entrypoints
\ No newline at end of file
diff --git a/xdecoder/body/decoder/tmp.py b/xdecoder/body/decoder/tmp.py
new file mode 100644
index 0000000000000000000000000000000000000000..d449b4e8fb6ad90b58f6aad20c410450572f647c
--- /dev/null
+++ b/xdecoder/body/decoder/tmp.py
@@ -0,0 +1,664 @@
+# Copyright (c) Facebook, Inc. and its affiliates.
+# Modified by Bowen Cheng from: https://github.com/facebookresearch/detr/blob/master/models/detr.py
+import logging
+from typing import Optional
+
+import torch
+from torch import nn, Tensor
+from torch.nn import functional as F
+
+from timm.models.layers import trunc_normal_
+from detectron2.layers import Conv2d
+import fvcore.nn.weight_init as weight_init
+
+from .registry import register_decoder
+from ...utils import configurable
+from ...modules import PositionEmbeddingSine
+
+from image2html.visualizer import VL
+
+
+class SelfAttentionLayer(nn.Module):
+
+    def __init__(self, d_model, nhead, dropout=0.0,
+                 activation="relu", normalize_before=False):
+        super().__init__()
+        self.self_attn = nn.MultiheadAttention(d_model, nhead, dropout=dropout)
+
+        self.norm = nn.LayerNorm(d_model)
+        self.dropout = nn.Dropout(dropout)
+
+        self.activation = _get_activation_fn(activation)
+        self.normalize_before = normalize_before
+
+        self._reset_parameters()
+    
+    def _reset_parameters(self):
+        for p in self.parameters():
+            if p.dim() > 1:
+                nn.init.xavier_uniform_(p)
+
+    def with_pos_embed(self, tensor, pos: Optional[Tensor]):
+        return tensor if pos is None else tensor + pos
+
+    def forward_post(self, tgt,
+                     tgt_mask: Optional[Tensor] = None,
+                     tgt_key_padding_mask: Optional[Tensor] = None,
+                     query_pos: Optional[Tensor] = None):
+        q = k = self.with_pos_embed(tgt, query_pos)
+        tgt2 = self.self_attn(q, k, value=tgt, attn_mask=tgt_mask,
+                              key_padding_mask=tgt_key_padding_mask)[0]
+        tgt = tgt + self.dropout(tgt2)
+        tgt = self.norm(tgt)
+
+        return tgt
+
+    def forward_pre(self, tgt,
+                    tgt_mask: Optional[Tensor] = None,
+                    tgt_key_padding_mask: Optional[Tensor] = None,
+                    query_pos: Optional[Tensor] = None):
+        tgt2 = self.norm(tgt)
+        q = k = self.with_pos_embed(tgt2, query_pos)
+        tgt2 = self.self_attn(q, k, value=tgt2, attn_mask=tgt_mask,
+                              key_padding_mask=tgt_key_padding_mask)[0]
+        tgt = tgt + self.dropout(tgt2)
+        
+        return tgt
+
+    def forward(self, tgt,
+                tgt_mask: Optional[Tensor] = None,
+                tgt_key_padding_mask: Optional[Tensor] = None,
+                query_pos: Optional[Tensor] = None):
+        if self.normalize_before:
+            return self.forward_pre(tgt, tgt_mask,
+                                    tgt_key_padding_mask, query_pos)
+        return self.forward_post(tgt, tgt_mask,
+                                 tgt_key_padding_mask, query_pos)
+
+
+class CrossAttentionLayer(nn.Module):
+
+    def __init__(self, d_model, nhead, dropout=0.0,
+                 activation="relu", normalize_before=False):
+        super().__init__()
+        self.multihead_attn = nn.MultiheadAttention(d_model, nhead, dropout=dropout)
+
+        self.norm = nn.LayerNorm(d_model)
+        self.dropout = nn.Dropout(dropout)
+
+        self.activation = _get_activation_fn(activation)
+        self.normalize_before = normalize_before
+
+        self._reset_parameters()
+    
+    def _reset_parameters(self):
+        for p in self.parameters():
+            if p.dim() > 1:
+                nn.init.xavier_uniform_(p)
+
+    def with_pos_embed(self, tensor, pos: Optional[Tensor]):
+        return tensor if pos is None else tensor + pos
+
+    def forward_post(self, tgt, memory,
+                     memory_mask: Optional[Tensor] = None,
+                     memory_key_padding_mask: Optional[Tensor] = None,
+                     pos: Optional[Tensor] = None,
+                     query_pos: Optional[Tensor] = None):
+        tgt2, avg_attn = self.multihead_attn(query=self.with_pos_embed(tgt, query_pos),
+                                   key=self.with_pos_embed(memory, pos),
+                                   value=memory, attn_mask=memory_mask,
+                                   key_padding_mask=memory_key_padding_mask)
+        tgt = tgt + self.dropout(tgt2)
+        tgt = self.norm(tgt)
+        return tgt, avg_attn
+
+    def forward_pre(self, tgt, memory,
+                    memory_mask: Optional[Tensor] = None,
+                    memory_key_padding_mask: Optional[Tensor] = None,
+                    pos: Optional[Tensor] = None,
+                    query_pos: Optional[Tensor] = None):
+        tgt2 = self.norm(tgt)
+        tgt2, avg_attn = self.multihead_attn(query=self.with_pos_embed(tgt2, query_pos),
+                                   key=self.with_pos_embed(memory, pos),
+                                   value=memory, attn_mask=memory_mask,
+                                   key_padding_mask=memory_key_padding_mask)
+        tgt = tgt + self.dropout(tgt2)
+
+        return tgt, avg_attn
+
+    def forward(self, tgt, memory,
+                memory_mask: Optional[Tensor] = None,
+                memory_key_padding_mask: Optional[Tensor] = None,
+                pos: Optional[Tensor] = None,
+                query_pos: Optional[Tensor] = None):
+        if self.normalize_before:
+            return self.forward_pre(tgt, memory, memory_mask,
+                                    memory_key_padding_mask, pos, query_pos)
+        return self.forward_post(tgt, memory, memory_mask,
+                                 memory_key_padding_mask, pos, query_pos)
+
+
+class FFNLayer(nn.Module):
+
+    def __init__(self, d_model, dim_feedforward=2048, dropout=0.0,
+                 activation="relu", normalize_before=False):
+        super().__init__()
+        # Implementation of Feedforward model
+        self.linear1 = nn.Linear(d_model, dim_feedforward)
+        self.dropout = nn.Dropout(dropout)
+        self.linear2 = nn.Linear(dim_feedforward, d_model)
+
+        self.norm = nn.LayerNorm(d_model)
+
+        self.activation = _get_activation_fn(activation)
+        self.normalize_before = normalize_before
+
+        self._reset_parameters()
+    
+    def _reset_parameters(self):
+        for p in self.parameters():
+            if p.dim() > 1:
+                nn.init.xavier_uniform_(p)
+
+    def with_pos_embed(self, tensor, pos: Optional[Tensor]):
+        return tensor if pos is None else tensor + pos
+
+    def forward_post(self, tgt):
+        tgt2 = self.linear2(self.dropout(self.activation(self.linear1(tgt))))
+        tgt = tgt + self.dropout(tgt2)
+        tgt = self.norm(tgt)
+        return tgt
+
+    def forward_pre(self, tgt):
+        tgt2 = self.norm(tgt)
+        tgt2 = self.linear2(self.dropout(self.activation(self.linear1(tgt2))))
+        tgt = tgt + self.dropout(tgt2)
+        return tgt
+
+    def forward(self, tgt):
+        if self.normalize_before:
+            return self.forward_pre(tgt)
+        return self.forward_post(tgt)
+
+
+def _get_activation_fn(activation):
+    """Return an activation function given a string"""
+    if activation == "relu":
+        return F.relu
+    if activation == "gelu":
+        return F.gelu
+    if activation == "glu":
+        return F.glu
+    raise RuntimeError(F"activation should be relu/gelu, not {activation}.")
+
+
+class MLP(nn.Module):
+    """ Very simple multi-layer perceptron (also called FFN)"""
+
+    def __init__(self, input_dim, hidden_dim, output_dim, num_layers):
+        super().__init__()
+        self.num_layers = num_layers
+        h = [hidden_dim] * (num_layers - 1)
+        self.layers = nn.ModuleList(nn.Linear(n, k) for n, k in zip([input_dim] + h, h + [output_dim]))
+
+    def forward(self, x):
+        for i, layer in enumerate(self.layers):
+            x = F.relu(layer(x)) if i < self.num_layers - 1 else layer(x)
+        return x
+
+
+class MultiScaleMaskedTransformerDecoder(nn.Module):
+
+    _version = 2
+
+    @configurable
+    def __init__(
+        self,
+        lang_encoder: nn.Module,
+        in_channels,
+        mask_classification=True,
+        *,
+        hidden_dim: int,
+        dim_proj: int,
+        num_queries: int,
+        contxt_len: int,
+        nheads: int,
+        dim_feedforward: int,
+        dec_layers: int,
+        pre_norm: bool,
+        mask_dim: int,
+        task_switch: dict,
+        captioning_step: int,
+        enforce_input_project: bool,
+    ):
+        """
+        NOTE: this interface is experimental.
+        Args:
+            in_channels: channels of the input features
+            mask_classification: whether to add mask classifier or not
+            num_classes: number of classes
+            hidden_dim: Transformer feature dimension
+            num_queries: number of queries
+            nheads: number of heads
+            dim_feedforward: feature dimension in feedforward network
+            enc_layers: number of Transformer encoder layers
+            dec_layers: number of Transformer decoder layers
+            pre_norm: whether to use pre-LayerNorm or not
+            mask_dim: mask feature dimension
+            enforce_input_project: add input project 1x1 conv even if input
+                channels and hidden dim is identical
+        """
+        super().__init__()
+        assert mask_classification, "Only support mask classification model"
+        self.mask_classification = mask_classification
+
+        # positional encoding
+        N_steps = hidden_dim // 2
+        self.pe_layer = PositionEmbeddingSine(N_steps, normalize=True)
+        
+        # define Transformer decoder here
+        self.num_heads = nheads
+        self.num_layers = dec_layers
+        self.contxt_len = contxt_len
+        self.transformer_self_attention_layers = nn.ModuleList()
+        self.transformer_cross_attention_layers = nn.ModuleList()
+        self.transformer_ffn_layers = nn.ModuleList()
+
+        for _ in range(self.num_layers):
+            self.transformer_self_attention_layers.append(
+                SelfAttentionLayer(
+                    d_model=hidden_dim,
+                    nhead=nheads,
+                    dropout=0.0,
+                    normalize_before=pre_norm,
+                )
+            )
+
+            self.transformer_cross_attention_layers.append(
+                CrossAttentionLayer(
+                    d_model=hidden_dim,
+                    nhead=nheads,
+                    dropout=0.0,
+                    normalize_before=pre_norm,
+                )
+            )
+
+            self.transformer_ffn_layers.append(
+                FFNLayer(
+                    d_model=hidden_dim,
+                    dim_feedforward=dim_feedforward,
+                    dropout=0.0,
+                    normalize_before=pre_norm,
+                )
+            )
+
+        self.decoder_norm = nn.LayerNorm(hidden_dim)
+
+        self.num_queries = num_queries
+        # learnable query features
+        self.query_feat = nn.Embedding(num_queries, hidden_dim)
+        # learnable query p.e.
+        self.query_embed = nn.Embedding(num_queries, hidden_dim)
+        
+        # level embedding (we always use 3 scales)
+        self.num_feature_levels = 3
+        self.level_embed = nn.Embedding(self.num_feature_levels, hidden_dim)
+        self.input_proj = nn.ModuleList()
+        
+        for _ in range(self.num_feature_levels):
+            if in_channels != hidden_dim or enforce_input_project:
+                self.input_proj.append(Conv2d(in_channels, hidden_dim, kernel_size=1))
+                weight_init.c2_xavier_fill(self.input_proj[-1])
+            else:
+                self.input_proj.append(nn.Sequential())
+
+        self.task_switch = task_switch
+
+        # output FFNs
+        self.lang_encoder = lang_encoder
+        if self.task_switch['mask']:
+            self.mask_embed = MLP(hidden_dim, hidden_dim, mask_dim, 3)
+
+        self.class_embed = nn.Parameter(torch.empty(hidden_dim, dim_proj))
+        trunc_normal_(self.class_embed, std=.02)
+
+        if task_switch['bbox']:
+            self.bbox_embed = MLP(hidden_dim, hidden_dim, 4, 3)
+
+        # Caption Project and query
+        if task_switch['captioning']:
+            self.caping_embed = nn.Parameter(torch.empty(hidden_dim, dim_proj))
+            trunc_normal_(self.caping_embed, std=.02)
+            self.query_feat_caping = nn.Embedding(contxt_len, hidden_dim)
+            self.captioning_step = captioning_step
+
+        # register self_attn_mask to avoid information leakage, it includes interaction between object query, class query and caping query
+        self_attn_mask = torch.zeros((1, num_queries + contxt_len, num_queries + contxt_len)).bool()
+        self_attn_mask[:, :num_queries, num_queries:] = True # object+class query does not attend with caption query.
+        self_attn_mask[:, num_queries:, num_queries:] = torch.triu(torch.ones((1, contxt_len, contxt_len)), diagonal=1).bool() # caption query only attend with previous token.
+        self_attn_mask[:, :num_queries-1, num_queries-1:num_queries] = True # object query does not attend with class query.
+        self_attn_mask[:, num_queries-1:num_queries, :num_queries-1] = True # class query does not attend with object query.
+        self.register_buffer("self_attn_mask", self_attn_mask)
+
+
+    @classmethod
+    def from_config(cls, cfg, in_channels, lang_encoder, mask_classification, extra):
+        ret = {}
+
+        ret["lang_encoder"] = lang_encoder
+        ret["in_channels"] = in_channels
+        ret["mask_classification"] = mask_classification
+
+        enc_cfg = cfg['MODEL']['ENCODER']
+        dec_cfg = cfg['MODEL']['DECODER']
+        
+        ret["hidden_dim"] = dec_cfg['HIDDEN_DIM']
+        ret["dim_proj"] = cfg['MODEL']['DIM_PROJ']
+        ret["num_queries"] = dec_cfg['NUM_OBJECT_QUERIES']
+        ret["contxt_len"] = cfg['MODEL']['TEXT']['CONTEXT_LENGTH']
+        
+        # Transformer parameters:
+        ret["nheads"] = dec_cfg['NHEADS']
+        ret["dim_feedforward"] = dec_cfg['DIM_FEEDFORWARD']
+
+        # NOTE: because we add learnable query features which requires supervision,
+        # we add minus 1 to decoder layers to be consistent with our loss
+        # implementation: that is, number of auxiliary losses is always
+        # equal to number of decoder layers. With learnable query features, the number of
+        # auxiliary losses equals number of decoders plus 1.
+        assert dec_cfg['DEC_LAYERS'] >= 1
+        ret["dec_layers"] = dec_cfg['DEC_LAYERS'] - 1
+        ret["pre_norm"] = dec_cfg['PRE_NORM']
+        ret["enforce_input_project"] = dec_cfg['ENFORCE_INPUT_PROJ']
+        ret["mask_dim"] = enc_cfg['MASK_DIM']
+
+        ret["task_switch"] = extra['task_switch']
+        ret["captioning_step"] = dec_cfg['CAPTIONING'].get('STEP', 50)
+
+        return ret
+
+    def forward(self, x, mask_features, mask=None, target_queries=None, target_vlp=None, task='seg', extra={}):
+        if task == 'captioning_infer':
+            return self.forward_captioning(x, mask_features, mask=mask, target_queries=target_queries, target_vlp=target_vlp, task=task, extra=extra)
+        # x is a list of multi-scale feature
+        assert len(x) == self.num_feature_levels
+        src = []
+        pos = []
+        size_list = []
+        
+        # disable mask, it does not affect performance
+        del mask
+        for i in range(self.num_feature_levels):
+            size_list.append(x[i].shape[-2:])
+            pos.append(self.pe_layer(x[i], None).flatten(2))
+            src.append(self.input_proj[i](x[i]).flatten(2) + self.level_embed.weight[i][None, :, None])
+
+            # flatten NxCxHxW to HWxNxC
+            pos[-1] = pos[-1].permute(2, 0, 1)
+            src[-1] = src[-1].permute(2, 0, 1)
+
+        _, bs, _ = src[0].shape
+
+        # QxNxC
+        query_embed = self.query_embed.weight.unsqueeze(1).repeat(1, bs, 1)
+        output = self.query_feat.weight.unsqueeze(1).repeat(1, bs, 1)
+
+        predictions_class = []
+        predictions_mask = []
+        predictions_bbox = []
+        predictions_caption = []
+        predictions_captioning = []
+        
+        self_tgt_mask = None
+        if self.training and task == 'vlp' and self.task_switch['captioning']:
+            output = torch.cat((output, self.query_feat_caping.weight.unsqueeze(1).repeat(1, bs, 1)), dim=0) # concat object query, class token and caption token.
+            caping_lang_embed = torch.cat([caption['caption_tokens'] for caption in target_vlp], dim=0).transpose(0, 1) # language output
+            query_embed = torch.cat((query_embed, caping_lang_embed), dim=0) # may not add at the beginning.
+            self_tgt_mask = self.self_attn_mask.repeat(output.shape[1]*self.num_heads, 1, 1)
+        elif (((self.training and task == 'seg') or (task == 'grounding_eval')) and self.task_switch['grounding']) \
+                or ((self.training and task == 'openimage') and self.task_switch['openimage']['grounding']):
+            self_tgt_mask = self.self_attn_mask[:,:self.num_queries,:self.num_queries].repeat(output.shape[1]*self.num_heads, 1, 1)
+            grounding_tokens = extra['grounding_tokens']
+            _grounding_tokens = grounding_tokens.detach().clone()
+            # initialize with negative attention at the beginning.
+            pad_tgt_mask = torch.ones((1, self.num_queries + (self.num_queries-1) + len(grounding_tokens), self.num_queries + (self.num_queries-1) + len(grounding_tokens)), device=self_tgt_mask.device).bool().repeat(output.shape[1]*self.num_heads, 1, 1)
+            pad_tgt_mask[:,:self.num_queries,:self.num_queries] = self_tgt_mask
+            pad_tgt_mask[:,self.num_queries:,self.num_queries:] = False # grounding tokens could attend with eatch other
+            self_tgt_mask = pad_tgt_mask
+            output = torch.cat((output, output[:-1]), dim=0)
+            query_embed = torch.cat((query_embed, query_embed[:-1]), dim=0) # also pad language embdding to fix embedding
+        else:
+            self_tgt_mask = self.self_attn_mask[:,:self.num_queries,:self.num_queries].repeat(output.shape[1]*self.num_heads, 1, 1)
+
+        # prediction heads on learnable query features
+        results = self.forward_prediction_heads(output, mask_features, attn_mask_target_size=size_list[0], task=task)
+        attn_mask = results["attn_mask"]
+        predictions_class.append(results["outputs_class"])
+        predictions_mask.append(results["outputs_mask"])
+        predictions_bbox.append(results["outputs_bbox"])
+        predictions_caption.append(results["outputs_caption"])
+        predictions_captioning.append(results["outputs_captionting"])
+        
+        for i in range(self.num_layers):
+            level_index = i % self.num_feature_levels
+            attn_mask[torch.where(attn_mask.sum(-1) == attn_mask.shape[-1])] = False
+
+            if self.training and task == 'vlp' and self.task_switch['captioning']:
+                attn_mask = torch.cat((attn_mask, torch.zeros_like(attn_mask[:, :self.contxt_len, :])), dim=1)
+            # attention: cross-attention first
+            output, avg_attn = self.transformer_cross_attention_layers[i](
+                output, src[level_index],
+                memory_mask=attn_mask,
+                memory_key_padding_mask=None,  # here we do not apply masking on padded region
+                pos=pos[level_index], query_pos=query_embed
+            )
+
+            if (((self.training and task == 'seg') or (task == 'grounding_eval')) and self.task_switch['grounding']) \
+                    or ((self.training and task == 'openimage') and self.task_switch['openimage']['grounding']):
+                output = torch.cat((output, _grounding_tokens), dim=0)
+                query_embed = torch.cat((query_embed, grounding_tokens), dim=0)
+
+            output = self.transformer_self_attention_layers[i](
+                output, tgt_mask=self_tgt_mask,
+                tgt_key_padding_mask=None,
+                query_pos=query_embed
+            )
+            
+            # FFN
+            output = self.transformer_ffn_layers[i](
+                output
+            )
+
+            if ((self.training and task == 'seg') or (task == 'grounding_eval')) and self.task_switch['grounding'] \
+                    or ((self.training and task == 'openimage') and self.task_switch['openimage']['grounding']):
+                _grounding_tokens = output[-len(_grounding_tokens):]
+                output = output[:-len(_grounding_tokens)]
+                query_embed = query_embed[:-len(_grounding_tokens)]
+
+            results = self.forward_prediction_heads(output, mask_features, attn_mask_target_size=size_list[(i + 1) % self.num_feature_levels], layer_id=i, task=task)
+            attn_mask = results["attn_mask"]
+            predictions_class.append(results["outputs_class"])
+            predictions_mask.append(results["outputs_mask"])
+            predictions_bbox.append(results["outputs_bbox"])
+            predictions_caption.append(results["outputs_caption"])
+            predictions_captioning.append(results["outputs_captionting"])
+
+        assert len(predictions_class) == self.num_layers + 1
+        if task == 'vlp':
+            out = {'pred_captionings': predictions_captioning[-1], 
+                   'pred_captions': predictions_caption[-1], 
+                   'aux_outputs': [{'pred_captionings': x, 'pred_captions': y } for x, y in zip(predictions_captioning[:-1], predictions_caption[:-1])]}
+            return out
+        else:
+            out = {
+                'pred_logits': predictions_class[-1],
+                'pred_masks': predictions_mask[-1],
+                'pred_boxes': predictions_bbox[-1],
+                'pred_captions': predictions_caption[-1],
+                'aux_outputs': self._set_aux_loss(
+                    predictions_class if self.mask_classification else None, predictions_mask, predictions_bbox, predictions_caption
+                )
+            }
+            return out
+
+    def forward_captioning(self, x, mask_features, mask = None, target_queries = None, target_vlp = None, task='seg', extra={}):
+        # x is a list of multi-scale feature
+        assert len(x) == self.num_feature_levels
+        src = []
+        pos = []
+        size_list = []
+        
+        # disable mask, it does not affect performance
+        del mask
+        for i in range(self.num_feature_levels):
+            size_list.append(x[i].shape[-2:])
+            pos.append(self.pe_layer(x[i], None).flatten(2))
+            src.append(self.input_proj[i](x[i]).flatten(2) + self.level_embed.weight[i][None, :, None])
+
+            # flatten NxCxHxW to HWxNxC
+            pos[-1] = pos[-1].permute(2, 0, 1)
+            src[-1] = src[-1].permute(2, 0, 1)
+
+        _, bs, _ = src[0].shape
+
+        # QxNxC
+        query_embed_ = self.query_embed.weight.unsqueeze(1).repeat(1, bs, 1)
+        query_feat = self.query_feat.weight.unsqueeze(1).repeat(1, bs, 1)        
+        caping_lang_token = extra['start_token'].repeat(bs, 1)
+        query_feat_caping = self.query_feat_caping.weight.unsqueeze(1).repeat(1, bs, 1)
+        
+        # prepare token embedding for evaluation
+        token_embs = self.lang_encoder.lang_encoder.token_embedding.weight
+        # token_embs = (token_embs / token_embs.norm(dim=-1, keepdim=True) + 1e-7)
+        
+        for cap_idx in range(0, self.captioning_step):
+            caping_lang_embed = self.lang_encoder.forward_language_token((caping_lang_token,))[0].transpose(0, 1)
+            query_embed = torch.cat((query_embed_, caping_lang_embed), dim=0) # may not add at the beginning.
+            output = torch.cat((query_feat, query_feat_caping), dim=0) # concat object query, class token and caption token.
+
+            # prediction heads on learnable query features
+            results = self.forward_prediction_heads(output, mask_features, attn_mask_target_size=size_list[0], task=task)
+            attn_mask = results["attn_mask"]
+        
+            for i in range(self.num_layers):
+                level_index = i % self.num_feature_levels
+                attn_mask[torch.where(attn_mask.sum(-1) == attn_mask.shape[-1])] = False
+                attn_mask = torch.cat((attn_mask, torch.zeros_like(attn_mask[:, :self.contxt_len, :])), dim=1)
+                self_tgt_mask = self.self_attn_mask.repeat(output.shape[1]*self.num_heads, 1, 1)
+                
+                # attention: cross-attention first
+                output, avg_attn = self.transformer_cross_attention_layers[i](
+                    output, src[level_index],
+                    memory_mask=attn_mask,
+                    memory_key_padding_mask=None,  # here we do not apply masking on padded region
+                    pos=pos[level_index], query_pos=query_embed
+                )
+
+                output = self.transformer_self_attention_layers[i](
+                    output, tgt_mask=self_tgt_mask,
+                    tgt_key_padding_mask=None,
+                    query_pos=query_embed
+                )
+                
+                # FFN
+                output = self.transformer_ffn_layers[i](
+                    output
+                )
+
+                results = self.forward_prediction_heads(output, mask_features, attn_mask_target_size=size_list[(i + 1) % self.num_feature_levels], layer_id=i, task=task)
+                attn_mask = results["attn_mask"]
+            
+            pred_captions_gen = results['outputs_captionting']
+            # pred_captions_gen = (pred_captions_gen / pred_captions_gen.norm(dim=-1, keepdim=True) + 1e-7)
+            pred_captions_gen = pred_captions_gen @ token_embs.t()
+            caping_lang_token[:,cap_idx+1] = pred_captions_gen[:,cap_idx].max(-1)[1]
+
+        out = {'pred_captionings': caping_lang_token,
+               'pred_texts': self.lang_encoder.tokenizer.batch_decode(caping_lang_token, skip_special_tokens=True)}
+        return out
+
+
+    def forward_prediction_heads(self, output, mask_features, attn_mask_target_size, layer_id=-1, task='seg'):
+        decoder_output = self.decoder_norm(output)
+        decoder_output = decoder_output.transpose(0, 1)
+
+        # extract image captioning token from decoder output.
+        if self.task_switch['captioning'] and (task == 'vlp' or task == 'captioning_infer'):
+            outputs_captionting = decoder_output[:,self.num_queries:] @ self.caping_embed
+        else:
+            outputs_captionting = None
+
+        # recompute class token output.
+        norm_decoder_output = decoder_output / (decoder_output.norm(dim=-1, keepdim=True) + 1e-7)
+        obj_token = norm_decoder_output[:,:self.num_queries-1]
+        cls_token = norm_decoder_output[:,self.num_queries-1:self.num_queries]
+
+        sim = (cls_token @ obj_token.transpose(1,2)).softmax(-1)[:,0,:,None] # TODO include class token.
+        cls_token = (sim * decoder_output[:,:self.num_queries-1]).sum(dim=1, keepdim=True)
+
+        if (((self.training and task == 'seg') or (task == 'grounding_eval')) and self.task_switch['grounding']) \
+                or ((self.training and task == 'openimage') and self.task_switch['openimage']['grounding']):
+            decoder_output = torch.cat((decoder_output[:,:self.num_queries-1], cls_token, decoder_output[:,self.num_queries:2*self.num_queries-1]), dim=1)
+        else:
+            decoder_output = torch.cat((decoder_output[:,:self.num_queries-1], cls_token), dim=1)
+
+        # compute class, mask and bbox.
+        class_embed = decoder_output @ self.class_embed
+        # HACK do not compute similarity if mask is not on
+        outputs_class = self.lang_encoder.compute_similarity(class_embed, fake=(((not self.task_switch['mask']) and self.training) or (task == 'openimage')))
+
+        if self.task_switch['mask'] or self.task_switch['openimage']['mask']:
+            mask_embed = self.mask_embed(decoder_output)
+            outputs_mask = torch.einsum("bqc,bchw->bqhw", mask_embed, mask_features)
+
+            # NOTE: prediction is of higher-resolution
+            # [B, Q, H, W] -> [B, Q, H*W] -> [B, h, Q, H*W] -> [B*h, Q, HW]
+            attn_mask = F.interpolate(outputs_mask, size=attn_mask_target_size, mode="bilinear", align_corners=False)
+
+            # must use bool type
+            # If a BoolTensor is provided, positions with ``True`` are not allowed to attend while ``False`` values will be unchanged.
+            attn_mask = (attn_mask.sigmoid().flatten(2).unsqueeze(1).repeat(1, self.num_heads, 1, 1).flatten(0, 1) < 0.5).bool()
+            attn_mask = attn_mask.detach()
+
+            # NOTE: fill False for cls token (JY)
+            attn_mask[:, self.num_queries:self.num_queries+1].fill_(False)
+        else:
+            outputs_mask = None
+            attn_mask = torch.zeros((list(decoder_output.shape[:2]) + [attn_mask_target_size[0]*attn_mask_target_size[1]]), device=decoder_output.device).repeat(self.num_heads, 1, 1).bool()
+
+        outputs_bbox = [None for i in range(len(decoder_output))]
+        if self.task_switch['bbox']:
+            outputs_bbox = self.bbox_embed(decoder_output)
+
+        outputs_caption = None
+        if self.task_switch['caption']:
+            outputs_caption = class_embed
+            
+
+        results = {
+            "outputs_class": outputs_class,
+            "outputs_mask": outputs_mask,
+            "outputs_bbox": outputs_bbox,
+            "attn_mask": attn_mask,
+            "outputs_caption": outputs_caption,
+            "outputs_captionting": outputs_captionting,
+        }
+        return results
+
+    @torch.jit.unused
+    def _set_aux_loss(self, outputs_class, outputs_seg_masks, outputs_boxes, outputs_captions):
+        # this is a workaround to make torchscript happy, as torchscript
+        # doesn't support dictionary with non-homogeneous values, such
+        # as a dict having both a Tensor and a list.
+        if self.mask_classification:
+            return [
+                {"pred_logits": a, "pred_masks": b, "pred_boxes": c, "pred_captions": d}
+                for a, b, c, d in zip(outputs_class[:-1], outputs_seg_masks[:-1], outputs_boxes[:-1], outputs_captions[:-1])
+            ]
+        else:
+            return [{"pred_masks": b} for b in outputs_seg_masks[:-1]]
+
+
+@register_decoder
+def get_masked_transformer_decoder(cfg, in_channels, lang_encoder, mask_classification, extra):
+    return MultiScaleMaskedTransformerDecoder(cfg, in_channels, lang_encoder, mask_classification, extra)
\ No newline at end of file
diff --git a/xdecoder/body/decoder/xdecoder.py b/xdecoder/body/decoder/xdecoder.py
new file mode 100755
index 0000000000000000000000000000000000000000..7e0543deaf932963c40bf414f904b8ef82f8fc63
--- /dev/null
+++ b/xdecoder/body/decoder/xdecoder.py
@@ -0,0 +1,700 @@
+# Copyright (c) Facebook, Inc. and its affiliates.
+# Modified by Bowen Cheng from: https://github.com/facebookresearch/detr/blob/master/models/detr.py
+
+# --------------------------------------------------------
+# X-Decoder -- Generalized Decoding for Pixel, Image, and Language
+# Copyright (c) 2022 Microsoft
+# Licensed under The MIT License [see LICENSE for details]
+# Written by Xueyan Zou (xueyan@cs.wisc.edu), Jianwei Yang (jianwyan@microsoft.com)
+# --------------------------------------------------------
+
+
+import logging
+from typing import Optional
+
+import torch
+from torch import nn, Tensor
+from torch.nn import functional as F
+
+from timm.models.layers import trunc_normal_
+from detectron2.layers import Conv2d
+import fvcore.nn.weight_init as weight_init
+
+from .registry import register_decoder
+from ...utils import configurable
+from ...modules import PositionEmbeddingSine
+
+
+class SelfAttentionLayer(nn.Module):
+
+    def __init__(self, d_model, nhead, dropout=0.0,
+                 activation="relu", normalize_before=False):
+        super().__init__()
+        self.self_attn = nn.MultiheadAttention(d_model, nhead, dropout=dropout)
+
+        self.norm = nn.LayerNorm(d_model)
+        self.dropout = nn.Dropout(dropout)
+
+        self.activation = _get_activation_fn(activation)
+        self.normalize_before = normalize_before
+
+        self._reset_parameters()
+    
+    def _reset_parameters(self):
+        for p in self.parameters():
+            if p.dim() > 1:
+                nn.init.xavier_uniform_(p)
+
+    def with_pos_embed(self, tensor, pos: Optional[Tensor]):
+        return tensor if pos is None else tensor + pos
+
+    def forward_post(self, tgt,
+                     tgt_mask: Optional[Tensor] = None,
+                     tgt_key_padding_mask: Optional[Tensor] = None,
+                     query_pos: Optional[Tensor] = None):
+        q = k = self.with_pos_embed(tgt, query_pos)
+        tgt2 = self.self_attn(q, k, value=tgt, attn_mask=tgt_mask,
+                              key_padding_mask=tgt_key_padding_mask)[0]
+        tgt = tgt + self.dropout(tgt2)
+        tgt = self.norm(tgt)
+
+        return tgt
+
+    def forward_pre(self, tgt,
+                    tgt_mask: Optional[Tensor] = None,
+                    tgt_key_padding_mask: Optional[Tensor] = None,
+                    query_pos: Optional[Tensor] = None):
+        tgt2 = self.norm(tgt)
+        q = k = self.with_pos_embed(tgt2, query_pos)
+        tgt2 = self.self_attn(q, k, value=tgt2, attn_mask=tgt_mask,
+                              key_padding_mask=tgt_key_padding_mask)[0]
+        tgt = tgt + self.dropout(tgt2)
+        
+        return tgt
+
+    def forward(self, tgt,
+                tgt_mask: Optional[Tensor] = None,
+                tgt_key_padding_mask: Optional[Tensor] = None,
+                query_pos: Optional[Tensor] = None):
+        if self.normalize_before:
+            return self.forward_pre(tgt, tgt_mask,
+                                    tgt_key_padding_mask, query_pos)
+        return self.forward_post(tgt, tgt_mask,
+                                 tgt_key_padding_mask, query_pos)
+
+
+class CrossAttentionLayer(nn.Module):
+
+    def __init__(self, d_model, nhead, dropout=0.0,
+                 activation="relu", normalize_before=False):
+        super().__init__()
+        self.multihead_attn = nn.MultiheadAttention(d_model, nhead, dropout=dropout)
+
+        self.norm = nn.LayerNorm(d_model)
+        self.dropout = nn.Dropout(dropout)
+
+        self.activation = _get_activation_fn(activation)
+        self.normalize_before = normalize_before
+
+        self._reset_parameters()
+    
+    def _reset_parameters(self):
+        for p in self.parameters():
+            if p.dim() > 1:
+                nn.init.xavier_uniform_(p)
+
+    def with_pos_embed(self, tensor, pos: Optional[Tensor]):
+        return tensor if pos is None else tensor + pos
+
+    def forward_post(self, tgt, memory,
+                     memory_mask: Optional[Tensor] = None,
+                     memory_key_padding_mask: Optional[Tensor] = None,
+                     pos: Optional[Tensor] = None,
+                     query_pos: Optional[Tensor] = None):
+        tgt2, avg_attn = self.multihead_attn(query=self.with_pos_embed(tgt, query_pos),
+                                   key=self.with_pos_embed(memory, pos),
+                                   value=memory, attn_mask=memory_mask,
+                                   key_padding_mask=memory_key_padding_mask)
+        tgt = tgt + self.dropout(tgt2)
+        tgt = self.norm(tgt)
+        return tgt, avg_attn
+
+    def forward_pre(self, tgt, memory,
+                    memory_mask: Optional[Tensor] = None,
+                    memory_key_padding_mask: Optional[Tensor] = None,
+                    pos: Optional[Tensor] = None,
+                    query_pos: Optional[Tensor] = None):
+        tgt2 = self.norm(tgt)
+        tgt2, avg_attn = self.multihead_attn(query=self.with_pos_embed(tgt2, query_pos),
+                                   key=self.with_pos_embed(memory, pos),
+                                   value=memory, attn_mask=memory_mask,
+                                   key_padding_mask=memory_key_padding_mask)
+        tgt = tgt + self.dropout(tgt2)
+
+        return tgt, avg_attn
+
+    def forward(self, tgt, memory,
+                memory_mask: Optional[Tensor] = None,
+                memory_key_padding_mask: Optional[Tensor] = None,
+                pos: Optional[Tensor] = None,
+                query_pos: Optional[Tensor] = None):
+        if self.normalize_before:
+            return self.forward_pre(tgt, memory, memory_mask,
+                                    memory_key_padding_mask, pos, query_pos)
+        return self.forward_post(tgt, memory, memory_mask,
+                                 memory_key_padding_mask, pos, query_pos)
+
+
+class FFNLayer(nn.Module):
+
+    def __init__(self, d_model, dim_feedforward=2048, dropout=0.0,
+                 activation="relu", normalize_before=False):
+        super().__init__()
+        # Implementation of Feedforward model
+        self.linear1 = nn.Linear(d_model, dim_feedforward)
+        self.dropout = nn.Dropout(dropout)
+        self.linear2 = nn.Linear(dim_feedforward, d_model)
+
+        self.norm = nn.LayerNorm(d_model)
+
+        self.activation = _get_activation_fn(activation)
+        self.normalize_before = normalize_before
+
+        self._reset_parameters()
+    
+    def _reset_parameters(self):
+        for p in self.parameters():
+            if p.dim() > 1:
+                nn.init.xavier_uniform_(p)
+
+    def with_pos_embed(self, tensor, pos: Optional[Tensor]):
+        return tensor if pos is None else tensor + pos
+
+    def forward_post(self, tgt):
+        tgt2 = self.linear2(self.dropout(self.activation(self.linear1(tgt))))
+        tgt = tgt + self.dropout(tgt2)
+        tgt = self.norm(tgt)
+        return tgt
+
+    def forward_pre(self, tgt):
+        tgt2 = self.norm(tgt)
+        tgt2 = self.linear2(self.dropout(self.activation(self.linear1(tgt2))))
+        tgt = tgt + self.dropout(tgt2)
+        return tgt
+
+    def forward(self, tgt):
+        if self.normalize_before:
+            return self.forward_pre(tgt)
+        return self.forward_post(tgt)
+
+
+def _get_activation_fn(activation):
+    """Return an activation function given a string"""
+    if activation == "relu":
+        return F.relu
+    if activation == "gelu":
+        return F.gelu
+    if activation == "glu":
+        return F.glu
+    raise RuntimeError(F"activation should be relu/gelu, not {activation}.")
+
+
+class MLP(nn.Module):
+    """ Very simple multi-layer perceptron (also called FFN)"""
+
+    def __init__(self, input_dim, hidden_dim, output_dim, num_layers):
+        super().__init__()
+        self.num_layers = num_layers
+        h = [hidden_dim] * (num_layers - 1)
+        self.layers = nn.ModuleList(nn.Linear(n, k) for n, k in zip([input_dim] + h, h + [output_dim]))
+
+    def forward(self, x):
+        for i, layer in enumerate(self.layers):
+            x = F.relu(layer(x)) if i < self.num_layers - 1 else layer(x)
+        return x
+
+
+class MultiScaleMaskedTransformerDecoder(nn.Module):
+
+    _version = 2
+
+    @configurable
+    def __init__(
+        self,
+        lang_encoder: nn.Module,
+        in_channels,
+        mask_classification=True,
+        *,
+        hidden_dim: int,
+        dim_proj: int,
+        num_queries: int,
+        contxt_len: int,
+        nheads: int,
+        dim_feedforward: int,
+        dec_layers: int,
+        pre_norm: bool,
+        mask_dim: int,
+        task_switch: dict,
+        captioning_step: int,
+        enforce_input_project: bool,
+    ):
+        """
+        NOTE: this interface is experimental.
+        Args:
+            in_channels: channels of the input features
+            mask_classification: whether to add mask classifier or not
+            num_classes: number of classes
+            hidden_dim: Transformer feature dimension
+            num_queries: number of queries
+            nheads: number of heads
+            dim_feedforward: feature dimension in feedforward network
+            enc_layers: number of Transformer encoder layers
+            dec_layers: number of Transformer decoder layers
+            pre_norm: whether to use pre-LayerNorm or not
+            mask_dim: mask feature dimension
+            enforce_input_project: add input project 1x1 conv even if input
+                channels and hidden dim is identical
+        """
+        super().__init__()
+        assert mask_classification, "Only support mask classification model"
+        self.mask_classification = mask_classification
+
+        # positional encoding
+        N_steps = hidden_dim // 2
+        self.pe_layer = PositionEmbeddingSine(N_steps, normalize=True)
+        
+        # define Transformer decoder here
+        self.num_heads = nheads
+        self.num_layers = dec_layers
+        self.contxt_len = contxt_len
+        self.transformer_self_attention_layers = nn.ModuleList()
+        self.transformer_cross_attention_layers = nn.ModuleList()
+        self.transformer_ffn_layers = nn.ModuleList()
+
+        for _ in range(self.num_layers):
+            self.transformer_self_attention_layers.append(
+                SelfAttentionLayer(
+                    d_model=hidden_dim,
+                    nhead=nheads,
+                    dropout=0.0,
+                    normalize_before=pre_norm,
+                )
+            )
+
+            self.transformer_cross_attention_layers.append(
+                CrossAttentionLayer(
+                    d_model=hidden_dim,
+                    nhead=nheads,
+                    dropout=0.0,
+                    normalize_before=pre_norm,
+                )
+            )
+
+            self.transformer_ffn_layers.append(
+                FFNLayer(
+                    d_model=hidden_dim,
+                    dim_feedforward=dim_feedforward,
+                    dropout=0.0,
+                    normalize_before=pre_norm,
+                )
+            )
+
+        self.decoder_norm = nn.LayerNorm(hidden_dim)
+
+        self.num_queries = num_queries
+        # learnable query features
+        self.query_feat = nn.Embedding(num_queries, hidden_dim)
+        # learnable query p.e.
+        self.query_embed = nn.Embedding(num_queries, hidden_dim)
+        
+        # level embedding (we always use 3 scales)
+        self.num_feature_levels = 3
+        self.level_embed = nn.Embedding(self.num_feature_levels, hidden_dim)
+        self.input_proj = nn.ModuleList()
+        
+        for _ in range(self.num_feature_levels):
+            if in_channels != hidden_dim or enforce_input_project:
+                self.input_proj.append(Conv2d(in_channels, hidden_dim, kernel_size=1))
+                weight_init.c2_xavier_fill(self.input_proj[-1])
+            else:
+                self.input_proj.append(nn.Sequential())
+
+        self.task_switch = task_switch
+
+        # output FFNs
+        self.lang_encoder = lang_encoder
+        if self.task_switch['mask']:
+            self.mask_embed = MLP(hidden_dim, hidden_dim, mask_dim, 3)
+
+        self.class_embed = nn.Parameter(torch.empty(hidden_dim, dim_proj))
+        trunc_normal_(self.class_embed, std=.02)
+
+        if task_switch['bbox']:
+            self.bbox_embed = MLP(hidden_dim, hidden_dim, 4, 3)
+
+        # Caption Project and query
+        if task_switch['captioning']:
+            self.caping_embed = nn.Parameter(torch.empty(hidden_dim, dim_proj))
+            trunc_normal_(self.caping_embed, std=.02)
+            # self.query_feat_caping = nn.Embedding(contxt_len, hidden_dim)
+            self.pos_embed_caping = nn.Embedding(contxt_len, hidden_dim)
+            self.captioning_step = captioning_step
+
+        # register self_attn_mask to avoid information leakage, it includes interaction between object query, class query and caping query
+        self_attn_mask = torch.zeros((1, num_queries + contxt_len, num_queries + contxt_len)).bool()
+        self_attn_mask[:, :num_queries, num_queries:] = True # object+class query does not attend with caption query.
+        self_attn_mask[:, num_queries:, num_queries:] = torch.triu(torch.ones((1, contxt_len, contxt_len)), diagonal=1).bool() # caption query only attend with previous token.
+        self_attn_mask[:, :num_queries-1, num_queries-1:num_queries] = True # object query does not attend with class query.
+        self_attn_mask[:, num_queries-1:num_queries, :num_queries-1] = True # class query does not attend with object query.
+        self.register_buffer("self_attn_mask", self_attn_mask)
+
+
+    @classmethod
+    def from_config(cls, cfg, in_channels, lang_encoder, mask_classification, extra):
+        ret = {}
+
+        ret["lang_encoder"] = lang_encoder
+        ret["in_channels"] = in_channels
+        ret["mask_classification"] = mask_classification
+
+        enc_cfg = cfg['MODEL']['ENCODER']
+        dec_cfg = cfg['MODEL']['DECODER']
+        
+        ret["hidden_dim"] = dec_cfg['HIDDEN_DIM']
+        ret["dim_proj"] = cfg['MODEL']['DIM_PROJ']
+        ret["num_queries"] = dec_cfg['NUM_OBJECT_QUERIES']
+        ret["contxt_len"] = cfg['MODEL']['TEXT']['CONTEXT_LENGTH']
+        
+        # Transformer parameters:
+        ret["nheads"] = dec_cfg['NHEADS']
+        ret["dim_feedforward"] = dec_cfg['DIM_FEEDFORWARD']
+
+        # NOTE: because we add learnable query features which requires supervision,
+        # we add minus 1 to decoder layers to be consistent with our loss
+        # implementation: that is, number of auxiliary losses is always
+        # equal to number of decoder layers. With learnable query features, the number of
+        # auxiliary losses equals number of decoders plus 1.
+        assert dec_cfg['DEC_LAYERS'] >= 1
+        ret["dec_layers"] = dec_cfg['DEC_LAYERS'] - 1
+        ret["pre_norm"] = dec_cfg['PRE_NORM']
+        ret["enforce_input_project"] = dec_cfg['ENFORCE_INPUT_PROJ']
+        ret["mask_dim"] = enc_cfg['MASK_DIM']
+
+        ret["task_switch"] = extra['task_switch']
+        ret["captioning_step"] = dec_cfg['CAPTIONING'].get('STEP', 50)
+
+        return ret
+
+    def forward(self, x, mask_features, mask=None, target_queries=None, target_vlp=None, task='seg', extra={}):
+        if task == 'captioning_infer':
+            return self.forward_captioning(x, mask_features, mask=mask, target_queries=target_queries, target_vlp=target_vlp, task=task, extra=extra)
+        # x is a list of multi-scale feature
+        assert len(x) == self.num_feature_levels
+        src = []
+        pos = []
+        size_list = []
+        
+        # disable mask, it does not affect performance
+        del mask
+        for i in range(self.num_feature_levels):
+            size_list.append(x[i].shape[-2:])
+            pos.append(self.pe_layer(x[i], None).flatten(2))
+            src.append(self.input_proj[i](x[i]).flatten(2) + self.level_embed.weight[i][None, :, None])
+
+            # flatten NxCxHxW to HWxNxC
+            pos[-1] = pos[-1].permute(2, 0, 1)
+            src[-1] = src[-1].permute(2, 0, 1)
+
+        _, bs, _ = src[0].shape
+
+        # QxNxC
+        query_embed = self.query_embed.weight.unsqueeze(1).repeat(1, bs, 1)
+        output = self.query_feat.weight.unsqueeze(1).repeat(1, bs, 1)
+
+        predictions_class = []
+        predictions_mask = []
+        predictions_bbox = []
+        predictions_caption = []
+        predictions_captioning = []
+        
+        self_tgt_mask = None
+        if self.training and task == 'vlp' and self.task_switch['captioning']:
+            # output = torch.cat((output, self.query_feat_caping.weight.unsqueeze(1).repeat(1, bs, 1)), dim=0) # concat object query, class token and caption token.
+            caping_lang_embed = torch.cat([caption['caption_tokens'] for caption in target_vlp], dim=0).transpose(0, 1) # language output
+            _caping_lang_embed = caping_lang_embed.detach().clone()
+            output = torch.cat((output, _caping_lang_embed), dim=0) # concat object query, class token and caption token.
+            caping_lang_embed += self.pos_embed_caping.weight.unsqueeze(1).repeat(1, bs, 1)
+            query_embed = torch.cat((query_embed, caping_lang_embed), dim=0) # may not add at the beginning.
+            self_tgt_mask = self.self_attn_mask.repeat(output.shape[1]*self.num_heads, 1, 1)
+        elif (((self.training and task == 'seg') or (task == 'grounding_eval')) and self.task_switch['grounding']) \
+                or ((self.training and task == 'openimage') and self.task_switch['openimage']['grounding']):
+            self_tgt_mask = self.self_attn_mask[:,:self.num_queries,:self.num_queries].repeat(output.shape[1]*self.num_heads, 1, 1)
+            grounding_tokens = extra['grounding_tokens']
+            _grounding_tokens = grounding_tokens.detach().clone()
+            # initialize with negative attention at the beginning.
+            pad_tgt_mask = torch.ones((1, self.num_queries + (self.num_queries-1) + len(grounding_tokens), self.num_queries + (self.num_queries-1) + len(grounding_tokens)), device=self_tgt_mask.device).bool().repeat(output.shape[1]*self.num_heads, 1, 1)
+            pad_tgt_mask[:,:self.num_queries,:self.num_queries] = self_tgt_mask
+            pad_tgt_mask[:,self.num_queries:,self.num_queries:] = False # grounding tokens could attend with eatch other
+            self_tgt_mask = pad_tgt_mask
+            output = torch.cat((output, output[:-1]), dim=0)
+            query_embed = torch.cat((query_embed, query_embed[:-1]), dim=0) # also pad language embdding to fix embedding
+        else:
+            self_tgt_mask = self.self_attn_mask[:,:self.num_queries,:self.num_queries].repeat(output.shape[1]*self.num_heads, 1, 1)
+
+        # prediction heads on learnable query features
+        results = self.forward_prediction_heads(output, mask_features, attn_mask_target_size=size_list[0], task=task)
+        attn_mask = results["attn_mask"]
+        predictions_class.append(results["outputs_class"])
+        predictions_mask.append(results["outputs_mask"])
+        predictions_bbox.append(results["outputs_bbox"])
+        predictions_caption.append(results["outputs_caption"])
+        predictions_captioning.append(results["outputs_captionting"])
+        
+        for i in range(self.num_layers):
+            level_index = i % self.num_feature_levels
+            attn_mask[torch.where(attn_mask.sum(-1) == attn_mask.shape[-1])] = False
+
+            if self.training and task == 'vlp' and self.task_switch['captioning']:
+                attn_mask = torch.cat((attn_mask, torch.zeros_like(attn_mask[:, :self.contxt_len, :])), dim=1)
+            # attention: cross-attention first
+            output, avg_attn = self.transformer_cross_attention_layers[i](
+                output, src[level_index],
+                memory_mask=attn_mask,
+                memory_key_padding_mask=None,  # here we do not apply masking on padded region
+                pos=pos[level_index], query_pos=query_embed
+            )
+
+            if (((self.training and task == 'seg') or (task == 'grounding_eval')) and self.task_switch['grounding']) \
+                    or ((self.training and task == 'openimage') and self.task_switch['openimage']['grounding']):
+                output = torch.cat((output, _grounding_tokens), dim=0)
+                query_embed = torch.cat((query_embed, grounding_tokens), dim=0)
+
+            output = self.transformer_self_attention_layers[i](
+                output, tgt_mask=self_tgt_mask,
+                tgt_key_padding_mask=None,
+                query_pos=query_embed
+            )
+            
+            # FFN
+            output = self.transformer_ffn_layers[i](
+                output
+            )
+
+            if ((self.training and task == 'seg') or (task == 'grounding_eval')) and self.task_switch['grounding'] \
+                    or ((self.training and task == 'openimage') and self.task_switch['openimage']['grounding']):
+                _grounding_tokens = output[-len(_grounding_tokens):]
+                output = output[:-len(_grounding_tokens)]
+                query_embed = query_embed[:-len(_grounding_tokens)]
+
+            results = self.forward_prediction_heads(output, mask_features, attn_mask_target_size=size_list[(i + 1) % self.num_feature_levels], layer_id=i, task=task)
+            attn_mask = results["attn_mask"]
+            predictions_class.append(results["outputs_class"])
+            predictions_mask.append(results["outputs_mask"])
+            predictions_bbox.append(results["outputs_bbox"])
+            predictions_caption.append(results["outputs_caption"])
+            predictions_captioning.append(results["outputs_captionting"])
+
+        assert len(predictions_class) == self.num_layers + 1
+        if task == 'vlp':
+            out = {'pred_captionings': predictions_captioning[-1], 
+                   'pred_captions': predictions_caption[-1], 
+                   'aux_outputs': [{'pred_captionings': x, 'pred_captions': y } for x, y in zip(predictions_captioning[:-1], predictions_caption[:-1])]}
+            return out
+        else:
+            out = {
+                'pred_logits': predictions_class[-1],
+                'pred_masks': predictions_mask[-1],
+                'pred_boxes': predictions_bbox[-1],
+                'pred_captions': predictions_caption[-1],
+                'aux_outputs': self._set_aux_loss(
+                    predictions_class if self.mask_classification else None, predictions_mask, predictions_bbox, predictions_caption
+                )
+            }
+            return out
+
+    def forward_captioning(self, x, mask_features, mask = None, target_queries = None, target_vlp = None, task='seg', extra={}):
+        # x is a list of multi-scale feature
+        assert len(x) == self.num_feature_levels
+        src = []
+        pos = []
+        size_list = []
+        
+        # disable mask, it does not affect performance
+        del mask
+        for i in range(self.num_feature_levels):
+            size_list.append(x[i].shape[-2:])
+            pos.append(self.pe_layer(x[i], None).flatten(2))
+            src.append(self.input_proj[i](x[i]).flatten(2) + self.level_embed.weight[i][None, :, None])
+
+            # flatten NxCxHxW to HWxNxC
+            pos[-1] = pos[-1].permute(2, 0, 1)
+            src[-1] = src[-1].permute(2, 0, 1)
+
+        _, bs, _ = src[0].shape
+
+        # QxNxC
+        query_embed_ = self.query_embed.weight.unsqueeze(1).repeat(1, bs, 1)
+        query_feat = self.query_feat.weight.unsqueeze(1).repeat(1, bs, 1)        
+        caping_lang_token = extra['start_token'].repeat(bs, 1)
+        start_id = 0
+        if 'token' in extra:
+            caping_lang_token[:,:len(extra['token'][0])] = extra['token']
+            start_id = len(extra['token'][0])-1
+        # query_feat_caping = self.query_feat_caping.weight.unsqueeze(1).repeat(1, bs, 1)
+        pos_embed_caping = self.pos_embed_caping.weight.unsqueeze(1).repeat(1, bs, 1)
+        # prepare token embedding for evaluation
+        token_embs = self.lang_encoder.lang_encoder.token_embedding.weight
+        # token_embs = (token_embs / token_embs.norm(dim=-1, keepdim=True) + 1e-7)
+        
+        for cap_idx in range(start_id, self.captioning_step):
+            caping_lang_embed = self.lang_encoder.forward_language_token((caping_lang_token,))[0].transpose(0, 1)
+            output = torch.cat((query_feat, caping_lang_embed), dim=0) # concat object query, class token and caption token.
+            caping_lang_embed += pos_embed_caping
+            query_embed = torch.cat((query_embed_, caping_lang_embed), dim=0) # may not add at the beginning.
+            # output = torch.cat((query_feat, query_feat_caping), dim=0) # concat object query, class token and caption token.
+
+            # prediction heads on learnable query features
+            results = self.forward_prediction_heads(output, mask_features, attn_mask_target_size=size_list[0], task=task)
+            attn_mask = results["attn_mask"]
+        
+            for i in range(self.num_layers):
+                level_index = i % self.num_feature_levels
+                attn_mask[torch.where(attn_mask.sum(-1) == attn_mask.shape[-1])] = False
+                attn_mask = torch.cat((attn_mask, torch.zeros_like(attn_mask[:, :self.contxt_len, :])), dim=1)
+                self_tgt_mask = self.self_attn_mask.repeat(output.shape[1]*self.num_heads, 1, 1)
+
+                if extra['captioning_mask'] is not None:
+                    bs,nq,wh = attn_mask.shape
+                    assert bs==self.num_heads, "Only support single image referring captioning."
+                    cap_mask = extra['captioning_mask']
+                    attn_mask = attn_mask.reshape(bs,nq,size_list[i%3][0],size_list[i%3][1])
+                    cap_mask = F.interpolate(cap_mask[None,].float(), size_list[i%3], mode='nearest').bool()[0,0]
+                    attn_mask[:,self.num_queries:, cap_mask] = True
+                    attn_mask = attn_mask.reshape(bs,nq,wh)
+                
+                # attention: cross-attention first
+                output, avg_attn = self.transformer_cross_attention_layers[i](
+                    output, src[level_index],
+                    memory_mask=attn_mask,
+                    memory_key_padding_mask=None,  # here we do not apply masking on padded region
+                    pos=pos[level_index], query_pos=query_embed
+                )
+
+                output = self.transformer_self_attention_layers[i](
+                    output, tgt_mask=self_tgt_mask,
+                    tgt_key_padding_mask=None,
+                    query_pos=query_embed
+                )
+                
+                # FFN
+                output = self.transformer_ffn_layers[i](
+                    output
+                )
+
+                results = self.forward_prediction_heads(output, mask_features, attn_mask_target_size=size_list[(i + 1) % self.num_feature_levels], layer_id=i, task=task)
+                attn_mask = results["attn_mask"]
+            
+            pred_captions_gen = results['outputs_captionting']
+            # pred_captions_gen = (pred_captions_gen / pred_captions_gen.norm(dim=-1, keepdim=True) + 1e-7)
+            pred_captions_gen = pred_captions_gen @ token_embs.t()
+            caping_lang_token[:,cap_idx+1] = pred_captions_gen[:,cap_idx].max(-1)[1]
+            
+        texts = self.lang_encoder.tokenizer.batch_decode(caping_lang_token, skip_special_tokens=False)
+        texts_new = []
+        
+        for x in texts:
+            x = x.split('<|endoftext|>')[0]
+            x = x.replace('<|endoftext|>','')
+            x = x.replace('<|startoftext|>','')
+            x = x.strip()
+            texts_new.append(x)
+
+        out = {'pred_captionings': caping_lang_token,
+               'pred_texts': texts_new}
+        return out
+
+
+    def forward_prediction_heads(self, output, mask_features, attn_mask_target_size, layer_id=-1, task='seg'):
+        decoder_output = self.decoder_norm(output)
+        decoder_output = decoder_output.transpose(0, 1)
+
+        # extract image captioning token from decoder output.
+        if self.task_switch['captioning'] and (task == 'vlp' or task == 'captioning_infer'):
+            outputs_captionting = decoder_output[:,self.num_queries:] @ self.caping_embed
+        else:
+            outputs_captionting = None
+
+        # recompute class token output.
+        norm_decoder_output = decoder_output / (decoder_output.norm(dim=-1, keepdim=True) + 1e-7)
+        obj_token = norm_decoder_output[:,:self.num_queries-1]
+        cls_token = norm_decoder_output[:,self.num_queries-1:self.num_queries]
+
+        sim = (cls_token @ obj_token.transpose(1,2)).softmax(-1)[:,0,:,None] # TODO include class token.
+        cls_token = (sim * decoder_output[:,:self.num_queries-1]).sum(dim=1, keepdim=True)
+
+        if (((self.training and task == 'seg') or (task == 'grounding_eval')) and self.task_switch['grounding']) \
+                or ((self.training and task == 'openimage') and self.task_switch['openimage']['grounding']):
+            decoder_output = torch.cat((decoder_output[:,:self.num_queries-1], cls_token, decoder_output[:,self.num_queries:2*self.num_queries-1]), dim=1)
+        else:
+            decoder_output = torch.cat((decoder_output[:,:self.num_queries-1], cls_token), dim=1)
+
+        # compute class, mask and bbox.
+        class_embed = decoder_output @ self.class_embed
+        # HACK do not compute similarity if mask is not on
+        outputs_class = self.lang_encoder.compute_similarity(class_embed, fake=(((not self.task_switch['mask']) and self.training) or (task == 'openimage')))
+
+        if self.task_switch['mask'] or self.task_switch['openimage']['mask']:
+            mask_embed = self.mask_embed(decoder_output)
+            outputs_mask = torch.einsum("bqc,bchw->bqhw", mask_embed, mask_features)
+
+            # NOTE: prediction is of higher-resolution
+            # [B, Q, H, W] -> [B, Q, H*W] -> [B, h, Q, H*W] -> [B*h, Q, HW]
+            attn_mask = F.interpolate(outputs_mask, size=attn_mask_target_size, mode="bilinear", align_corners=False)
+
+            # must use bool type
+            # If a BoolTensor is provided, positions with ``True`` are not allowed to attend while ``False`` values will be unchanged.
+            attn_mask = (attn_mask.sigmoid().flatten(2).unsqueeze(1).repeat(1, self.num_heads, 1, 1).flatten(0, 1) < 0.5).bool()
+            attn_mask = attn_mask.detach()
+
+            # NOTE: fill False for cls token (JY)
+            attn_mask[:, self.num_queries:self.num_queries+1].fill_(False)
+        else:
+            outputs_mask = None
+            attn_mask = torch.zeros((list(decoder_output.shape[:2]) + [attn_mask_target_size[0]*attn_mask_target_size[1]]), device=decoder_output.device).repeat(self.num_heads, 1, 1).bool()
+
+        outputs_bbox = [None for i in range(len(decoder_output))]
+        if self.task_switch['bbox']:
+            outputs_bbox = self.bbox_embed(decoder_output)
+
+        outputs_caption = None
+        if self.task_switch['caption']:
+            outputs_caption = class_embed
+            
+
+        results = {
+            "outputs_class": outputs_class,
+            "outputs_mask": outputs_mask,
+            "outputs_bbox": outputs_bbox,
+            "attn_mask": attn_mask,
+            "outputs_caption": outputs_caption,
+            "outputs_captionting": outputs_captionting,
+        }
+        return results
+
+    @torch.jit.unused
+    def _set_aux_loss(self, outputs_class, outputs_seg_masks, outputs_boxes, outputs_captions):
+        # this is a workaround to make torchscript happy, as torchscript
+        # doesn't support dictionary with non-homogeneous values, such
+        # as a dict having both a Tensor and a list.
+        if self.mask_classification:
+            return [
+                {"pred_logits": a, "pred_masks": b, "pred_boxes": c, "pred_captions": d}
+                for a, b, c, d in zip(outputs_class[:-1], outputs_seg_masks[:-1], outputs_boxes[:-1], outputs_captions[:-1])
+            ]
+        else:
+            return [{"pred_masks": b} for b in outputs_seg_masks[:-1]]
+
+
+@register_decoder
+def get_masked_transformer_decoder(cfg, in_channels, lang_encoder, mask_classification, extra):
+    return MultiScaleMaskedTransformerDecoder(cfg, in_channels, lang_encoder, mask_classification, extra)
\ No newline at end of file
diff --git a/xdecoder/body/decoder/xdecoder2.py b/xdecoder/body/decoder/xdecoder2.py
new file mode 100644
index 0000000000000000000000000000000000000000..e99d4623b2e987a66650db71c4a378a0ebaf241a
--- /dev/null
+++ b/xdecoder/body/decoder/xdecoder2.py
@@ -0,0 +1,700 @@
+# Copyright (c) Facebook, Inc. and its affiliates.
+# Modified by Bowen Cheng from: https://github.com/facebookresearch/detr/blob/master/models/detr.py
+
+# --------------------------------------------------------
+# X-Decoder -- Generalized Decoding for Pixel, Image, and Language
+# Copyright (c) 2022 Microsoft
+# Licensed under The MIT License [see LICENSE for details]
+# Written by Xueyan Zou (xueyan@cs.wisc.edu), Jianwei Yang (jianwyan@microsoft.com)
+# --------------------------------------------------------
+
+
+import logging
+from typing import Optional
+
+import torch
+from torch import nn, Tensor
+from torch.nn import functional as F
+
+from timm.models.layers import trunc_normal_
+from detectron2.layers import Conv2d
+import fvcore.nn.weight_init as weight_init
+
+from .registry import register_decoder
+from ...utils import configurable
+from ...modules import PositionEmbeddingSine
+
+
+class SelfAttentionLayer(nn.Module):
+
+    def __init__(self, d_model, nhead, dropout=0.0,
+                 activation="relu", normalize_before=False):
+        super().__init__()
+        self.self_attn = nn.MultiheadAttention(d_model, nhead, dropout=dropout)
+
+        self.norm = nn.LayerNorm(d_model)
+        self.dropout = nn.Dropout(dropout)
+
+        self.activation = _get_activation_fn(activation)
+        self.normalize_before = normalize_before
+
+        self._reset_parameters()
+    
+    def _reset_parameters(self):
+        for p in self.parameters():
+            if p.dim() > 1:
+                nn.init.xavier_uniform_(p)
+
+    def with_pos_embed(self, tensor, pos: Optional[Tensor]):
+        return tensor if pos is None else tensor + pos
+
+    def forward_post(self, tgt,
+                     tgt_mask: Optional[Tensor] = None,
+                     tgt_key_padding_mask: Optional[Tensor] = None,
+                     query_pos: Optional[Tensor] = None):
+        q = k = self.with_pos_embed(tgt, query_pos)
+        tgt2 = self.self_attn(q, k, value=tgt, attn_mask=tgt_mask,
+                              key_padding_mask=tgt_key_padding_mask)[0]
+        tgt = tgt + self.dropout(tgt2)
+        tgt = self.norm(tgt)
+
+        return tgt
+
+    def forward_pre(self, tgt,
+                    tgt_mask: Optional[Tensor] = None,
+                    tgt_key_padding_mask: Optional[Tensor] = None,
+                    query_pos: Optional[Tensor] = None):
+        tgt2 = self.norm(tgt)
+        q = k = self.with_pos_embed(tgt2, query_pos)
+        tgt2 = self.self_attn(q, k, value=tgt2, attn_mask=tgt_mask,
+                              key_padding_mask=tgt_key_padding_mask)[0]
+        tgt = tgt + self.dropout(tgt2)
+        
+        return tgt
+
+    def forward(self, tgt,
+                tgt_mask: Optional[Tensor] = None,
+                tgt_key_padding_mask: Optional[Tensor] = None,
+                query_pos: Optional[Tensor] = None):
+        if self.normalize_before:
+            return self.forward_pre(tgt, tgt_mask,
+                                    tgt_key_padding_mask, query_pos)
+        return self.forward_post(tgt, tgt_mask,
+                                 tgt_key_padding_mask, query_pos)
+
+
+class CrossAttentionLayer(nn.Module):
+
+    def __init__(self, d_model, nhead, dropout=0.0,
+                 activation="relu", normalize_before=False):
+        super().__init__()
+        self.multihead_attn = nn.MultiheadAttention(d_model, nhead, dropout=dropout)
+
+        self.norm = nn.LayerNorm(d_model)
+        self.dropout = nn.Dropout(dropout)
+
+        self.activation = _get_activation_fn(activation)
+        self.normalize_before = normalize_before
+
+        self._reset_parameters()
+    
+    def _reset_parameters(self):
+        for p in self.parameters():
+            if p.dim() > 1:
+                nn.init.xavier_uniform_(p)
+
+    def with_pos_embed(self, tensor, pos: Optional[Tensor]):
+        return tensor if pos is None else tensor + pos
+
+    def forward_post(self, tgt, memory,
+                     memory_mask: Optional[Tensor] = None,
+                     memory_key_padding_mask: Optional[Tensor] = None,
+                     pos: Optional[Tensor] = None,
+                     query_pos: Optional[Tensor] = None):
+        tgt2, avg_attn = self.multihead_attn(query=self.with_pos_embed(tgt, query_pos),
+                                   key=self.with_pos_embed(memory, pos),
+                                   value=memory, attn_mask=memory_mask,
+                                   key_padding_mask=memory_key_padding_mask)
+        tgt = tgt + self.dropout(tgt2)
+        tgt = self.norm(tgt)
+        return tgt, avg_attn
+
+    def forward_pre(self, tgt, memory,
+                    memory_mask: Optional[Tensor] = None,
+                    memory_key_padding_mask: Optional[Tensor] = None,
+                    pos: Optional[Tensor] = None,
+                    query_pos: Optional[Tensor] = None):
+        tgt2 = self.norm(tgt)
+        tgt2, avg_attn = self.multihead_attn(query=self.with_pos_embed(tgt2, query_pos),
+                                   key=self.with_pos_embed(memory, pos),
+                                   value=memory, attn_mask=memory_mask,
+                                   key_padding_mask=memory_key_padding_mask)
+        tgt = tgt + self.dropout(tgt2)
+
+        return tgt, avg_attn
+
+    def forward(self, tgt, memory,
+                memory_mask: Optional[Tensor] = None,
+                memory_key_padding_mask: Optional[Tensor] = None,
+                pos: Optional[Tensor] = None,
+                query_pos: Optional[Tensor] = None):
+        if self.normalize_before:
+            return self.forward_pre(tgt, memory, memory_mask,
+                                    memory_key_padding_mask, pos, query_pos)
+        return self.forward_post(tgt, memory, memory_mask,
+                                 memory_key_padding_mask, pos, query_pos)
+
+
+class FFNLayer(nn.Module):
+
+    def __init__(self, d_model, dim_feedforward=2048, dropout=0.0,
+                 activation="relu", normalize_before=False):
+        super().__init__()
+        # Implementation of Feedforward model
+        self.linear1 = nn.Linear(d_model, dim_feedforward)
+        self.dropout = nn.Dropout(dropout)
+        self.linear2 = nn.Linear(dim_feedforward, d_model)
+
+        self.norm = nn.LayerNorm(d_model)
+
+        self.activation = _get_activation_fn(activation)
+        self.normalize_before = normalize_before
+
+        self._reset_parameters()
+    
+    def _reset_parameters(self):
+        for p in self.parameters():
+            if p.dim() > 1:
+                nn.init.xavier_uniform_(p)
+
+    def with_pos_embed(self, tensor, pos: Optional[Tensor]):
+        return tensor if pos is None else tensor + pos
+
+    def forward_post(self, tgt):
+        tgt2 = self.linear2(self.dropout(self.activation(self.linear1(tgt))))
+        tgt = tgt + self.dropout(tgt2)
+        tgt = self.norm(tgt)
+        return tgt
+
+    def forward_pre(self, tgt):
+        tgt2 = self.norm(tgt)
+        tgt2 = self.linear2(self.dropout(self.activation(self.linear1(tgt2))))
+        tgt = tgt + self.dropout(tgt2)
+        return tgt
+
+    def forward(self, tgt):
+        if self.normalize_before:
+            return self.forward_pre(tgt)
+        return self.forward_post(tgt)
+
+
+def _get_activation_fn(activation):
+    """Return an activation function given a string"""
+    if activation == "relu":
+        return F.relu
+    if activation == "gelu":
+        return F.gelu
+    if activation == "glu":
+        return F.glu
+    raise RuntimeError(F"activation should be relu/gelu, not {activation}.")
+
+
+class MLP(nn.Module):
+    """ Very simple multi-layer perceptron (also called FFN)"""
+
+    def __init__(self, input_dim, hidden_dim, output_dim, num_layers):
+        super().__init__()
+        self.num_layers = num_layers
+        h = [hidden_dim] * (num_layers - 1)
+        self.layers = nn.ModuleList(nn.Linear(n, k) for n, k in zip([input_dim] + h, h + [output_dim]))
+
+    def forward(self, x):
+        for i, layer in enumerate(self.layers):
+            x = F.relu(layer(x)) if i < self.num_layers - 1 else layer(x)
+        return x
+
+
+class MultiScaleMaskedTransformerDecoder(nn.Module):
+
+    _version = 2
+
+    @configurable
+    def __init__(
+        self,
+        lang_encoder: nn.Module,
+        in_channels,
+        mask_classification=True,
+        *,
+        hidden_dim: int,
+        dim_proj: int,
+        num_queries: int,
+        contxt_len: int,
+        nheads: int,
+        dim_feedforward: int,
+        dec_layers: int,
+        pre_norm: bool,
+        mask_dim: int,
+        task_switch: dict,
+        captioning_step: int,
+        enforce_input_project: bool,
+    ):
+        """
+        NOTE: this interface is experimental.
+        Args:
+            in_channels: channels of the input features
+            mask_classification: whether to add mask classifier or not
+            num_classes: number of classes
+            hidden_dim: Transformer feature dimension
+            num_queries: number of queries
+            nheads: number of heads
+            dim_feedforward: feature dimension in feedforward network
+            enc_layers: number of Transformer encoder layers
+            dec_layers: number of Transformer decoder layers
+            pre_norm: whether to use pre-LayerNorm or not
+            mask_dim: mask feature dimension
+            enforce_input_project: add input project 1x1 conv even if input
+                channels and hidden dim is identical
+        """
+        super().__init__()
+        assert mask_classification, "Only support mask classification model"
+        self.mask_classification = mask_classification
+
+        # positional encoding
+        N_steps = hidden_dim // 2
+        self.pe_layer = PositionEmbeddingSine(N_steps, normalize=True)
+        
+        # define Transformer decoder here
+        self.num_heads = nheads
+        self.num_layers = dec_layers
+        self.contxt_len = contxt_len
+        self.transformer_self_attention_layers = nn.ModuleList()
+        self.transformer_cross_attention_layers = nn.ModuleList()
+        self.transformer_ffn_layers = nn.ModuleList()
+
+        for _ in range(self.num_layers):
+            self.transformer_self_attention_layers.append(
+                SelfAttentionLayer(
+                    d_model=hidden_dim,
+                    nhead=nheads,
+                    dropout=0.0,
+                    normalize_before=pre_norm,
+                )
+            )
+
+            self.transformer_cross_attention_layers.append(
+                CrossAttentionLayer(
+                    d_model=hidden_dim,
+                    nhead=nheads,
+                    dropout=0.0,
+                    normalize_before=pre_norm,
+                )
+            )
+
+            self.transformer_ffn_layers.append(
+                FFNLayer(
+                    d_model=hidden_dim,
+                    dim_feedforward=dim_feedforward,
+                    dropout=0.0,
+                    normalize_before=pre_norm,
+                )
+            )
+
+        self.decoder_norm = nn.LayerNorm(hidden_dim)
+
+        self.num_queries = num_queries
+        # learnable query features
+        self.query_feat = nn.Embedding(num_queries, hidden_dim)
+        # learnable query p.e.
+        self.query_embed = nn.Embedding(num_queries, hidden_dim)
+        
+        # level embedding (we always use 3 scales)
+        self.num_feature_levels = 3
+        self.level_embed = nn.Embedding(self.num_feature_levels, hidden_dim)
+        self.input_proj = nn.ModuleList()
+        
+        for _ in range(self.num_feature_levels):
+            if in_channels != hidden_dim or enforce_input_project:
+                self.input_proj.append(Conv2d(in_channels, hidden_dim, kernel_size=1))
+                weight_init.c2_xavier_fill(self.input_proj[-1])
+            else:
+                self.input_proj.append(nn.Sequential())
+
+        self.task_switch = task_switch
+
+        # output FFNs
+        self.lang_encoder = lang_encoder
+        if self.task_switch['mask']:
+            self.mask_embed = MLP(hidden_dim, hidden_dim, mask_dim, 3)
+
+        self.class_embed = nn.Parameter(torch.empty(hidden_dim, dim_proj))
+        trunc_normal_(self.class_embed, std=.02)
+
+        if task_switch['bbox']:
+            self.bbox_embed = MLP(hidden_dim, hidden_dim, 4, 3)
+
+        # Caption Project and query
+        if task_switch['captioning']:
+            self.caping_embed = nn.Parameter(torch.empty(hidden_dim, dim_proj))
+            trunc_normal_(self.caping_embed, std=.02)
+            self.query_feat_caping = nn.Embedding(contxt_len, hidden_dim)
+            # self.pos_embed_caping = nn.Embedding(contxt_len, hidden_dim)
+            self.captioning_step = captioning_step
+
+        # register self_attn_mask to avoid information leakage, it includes interaction between object query, class query and caping query
+        self_attn_mask = torch.zeros((1, num_queries + contxt_len, num_queries + contxt_len)).bool()
+        self_attn_mask[:, :num_queries, num_queries:] = True # object+class query does not attend with caption query.
+        self_attn_mask[:, num_queries:, num_queries:] = torch.triu(torch.ones((1, contxt_len, contxt_len)), diagonal=1).bool() # caption query only attend with previous token.
+        self_attn_mask[:, :num_queries-1, num_queries-1:num_queries] = True # object query does not attend with class query.
+        self_attn_mask[:, num_queries-1:num_queries, :num_queries-1] = True # class query does not attend with object query.
+        self.register_buffer("self_attn_mask", self_attn_mask)
+
+
+    @classmethod
+    def from_config(cls, cfg, in_channels, lang_encoder, mask_classification, extra):
+        ret = {}
+
+        ret["lang_encoder"] = lang_encoder
+        ret["in_channels"] = in_channels
+        ret["mask_classification"] = mask_classification
+
+        enc_cfg = cfg['MODEL']['ENCODER']
+        dec_cfg = cfg['MODEL']['DECODER']
+        
+        ret["hidden_dim"] = dec_cfg['HIDDEN_DIM']
+        ret["dim_proj"] = cfg['MODEL']['DIM_PROJ']
+        ret["num_queries"] = dec_cfg['NUM_OBJECT_QUERIES']
+        ret["contxt_len"] = cfg['MODEL']['TEXT']['CONTEXT_LENGTH']
+        
+        # Transformer parameters:
+        ret["nheads"] = dec_cfg['NHEADS']
+        ret["dim_feedforward"] = dec_cfg['DIM_FEEDFORWARD']
+
+        # NOTE: because we add learnable query features which requires supervision,
+        # we add minus 1 to decoder layers to be consistent with our loss
+        # implementation: that is, number of auxiliary losses is always
+        # equal to number of decoder layers. With learnable query features, the number of
+        # auxiliary losses equals number of decoders plus 1.
+        assert dec_cfg['DEC_LAYERS'] >= 1
+        ret["dec_layers"] = dec_cfg['DEC_LAYERS'] - 1
+        ret["pre_norm"] = dec_cfg['PRE_NORM']
+        ret["enforce_input_project"] = dec_cfg['ENFORCE_INPUT_PROJ']
+        ret["mask_dim"] = enc_cfg['MASK_DIM']
+
+        ret["task_switch"] = extra['task_switch']
+        ret["captioning_step"] = dec_cfg['CAPTIONING'].get('STEP', 50)
+
+        return ret
+
+    def forward(self, x, mask_features, mask=None, target_queries=None, target_vlp=None, task='seg', extra={}):
+        if task == 'captioning_infer':
+            return self.forward_captioning(x, mask_features, mask=mask, target_queries=target_queries, target_vlp=target_vlp, task=task, extra=extra)
+        # x is a list of multi-scale feature
+        assert len(x) == self.num_feature_levels
+        src = []
+        pos = []
+        size_list = []
+        
+        # disable mask, it does not affect performance
+        del mask
+        for i in range(self.num_feature_levels):
+            size_list.append(x[i].shape[-2:])
+            pos.append(self.pe_layer(x[i], None).flatten(2))
+            src.append(self.input_proj[i](x[i]).flatten(2) + self.level_embed.weight[i][None, :, None])
+
+            # flatten NxCxHxW to HWxNxC
+            pos[-1] = pos[-1].permute(2, 0, 1)
+            src[-1] = src[-1].permute(2, 0, 1)
+
+        _, bs, _ = src[0].shape
+
+        # QxNxC
+        query_embed = self.query_embed.weight.unsqueeze(1).repeat(1, bs, 1)
+        output = self.query_feat.weight.unsqueeze(1).repeat(1, bs, 1)
+
+        predictions_class = []
+        predictions_mask = []
+        predictions_bbox = []
+        predictions_caption = []
+        predictions_captioning = []
+        
+        self_tgt_mask = None
+        if self.training and task == 'vlp' and self.task_switch['captioning']:
+            output = torch.cat((output, self.query_feat_caping.weight.unsqueeze(1).repeat(1, bs, 1)), dim=0) # concat object query, class token and caption token.
+            caping_lang_embed = torch.cat([caption['caption_tokens'] for caption in target_vlp], dim=0).transpose(0, 1) # language output
+            # _caping_lang_embed = caping_lang_embed.detach().clone()
+            # output = torch.cat((output, _caping_lang_embed), dim=0) # concat object query, class token and caption token.
+            # caping_lang_embed += self.pos_embed_caping.weight.unsqueeze(1).repeat(1, bs, 1)
+            query_embed = torch.cat((query_embed, caping_lang_embed), dim=0) # may not add at the beginning.
+            self_tgt_mask = self.self_attn_mask.repeat(output.shape[1]*self.num_heads, 1, 1)
+        elif (((self.training and task == 'seg') or (task == 'grounding_eval')) and self.task_switch['grounding']) \
+                or ((self.training and task == 'openimage') and self.task_switch['openimage']['grounding']):
+            self_tgt_mask = self.self_attn_mask[:,:self.num_queries,:self.num_queries].repeat(output.shape[1]*self.num_heads, 1, 1)
+            grounding_tokens = extra['grounding_tokens']
+            _grounding_tokens = grounding_tokens.detach().clone()
+            # initialize with negative attention at the beginning.
+            pad_tgt_mask = torch.ones((1, self.num_queries + (self.num_queries-1) + len(grounding_tokens), self.num_queries + (self.num_queries-1) + len(grounding_tokens)), device=self_tgt_mask.device).bool().repeat(output.shape[1]*self.num_heads, 1, 1)
+            pad_tgt_mask[:,:self.num_queries,:self.num_queries] = self_tgt_mask
+            pad_tgt_mask[:,self.num_queries:,self.num_queries:] = False # grounding tokens could attend with eatch other
+            self_tgt_mask = pad_tgt_mask
+            output = torch.cat((output, output[:-1]), dim=0)
+            query_embed = torch.cat((query_embed, query_embed[:-1]), dim=0) # also pad language embdding to fix embedding
+        else:
+            self_tgt_mask = self.self_attn_mask[:,:self.num_queries,:self.num_queries].repeat(output.shape[1]*self.num_heads, 1, 1)
+
+        # prediction heads on learnable query features
+        results = self.forward_prediction_heads(output, mask_features, attn_mask_target_size=size_list[0], task=task)
+        attn_mask = results["attn_mask"]
+        predictions_class.append(results["outputs_class"])
+        predictions_mask.append(results["outputs_mask"])
+        predictions_bbox.append(results["outputs_bbox"])
+        predictions_caption.append(results["outputs_caption"])
+        predictions_captioning.append(results["outputs_captionting"])
+        
+        for i in range(self.num_layers):
+            level_index = i % self.num_feature_levels
+            attn_mask[torch.where(attn_mask.sum(-1) == attn_mask.shape[-1])] = False
+
+            if self.training and task == 'vlp' and self.task_switch['captioning']:
+                attn_mask = torch.cat((attn_mask, torch.zeros_like(attn_mask[:, :self.contxt_len, :])), dim=1)
+            # attention: cross-attention first
+            output, avg_attn = self.transformer_cross_attention_layers[i](
+                output, src[level_index],
+                memory_mask=attn_mask,
+                memory_key_padding_mask=None,  # here we do not apply masking on padded region
+                pos=pos[level_index], query_pos=query_embed
+            )
+
+            if (((self.training and task == 'seg') or (task == 'grounding_eval')) and self.task_switch['grounding']) \
+                    or ((self.training and task == 'openimage') and self.task_switch['openimage']['grounding']):
+                output = torch.cat((output, _grounding_tokens), dim=0)
+                query_embed = torch.cat((query_embed, grounding_tokens), dim=0)
+
+            output = self.transformer_self_attention_layers[i](
+                output, tgt_mask=self_tgt_mask,
+                tgt_key_padding_mask=None,
+                query_pos=query_embed
+            )
+            
+            # FFN
+            output = self.transformer_ffn_layers[i](
+                output
+            )
+
+            if ((self.training and task == 'seg') or (task == 'grounding_eval')) and self.task_switch['grounding'] \
+                    or ((self.training and task == 'openimage') and self.task_switch['openimage']['grounding']):
+                _grounding_tokens = output[-len(_grounding_tokens):]
+                output = output[:-len(_grounding_tokens)]
+                query_embed = query_embed[:-len(_grounding_tokens)]
+
+            results = self.forward_prediction_heads(output, mask_features, attn_mask_target_size=size_list[(i + 1) % self.num_feature_levels], layer_id=i, task=task)
+            attn_mask = results["attn_mask"]
+            predictions_class.append(results["outputs_class"])
+            predictions_mask.append(results["outputs_mask"])
+            predictions_bbox.append(results["outputs_bbox"])
+            predictions_caption.append(results["outputs_caption"])
+            predictions_captioning.append(results["outputs_captionting"])
+
+        assert len(predictions_class) == self.num_layers + 1
+        if task == 'vlp':
+            out = {'pred_captionings': predictions_captioning[-1], 
+                   'pred_captions': predictions_caption[-1], 
+                   'aux_outputs': [{'pred_captionings': x, 'pred_captions': y } for x, y in zip(predictions_captioning[:-1], predictions_caption[:-1])]}
+            return out
+        else:
+            out = {
+                'pred_logits': predictions_class[-1],
+                'pred_masks': predictions_mask[-1],
+                'pred_boxes': predictions_bbox[-1],
+                'pred_captions': predictions_caption[-1],
+                'aux_outputs': self._set_aux_loss(
+                    predictions_class if self.mask_classification else None, predictions_mask, predictions_bbox, predictions_caption
+                )
+            }
+            return out
+
+    def forward_captioning(self, x, mask_features, mask = None, target_queries = None, target_vlp = None, task='seg', extra={}):
+        # x is a list of multi-scale feature
+        assert len(x) == self.num_feature_levels
+        src = []
+        pos = []
+        size_list = []
+        
+        # disable mask, it does not affect performance
+        del mask
+        for i in range(self.num_feature_levels):
+            size_list.append(x[i].shape[-2:])
+            pos.append(self.pe_layer(x[i], None).flatten(2))
+            src.append(self.input_proj[i](x[i]).flatten(2) + self.level_embed.weight[i][None, :, None])
+
+            # flatten NxCxHxW to HWxNxC
+            pos[-1] = pos[-1].permute(2, 0, 1)
+            src[-1] = src[-1].permute(2, 0, 1)
+
+        _, bs, _ = src[0].shape
+
+        # QxNxC
+        query_embed_ = self.query_embed.weight.unsqueeze(1).repeat(1, bs, 1)
+        query_feat = self.query_feat.weight.unsqueeze(1).repeat(1, bs, 1)        
+        caping_lang_token = extra['start_token'].repeat(bs, 1)
+        start_id = 0
+        if 'token' in extra:
+            caping_lang_token[:,:len(extra['token'][0])] = extra['token']
+            start_id = len(extra['token'][0])-1
+        query_feat_caping = self.query_feat_caping.weight.unsqueeze(1).repeat(1, bs, 1)
+        # pos_embed_caping = self.pos_embed_caping.weight.unsqueeze(1).repeat(1, bs, 1)
+        # prepare token embedding for evaluation
+        token_embs = self.lang_encoder.lang_encoder.token_embedding.weight
+        # token_embs = (token_embs / token_embs.norm(dim=-1, keepdim=True) + 1e-7)
+        
+        for cap_idx in range(start_id, self.captioning_step):
+            caping_lang_embed = self.lang_encoder.forward_language_token((caping_lang_token,))[0].transpose(0, 1)
+            # output = torch.cat((query_feat, caping_lang_embed), dim=0) # concat object query, class token and caption token.
+            # caping_lang_embed += pos_embed_caping
+            query_embed = torch.cat((query_embed_, caping_lang_embed), dim=0) # may not add at the beginning.
+            output = torch.cat((query_feat, query_feat_caping), dim=0) # concat object query, class token and caption token.
+
+            # prediction heads on learnable query features
+            results = self.forward_prediction_heads(output, mask_features, attn_mask_target_size=size_list[0], task=task)
+            attn_mask = results["attn_mask"]
+        
+            for i in range(self.num_layers):
+                level_index = i % self.num_feature_levels
+                attn_mask[torch.where(attn_mask.sum(-1) == attn_mask.shape[-1])] = False
+                attn_mask = torch.cat((attn_mask, torch.zeros_like(attn_mask[:, :self.contxt_len, :])), dim=1)
+                self_tgt_mask = self.self_attn_mask.repeat(output.shape[1]*self.num_heads, 1, 1)
+
+                if extra['captioning_mask'] is not None:
+                    bs,nq,wh = attn_mask.shape
+                    assert bs==self.num_heads, "Only support single image referring captioning."
+                    cap_mask = extra['captioning_mask']
+                    attn_mask = attn_mask.reshape(bs,nq,size_list[i%3][0],size_list[i%3][1])
+                    cap_mask = F.interpolate(cap_mask[None,].float(), size_list[i%3], mode='nearest').bool()[0,0]
+                    attn_mask[:,self.num_queries:, cap_mask] = True
+                    attn_mask = attn_mask.reshape(bs,nq,wh)
+                
+                # attention: cross-attention first
+                output, avg_attn = self.transformer_cross_attention_layers[i](
+                    output, src[level_index],
+                    memory_mask=attn_mask,
+                    memory_key_padding_mask=None,  # here we do not apply masking on padded region
+                    pos=pos[level_index], query_pos=query_embed
+                )
+
+                output = self.transformer_self_attention_layers[i](
+                    output, tgt_mask=self_tgt_mask,
+                    tgt_key_padding_mask=None,
+                    query_pos=query_embed
+                )
+                
+                # FFN
+                output = self.transformer_ffn_layers[i](
+                    output
+                )
+
+                results = self.forward_prediction_heads(output, mask_features, attn_mask_target_size=size_list[(i + 1) % self.num_feature_levels], layer_id=i, task=task)
+                attn_mask = results["attn_mask"]
+            
+            pred_captions_gen = results['outputs_captionting']
+            # pred_captions_gen = (pred_captions_gen / pred_captions_gen.norm(dim=-1, keepdim=True) + 1e-7)
+            pred_captions_gen = pred_captions_gen @ token_embs.t()
+            caping_lang_token[:,cap_idx+1] = pred_captions_gen[:,cap_idx].max(-1)[1]
+            
+        texts = self.lang_encoder.tokenizer.batch_decode(caping_lang_token, skip_special_tokens=False)
+        texts_new = []
+        
+        for x in texts:
+            x = x.split('<|endoftext|>')[0]
+            x = x.replace('<|endoftext|>','')
+            x = x.replace('<|startoftext|>','')
+            x = x.strip()
+            texts_new.append(x)
+
+        out = {'pred_captionings': caping_lang_token,
+               'pred_texts': texts_new}
+        return out
+
+
+    def forward_prediction_heads(self, output, mask_features, attn_mask_target_size, layer_id=-1, task='seg'):
+        decoder_output = self.decoder_norm(output)
+        decoder_output = decoder_output.transpose(0, 1)
+
+        # extract image captioning token from decoder output.
+        if self.task_switch['captioning'] and (task == 'vlp' or task == 'captioning_infer'):
+            outputs_captionting = decoder_output[:,self.num_queries:] @ self.caping_embed
+        else:
+            outputs_captionting = None
+
+        # recompute class token output.
+        norm_decoder_output = decoder_output / (decoder_output.norm(dim=-1, keepdim=True) + 1e-7)
+        obj_token = norm_decoder_output[:,:self.num_queries-1]
+        cls_token = norm_decoder_output[:,self.num_queries-1:self.num_queries]
+
+        sim = (cls_token @ obj_token.transpose(1,2)).softmax(-1)[:,0,:,None] # TODO include class token.
+        cls_token = (sim * decoder_output[:,:self.num_queries-1]).sum(dim=1, keepdim=True)
+
+        if (((self.training and task == 'seg') or (task == 'grounding_eval')) and self.task_switch['grounding']) \
+                or ((self.training and task == 'openimage') and self.task_switch['openimage']['grounding']):
+            decoder_output = torch.cat((decoder_output[:,:self.num_queries-1], cls_token, decoder_output[:,self.num_queries:2*self.num_queries-1]), dim=1)
+        else:
+            decoder_output = torch.cat((decoder_output[:,:self.num_queries-1], cls_token), dim=1)
+
+        # compute class, mask and bbox.
+        class_embed = decoder_output @ self.class_embed
+        # HACK do not compute similarity if mask is not on
+        outputs_class = self.lang_encoder.compute_similarity(class_embed, fake=(((not self.task_switch['mask']) and self.training) or (task == 'openimage')))
+
+        if self.task_switch['mask'] or self.task_switch['openimage']['mask']:
+            mask_embed = self.mask_embed(decoder_output)
+            outputs_mask = torch.einsum("bqc,bchw->bqhw", mask_embed, mask_features)
+
+            # NOTE: prediction is of higher-resolution
+            # [B, Q, H, W] -> [B, Q, H*W] -> [B, h, Q, H*W] -> [B*h, Q, HW]
+            attn_mask = F.interpolate(outputs_mask, size=attn_mask_target_size, mode="bilinear", align_corners=False)
+
+            # must use bool type
+            # If a BoolTensor is provided, positions with ``True`` are not allowed to attend while ``False`` values will be unchanged.
+            attn_mask = (attn_mask.sigmoid().flatten(2).unsqueeze(1).repeat(1, self.num_heads, 1, 1).flatten(0, 1) < 0.5).bool()
+            attn_mask = attn_mask.detach()
+
+            # NOTE: fill False for cls token (JY)
+            attn_mask[:, self.num_queries:self.num_queries+1].fill_(False)
+        else:
+            outputs_mask = None
+            attn_mask = torch.zeros((list(decoder_output.shape[:2]) + [attn_mask_target_size[0]*attn_mask_target_size[1]]), device=decoder_output.device).repeat(self.num_heads, 1, 1).bool()
+
+        outputs_bbox = [None for i in range(len(decoder_output))]
+        if self.task_switch['bbox']:
+            outputs_bbox = self.bbox_embed(decoder_output)
+
+        outputs_caption = None
+        if self.task_switch['caption']:
+            outputs_caption = class_embed
+            
+
+        results = {
+            "outputs_class": outputs_class,
+            "outputs_mask": outputs_mask,
+            "outputs_bbox": outputs_bbox,
+            "attn_mask": attn_mask,
+            "outputs_caption": outputs_caption,
+            "outputs_captionting": outputs_captionting,
+        }
+        return results
+
+    @torch.jit.unused
+    def _set_aux_loss(self, outputs_class, outputs_seg_masks, outputs_boxes, outputs_captions):
+        # this is a workaround to make torchscript happy, as torchscript
+        # doesn't support dictionary with non-homogeneous values, such
+        # as a dict having both a Tensor and a list.
+        if self.mask_classification:
+            return [
+                {"pred_logits": a, "pred_masks": b, "pred_boxes": c, "pred_captions": d}
+                for a, b, c, d in zip(outputs_class[:-1], outputs_seg_masks[:-1], outputs_boxes[:-1], outputs_captions[:-1])
+            ]
+        else:
+            return [{"pred_masks": b} for b in outputs_seg_masks[:-1]]
+
+
+@register_decoder
+def get_masked_transformer_decoder(cfg, in_channels, lang_encoder, mask_classification, extra):
+    return MultiScaleMaskedTransformerDecoder(cfg, in_channels, lang_encoder, mask_classification, extra)
\ No newline at end of file
diff --git a/xdecoder/body/encoder/__init__.py b/xdecoder/body/encoder/__init__.py
new file mode 100755
index 0000000000000000000000000000000000000000..bf9bb57ca080f4e2f1d1edd7c696285a08faa706
--- /dev/null
+++ b/xdecoder/body/encoder/__init__.py
@@ -0,0 +1 @@
+from .build import build_encoder
\ No newline at end of file
diff --git a/xdecoder/body/encoder/__pycache__/__init__.cpython-38.pyc b/xdecoder/body/encoder/__pycache__/__init__.cpython-38.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..1c9acb31c4285cb65ca77953309b6ba3fe6ff6af
Binary files /dev/null and b/xdecoder/body/encoder/__pycache__/__init__.cpython-38.pyc differ
diff --git a/xdecoder/body/encoder/__pycache__/build.cpython-38.pyc b/xdecoder/body/encoder/__pycache__/build.cpython-38.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..fbfb049be90b841127341e368e54da86e24e2097
Binary files /dev/null and b/xdecoder/body/encoder/__pycache__/build.cpython-38.pyc differ
diff --git a/xdecoder/body/encoder/__pycache__/registry.cpython-38.pyc b/xdecoder/body/encoder/__pycache__/registry.cpython-38.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..c3923809f09ee13d7d8f0cd4ca2ae79a6b315240
Binary files /dev/null and b/xdecoder/body/encoder/__pycache__/registry.cpython-38.pyc differ
diff --git a/xdecoder/body/encoder/__pycache__/transformer_encoder_fpn.cpython-38.pyc b/xdecoder/body/encoder/__pycache__/transformer_encoder_fpn.cpython-38.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..2cb482ca31468e0d7dd5b7f19e936585af6d69c6
Binary files /dev/null and b/xdecoder/body/encoder/__pycache__/transformer_encoder_fpn.cpython-38.pyc differ
diff --git a/xdecoder/body/encoder/build.py b/xdecoder/body/encoder/build.py
new file mode 100755
index 0000000000000000000000000000000000000000..aabf8bca5c6f54144af3187692afc28de4c9e296
--- /dev/null
+++ b/xdecoder/body/encoder/build.py
@@ -0,0 +1,12 @@
+from .registry import model_entrypoints
+from .registry import is_model
+
+from .transformer_encoder_fpn import *
+
+def build_encoder(config, *args, **kwargs):
+    model_name = config['MODEL']['ENCODER']['NAME']
+
+    if not is_model(model_name):
+        raise ValueError(f'Unkown model: {model_name}')
+
+    return model_entrypoints(model_name)(config, *args, **kwargs)
\ No newline at end of file
diff --git a/xdecoder/body/encoder/registry.py b/xdecoder/body/encoder/registry.py
new file mode 100755
index 0000000000000000000000000000000000000000..99426a4495cf65e7ce82193f711aaa225b6d2395
--- /dev/null
+++ b/xdecoder/body/encoder/registry.py
@@ -0,0 +1,13 @@
+_model_entrypoints = {}
+
+def register_encoder(fn):
+    module_name_split = fn.__module__.split('.')
+    model_name = module_name_split[-1]
+    _model_entrypoints[model_name] = fn
+    return fn
+
+def model_entrypoints(model_name):
+    return _model_entrypoints[model_name]
+
+def is_model(model_name):
+    return model_name in _model_entrypoints
diff --git a/xdecoder/body/encoder/transformer_encoder_fpn.py b/xdecoder/body/encoder/transformer_encoder_fpn.py
new file mode 100755
index 0000000000000000000000000000000000000000..16e449fd3ac19a5d143d4fc61cbafc16158b0654
--- /dev/null
+++ b/xdecoder/body/encoder/transformer_encoder_fpn.py
@@ -0,0 +1,324 @@
+# Copyright (c) Facebook, Inc. and its affiliates.
+import logging
+import numpy as np
+from typing import Callable, Dict, List, Optional, Tuple, Union
+
+import torch
+from torch import nn
+from torch.nn import functional as F
+from torch.nn.init import xavier_uniform_, constant_, uniform_, normal_
+from torch.cuda.amp import autocast
+
+import fvcore.nn.weight_init as weight_init
+from detectron2.layers import Conv2d, DeformConv, ShapeSpec, get_norm
+
+from .registry import register_encoder
+from ..transformer_blocks import TransformerEncoder, TransformerEncoderLayer, _get_clones, _get_activation_fn
+from ...modules import PositionEmbeddingSine
+from ...utils import configurable
+
+# from ..layers import Conv2d, DeformConv, ShapeSpec, get_norm
+
+# This is a modified FPN decoder.
+class BasePixelDecoder(nn.Module):
+    def __init__(
+        self,
+        input_shape: Dict[str, ShapeSpec],
+        *,
+        conv_dim: int,
+        mask_dim: int,
+        mask_on: bool,
+        norm: Optional[Union[str, Callable]] = None,
+    ):
+        """
+        NOTE: this interface is experimental.
+        Args:
+            input_shape: shapes (channels and stride) of the input features
+            conv_dims: number of output channels for the intermediate conv layers.
+            mask_dim: number of output channels for the final conv layer.
+            norm (str or callable): normalization for all conv layers
+        """
+        super().__init__()
+
+        input_shape = sorted(input_shape.items(), key=lambda x: x[1].stride)
+        self.in_features = [k for k, v in input_shape]  # starting from "res2" to "res5"
+        feature_channels = [v.channels for k, v in input_shape]
+
+        lateral_convs = []
+        output_convs = []
+
+        use_bias = norm == ""
+        for idx, in_channels in enumerate(feature_channels):
+            if idx == len(self.in_features) - 1:
+                output_norm = get_norm(norm, conv_dim)
+                output_conv = Conv2d(
+                    in_channels,
+                    conv_dim,
+                    kernel_size=3,
+                    stride=1,
+                    padding=1,
+                    bias=use_bias,
+                    norm=output_norm,
+                    activation=F.relu,
+                )
+                weight_init.c2_xavier_fill(output_conv)
+                self.add_module("layer_{}".format(idx + 1), output_conv)
+
+                lateral_convs.append(None)
+                output_convs.append(output_conv)
+            else:
+                lateral_norm = get_norm(norm, conv_dim)
+                output_norm = get_norm(norm, conv_dim)
+
+                lateral_conv = Conv2d(
+                    in_channels, conv_dim, kernel_size=1, bias=use_bias, norm=lateral_norm
+                )
+                output_conv = Conv2d(
+                    conv_dim,
+                    conv_dim,
+                    kernel_size=3,
+                    stride=1,
+                    padding=1,
+                    bias=use_bias,
+                    norm=output_norm,
+                    activation=F.relu,
+                )
+                weight_init.c2_xavier_fill(lateral_conv)
+                weight_init.c2_xavier_fill(output_conv)
+                self.add_module("adapter_{}".format(idx + 1), lateral_conv)
+                self.add_module("layer_{}".format(idx + 1), output_conv)
+
+                lateral_convs.append(lateral_conv)
+                output_convs.append(output_conv)
+        # Place convs into top-down order (from low to high resolution)
+        # to make the top-down computation in forward clearer.
+        self.lateral_convs = lateral_convs[::-1]
+        self.output_convs = output_convs[::-1]
+
+        self.mask_on = mask_on
+        if self.mask_on:
+            self.mask_dim = mask_dim
+            self.mask_features = Conv2d(
+                conv_dim,
+                mask_dim,
+                kernel_size=3,
+                stride=1,
+                padding=1,
+            )
+            weight_init.c2_xavier_fill(self.mask_features)
+
+        self.maskformer_num_feature_levels = 3  # always use 3 scales
+
+    @classmethod
+    def from_config(cls, cfg, input_shape: Dict[str, ShapeSpec]):
+        enc_cfg = cfg['MODEL']['ENCODER']
+        ret = {}
+        ret["input_shape"] = {
+            k: v for k, v in input_shape.items() if k in enc_cfg['IN_FEATURES']
+        }
+        ret["conv_dim"] = enc_cfg['CONVS_DIM']
+        ret["mask_dim"] = enc_cfg['MASK_DIM']
+        ret["norm"] = enc_cfg['NORM']
+        return ret
+
+    def forward_features(self, features):
+        multi_scale_features = []
+        num_cur_levels = 0
+        # Reverse feature maps into top-down order (from low to high resolution)
+        for idx, f in enumerate(self.in_features[::-1]):
+            x = features[f]
+            lateral_conv = self.lateral_convs[idx]
+            output_conv = self.output_convs[idx]
+            if lateral_conv is None:
+                y = output_conv(x)
+            else:
+                cur_fpn = lateral_conv(x)
+                # Following FPN implementation, we use nearest upsampling here
+                y = cur_fpn + F.interpolate(y, size=cur_fpn.shape[-2:], mode="nearest")
+                y = output_conv(y)
+            if num_cur_levels < self.maskformer_num_feature_levels:
+                multi_scale_features.append(y)
+                num_cur_levels += 1
+        
+        mask_features = self.mask_features(y) if self.mask_on else None
+        return mask_features, None, multi_scale_features
+
+    def forward(self, features, targets=None):
+        logger = logging.getLogger(__name__)
+        logger.warning("Calling forward() may cause unpredicted behavior of PixelDecoder module.")
+        return self.forward_features(features)
+
+
+class TransformerEncoderOnly(nn.Module):
+    def __init__(
+        self,
+        d_model=512,
+        nhead=8,
+        num_encoder_layers=6,
+        dim_feedforward=2048,
+        dropout=0.1,
+        activation="relu",
+        normalize_before=False,
+    ):
+        super().__init__()
+
+        encoder_layer = TransformerEncoderLayer(
+            d_model, nhead, dim_feedforward, dropout, activation, normalize_before
+        )
+        encoder_norm = nn.LayerNorm(d_model) if normalize_before else None
+        self.encoder = TransformerEncoder(encoder_layer, num_encoder_layers, encoder_norm)
+
+        self._reset_parameters()
+
+        self.d_model = d_model
+        self.nhead = nhead
+
+    def _reset_parameters(self):
+        for p in self.parameters():
+            if p.dim() > 1:
+                nn.init.xavier_uniform_(p)
+
+    def forward(self, src, mask, pos_embed):
+        # flatten NxCxHxW to HWxNxC
+        bs, c, h, w = src.shape
+        src = src.flatten(2).permute(2, 0, 1)
+        pos_embed = pos_embed.flatten(2).permute(2, 0, 1)
+        if mask is not None:
+            mask = mask.flatten(1)
+
+        memory = self.encoder(src, src_key_padding_mask=mask, pos=pos_embed)
+        return memory.permute(1, 2, 0).view(bs, c, h, w)
+
+
+# This is a modified FPN decoder with extra Transformer encoder that processes the lowest-resolution feature map.
+class TransformerEncoderPixelDecoder(BasePixelDecoder):
+    @configurable
+    def __init__(
+        self,
+        input_shape: Dict[str, ShapeSpec],
+        *,
+        transformer_dropout: float,
+        transformer_nheads: int,
+        transformer_dim_feedforward: int,
+        transformer_enc_layers: int,
+        transformer_pre_norm: bool,
+        conv_dim: int,
+        mask_dim: int,
+        mask_on: int,
+        norm: Optional[Union[str, Callable]] = None,
+    ):
+        """
+        NOTE: this interface is experimental.
+        Args:
+            input_shape: shapes (channels and stride) of the input features
+            transformer_dropout: dropout probability in transformer
+            transformer_nheads: number of heads in transformer
+            transformer_dim_feedforward: dimension of feedforward network
+            transformer_enc_layers: number of transformer encoder layers
+            transformer_pre_norm: whether to use pre-layernorm or not
+            conv_dims: number of output channels for the intermediate conv layers.
+            mask_dim: number of output channels for the final conv layer.
+            norm (str or callable): normalization for all conv layers
+        """
+        super().__init__(input_shape, conv_dim=conv_dim, mask_dim=mask_dim, norm=norm, mask_on=mask_on)
+
+        input_shape = sorted(input_shape.items(), key=lambda x: x[1].stride)
+        self.in_features = [k for k, v in input_shape]  # starting from "res2" to "res5"
+        feature_strides = [v.stride for k, v in input_shape]
+        feature_channels = [v.channels for k, v in input_shape]
+
+        in_channels = feature_channels[len(self.in_features) - 1]
+        self.input_proj = Conv2d(in_channels, conv_dim, kernel_size=1)
+        weight_init.c2_xavier_fill(self.input_proj)
+        self.transformer = TransformerEncoderOnly(
+            d_model=conv_dim,
+            dropout=transformer_dropout,
+            nhead=transformer_nheads,
+            dim_feedforward=transformer_dim_feedforward,
+            num_encoder_layers=transformer_enc_layers,
+            normalize_before=transformer_pre_norm,
+        )
+        N_steps = conv_dim // 2
+        self.pe_layer = PositionEmbeddingSine(N_steps, normalize=True)
+
+        # update layer
+        use_bias = norm == ""
+        output_norm = get_norm(norm, conv_dim)
+        output_conv = Conv2d(
+            conv_dim,
+            conv_dim,
+            kernel_size=3,
+            stride=1,
+            padding=1,
+            bias=use_bias,
+            norm=output_norm,
+            activation=F.relu,
+        )
+        weight_init.c2_xavier_fill(output_conv)
+        delattr(self, "layer_{}".format(len(self.in_features)))
+        self.add_module("layer_{}".format(len(self.in_features)), output_conv)
+        self.output_convs[0] = output_conv
+
+    @classmethod
+    def from_config(cls, cfg, input_shape: Dict[str, ShapeSpec]):
+        enc_cfg = cfg['MODEL']['ENCODER']
+        dec_cfg = cfg['MODEL']['DECODER']
+
+        ret = super().from_config(cfg, input_shape)
+        ret["transformer_dropout"] = dec_cfg['DROPOUT']
+        ret["transformer_nheads"] = dec_cfg['NHEADS']
+        ret["transformer_dim_feedforward"] = dec_cfg['DIM_FEEDFORWARD']
+        ret["transformer_enc_layers"] = enc_cfg['TRANSFORMER_ENC_LAYERS']  # a separate config
+        ret["transformer_pre_norm"] = dec_cfg['PRE_NORM']
+
+        ret['mask_on'] = cfg['MODEL']['DECODER']['MASK']
+        return ret
+
+    def forward_features(self, features):
+        multi_scale_features = []
+        num_cur_levels = 0
+        
+        # Reverse feature maps into top-down order (from low to high resolution)
+        for idx, f in enumerate(self.in_features[::-1]):
+            x = features[f]
+            lateral_conv = self.lateral_convs[idx]
+            output_conv = self.output_convs[idx]
+            if lateral_conv is None:
+                transformer = self.input_proj(x)
+                pos = self.pe_layer(x)
+                transformer = self.transformer(transformer, None, pos)
+                y = output_conv(transformer)
+                # save intermediate feature as input to Transformer decoder
+                transformer_encoder_features = transformer
+            else:
+                cur_fpn = lateral_conv(x)
+                # Following FPN implementation, we use nearest upsampling here
+                y = cur_fpn + F.interpolate(y, size=cur_fpn.shape[-2:], mode="nearest")
+                y = output_conv(y)
+            if num_cur_levels < self.maskformer_num_feature_levels:
+                multi_scale_features.append(y)
+                num_cur_levels += 1
+
+        mask_features = self.mask_features(y) if self.mask_on else None
+        return mask_features, transformer_encoder_features, multi_scale_features
+
+    def forward(self, features, targets=None):
+        logger = logging.getLogger(__name__)
+        logger.warning("Calling forward() may cause unpredicted behavior of PixelDecoder module.")
+        return self.forward_features(features)
+
+
+
+@register_encoder
+def get_transformer_encoder_fpn(cfg, input_shape):
+    """
+    Build a pixel decoder from `cfg.MODEL.MASK_FORMER.PIXEL_DECODER_NAME`.
+    """
+    model = TransformerEncoderPixelDecoder(cfg, input_shape)    
+    forward_features = getattr(model, "forward_features", None)
+    if not callable(forward_features):
+        raise ValueError(
+            "Only SEM_SEG_HEADS with forward_features method can be used as pixel decoder. "
+            f"Please implement forward_features for {name} to only return mask features."
+        )
+    return model
\ No newline at end of file
diff --git a/xdecoder/body/registry.py b/xdecoder/body/registry.py
new file mode 100755
index 0000000000000000000000000000000000000000..0200b0af6cd9e01451be4df9f713719f45f2e928
--- /dev/null
+++ b/xdecoder/body/registry.py
@@ -0,0 +1,14 @@
+_model_entrypoints = {}
+
+
+def register_body(fn):
+    module_name_split = fn.__module__.split('.')
+    model_name = module_name_split[-1]
+    _model_entrypoints[model_name] = fn
+    return fn
+
+def model_entrypoints(model_name):
+    return _model_entrypoints[model_name]
+
+def is_model(model_name):
+    return model_name in _model_entrypoints
\ No newline at end of file
diff --git a/xdecoder/body/transformer_blocks.py b/xdecoder/body/transformer_blocks.py
new file mode 100755
index 0000000000000000000000000000000000000000..54134f34556b32c98401be2eb862e539ccb812d4
--- /dev/null
+++ b/xdecoder/body/transformer_blocks.py
@@ -0,0 +1,370 @@
+# Copyright (c) Facebook, Inc. and its affiliates.
+# Modified by Bowen Cheng from: https://github.com/facebookresearch/detr/blob/master/models/transformer.py
+"""
+Transformer class.
+
+Copy-paste from torch.nn.Transformer with modifications:
+    * positional encodings are passed in MHattention
+    * extra LN at the end of encoder is removed
+    * decoder returns a stack of activations from all decoding layers
+"""
+import copy
+from typing import List, Optional
+
+import torch
+import torch.nn.functional as F
+from torch import Tensor, nn
+
+
+class Transformer(nn.Module):
+    def __init__(
+        self,
+        d_model=512,
+        nhead=8,
+        num_encoder_layers=6,
+        num_decoder_layers=6,
+        dim_feedforward=2048,
+        dropout=0.1,
+        activation="relu",
+        normalize_before=False,
+        return_intermediate_dec=False,
+    ):
+        super().__init__()
+
+        encoder_layer = TransformerEncoderLayer(
+            d_model, nhead, dim_feedforward, dropout, activation, normalize_before
+        )
+        encoder_norm = nn.LayerNorm(d_model) if normalize_before else None
+        self.encoder = TransformerEncoder(encoder_layer, num_encoder_layers, encoder_norm)
+
+        decoder_layer = TransformerDecoderLayer(
+            d_model, nhead, dim_feedforward, dropout, activation, normalize_before
+        )
+        decoder_norm = nn.LayerNorm(d_model)
+        self.decoder = TransformerDecoder(
+            decoder_layer,
+            num_decoder_layers,
+            decoder_norm,
+            return_intermediate=return_intermediate_dec,
+        )
+
+        self._reset_parameters()
+
+        self.d_model = d_model
+        self.nhead = nhead
+
+    def _reset_parameters(self):
+        for p in self.parameters():
+            if p.dim() > 1:
+                nn.init.xavier_uniform_(p)
+
+    def forward(self, src, mask, query_embed, pos_embed):
+        # flatten NxCxHxW to HWxNxC
+        bs, c, h, w = src.shape
+        src = src.flatten(2).permute(2, 0, 1)
+        pos_embed = pos_embed.flatten(2).permute(2, 0, 1)
+        query_embed = query_embed.unsqueeze(1).repeat(1, bs, 1)
+        if mask is not None:
+            mask = mask.flatten(1)
+
+        tgt = torch.zeros_like(query_embed)
+        memory = self.encoder(src, src_key_padding_mask=mask, pos=pos_embed)
+        hs = self.decoder(
+            tgt, memory, memory_key_padding_mask=mask, pos=pos_embed, query_pos=query_embed
+        )
+        return hs.transpose(1, 2), memory.permute(1, 2, 0).view(bs, c, h, w)
+
+
+class TransformerEncoder(nn.Module):
+    def __init__(self, encoder_layer, num_layers, norm=None):
+        super().__init__()
+        self.layers = _get_clones(encoder_layer, num_layers)
+        self.num_layers = num_layers
+        self.norm = norm
+
+    def forward(
+        self,
+        src,
+        mask: Optional[Tensor] = None,
+        src_key_padding_mask: Optional[Tensor] = None,
+        pos: Optional[Tensor] = None,
+    ):
+        output = src
+
+        for layer in self.layers:
+            output = layer(
+                output, src_mask=mask, src_key_padding_mask=src_key_padding_mask, pos=pos
+            )
+
+        if self.norm is not None:
+            output = self.norm(output)
+
+        return output
+
+
+class TransformerDecoder(nn.Module):
+    def __init__(self, decoder_layer, num_layers, norm=None, return_intermediate=False):
+        super().__init__()
+        self.layers = _get_clones(decoder_layer, num_layers)
+        self.num_layers = num_layers
+        self.norm = norm
+        self.return_intermediate = return_intermediate
+
+    def forward(
+        self,
+        tgt,
+        memory,
+        tgt_mask: Optional[Tensor] = None,
+        memory_mask: Optional[Tensor] = None,
+        tgt_key_padding_mask: Optional[Tensor] = None,
+        memory_key_padding_mask: Optional[Tensor] = None,
+        pos: Optional[Tensor] = None,
+        query_pos: Optional[Tensor] = None,
+    ):
+        output = tgt
+
+        intermediate = []
+
+        for layer in self.layers:
+            output = layer(
+                output,
+                memory,
+                tgt_mask=tgt_mask,
+                memory_mask=memory_mask,
+                tgt_key_padding_mask=tgt_key_padding_mask,
+                memory_key_padding_mask=memory_key_padding_mask,
+                pos=pos,
+                query_pos=query_pos,
+            )
+            if self.return_intermediate:
+                intermediate.append(self.norm(output))
+
+        if self.norm is not None:
+            output = self.norm(output)
+            if self.return_intermediate:
+                intermediate.pop()
+                intermediate.append(output)
+
+        if self.return_intermediate:
+            return torch.stack(intermediate)
+
+        return output.unsqueeze(0)
+
+
+class TransformerEncoderLayer(nn.Module):
+    def __init__(
+        self,
+        d_model,
+        nhead,
+        dim_feedforward=2048,
+        dropout=0.1,
+        activation="relu",
+        normalize_before=False,
+    ):
+        super().__init__()
+        self.self_attn = nn.MultiheadAttention(d_model, nhead, dropout=dropout)
+        # Implementation of Feedforward model
+        self.linear1 = nn.Linear(d_model, dim_feedforward)
+        self.dropout = nn.Dropout(dropout)
+        self.linear2 = nn.Linear(dim_feedforward, d_model)
+
+        self.norm1 = nn.LayerNorm(d_model)
+        self.norm2 = nn.LayerNorm(d_model)
+        self.dropout1 = nn.Dropout(dropout)
+        self.dropout2 = nn.Dropout(dropout)
+
+        self.activation = _get_activation_fn(activation)
+        self.normalize_before = normalize_before
+
+    def with_pos_embed(self, tensor, pos: Optional[Tensor]):
+        return tensor if pos is None else tensor + pos
+
+    def forward_post(
+        self,
+        src,
+        src_mask: Optional[Tensor] = None,
+        src_key_padding_mask: Optional[Tensor] = None,
+        pos: Optional[Tensor] = None,
+    ):
+        q = k = self.with_pos_embed(src, pos)
+
+        src2 = self.self_attn(
+            q, k, value=src, attn_mask=src_mask, key_padding_mask=src_key_padding_mask
+        )[0]
+        src = src + self.dropout1(src2)
+        src = self.norm1(src)
+        src2 = self.linear2(self.dropout(self.activation(self.linear1(src))))
+        src = src + self.dropout2(src2)
+        src = self.norm2(src)
+        return src
+
+    def forward_pre(
+        self,
+        src,
+        src_mask: Optional[Tensor] = None,
+        src_key_padding_mask: Optional[Tensor] = None,
+        pos: Optional[Tensor] = None,
+    ):
+        src2 = self.norm1(src)
+        q = k = self.with_pos_embed(src2, pos)
+        src2 = self.self_attn(
+            q, k, value=src2, attn_mask=src_mask, key_padding_mask=src_key_padding_mask
+        )[0]
+        src = src + self.dropout1(src2)
+        src2 = self.norm2(src)
+        src2 = self.linear2(self.dropout(self.activation(self.linear1(src2))))
+        src = src + self.dropout2(src2)
+        return src
+
+    def forward(
+        self,
+        src,
+        src_mask: Optional[Tensor] = None,
+        src_key_padding_mask: Optional[Tensor] = None,
+        pos: Optional[Tensor] = None,
+    ):
+        if self.normalize_before:
+            return self.forward_pre(src, src_mask, src_key_padding_mask, pos)
+        return self.forward_post(src, src_mask, src_key_padding_mask, pos)
+
+
+class TransformerDecoderLayer(nn.Module):
+    def __init__(
+        self,
+        d_model,
+        nhead,
+        dim_feedforward=2048,
+        dropout=0.1,
+        activation="relu",
+        normalize_before=False,
+    ):
+        super().__init__()
+        self.self_attn = nn.MultiheadAttention(d_model, nhead, dropout=dropout)
+        self.multihead_attn = nn.MultiheadAttention(d_model, nhead, dropout=dropout)
+        # Implementation of Feedforward model
+        self.linear1 = nn.Linear(d_model, dim_feedforward)
+        self.dropout = nn.Dropout(dropout)
+        self.linear2 = nn.Linear(dim_feedforward, d_model)
+
+        self.norm1 = nn.LayerNorm(d_model)
+        self.norm2 = nn.LayerNorm(d_model)
+        self.norm3 = nn.LayerNorm(d_model)
+        self.dropout1 = nn.Dropout(dropout)
+        self.dropout2 = nn.Dropout(dropout)
+        self.dropout3 = nn.Dropout(dropout)
+
+        self.activation = _get_activation_fn(activation)
+        self.normalize_before = normalize_before
+
+    def with_pos_embed(self, tensor, pos: Optional[Tensor]):
+        return tensor if pos is None else tensor + pos
+
+    def forward_post(
+        self,
+        tgt,
+        memory,
+        tgt_mask: Optional[Tensor] = None,
+        memory_mask: Optional[Tensor] = None,
+        tgt_key_padding_mask: Optional[Tensor] = None,
+        memory_key_padding_mask: Optional[Tensor] = None,
+        pos: Optional[Tensor] = None,
+        query_pos: Optional[Tensor] = None,
+    ):
+        q = k = self.with_pos_embed(tgt, query_pos)
+        tgt2 = self.self_attn(
+            q, k, value=tgt, attn_mask=tgt_mask, key_padding_mask=tgt_key_padding_mask
+        )[0]
+        tgt = tgt + self.dropout1(tgt2)
+        tgt = self.norm1(tgt)
+        tgt2 = self.multihead_attn(
+            query=self.with_pos_embed(tgt, query_pos),
+            key=self.with_pos_embed(memory, pos),
+            value=memory,
+            attn_mask=memory_mask,
+            key_padding_mask=memory_key_padding_mask,
+        )[0]
+        tgt = tgt + self.dropout2(tgt2)
+        tgt = self.norm2(tgt)
+        tgt2 = self.linear2(self.dropout(self.activation(self.linear1(tgt))))
+        tgt = tgt + self.dropout3(tgt2)
+        tgt = self.norm3(tgt)
+        return tgt
+
+    def forward_pre(
+        self,
+        tgt,
+        memory,
+        tgt_mask: Optional[Tensor] = None,
+        memory_mask: Optional[Tensor] = None,
+        tgt_key_padding_mask: Optional[Tensor] = None,
+        memory_key_padding_mask: Optional[Tensor] = None,
+        pos: Optional[Tensor] = None,
+        query_pos: Optional[Tensor] = None,
+    ):
+        tgt2 = self.norm1(tgt)
+        q = k = self.with_pos_embed(tgt2, query_pos)
+        tgt2 = self.self_attn(
+            q, k, value=tgt2, attn_mask=tgt_mask, key_padding_mask=tgt_key_padding_mask
+        )[0]
+        tgt = tgt + self.dropout1(tgt2)
+        tgt2 = self.norm2(tgt)
+        tgt2 = self.multihead_attn(
+            query=self.with_pos_embed(tgt2, query_pos),
+            key=self.with_pos_embed(memory, pos),
+            value=memory,
+            attn_mask=memory_mask,
+            key_padding_mask=memory_key_padding_mask,
+        )[0]
+        tgt = tgt + self.dropout2(tgt2)
+        tgt2 = self.norm3(tgt)
+        tgt2 = self.linear2(self.dropout(self.activation(self.linear1(tgt2))))
+        tgt = tgt + self.dropout3(tgt2)
+        return tgt
+
+    def forward(
+        self,
+        tgt,
+        memory,
+        tgt_mask: Optional[Tensor] = None,
+        memory_mask: Optional[Tensor] = None,
+        tgt_key_padding_mask: Optional[Tensor] = None,
+        memory_key_padding_mask: Optional[Tensor] = None,
+        pos: Optional[Tensor] = None,
+        query_pos: Optional[Tensor] = None,
+    ):
+        if self.normalize_before:
+            return self.forward_pre(
+                tgt,
+                memory,
+                tgt_mask,
+                memory_mask,
+                tgt_key_padding_mask,
+                memory_key_padding_mask,
+                pos,
+                query_pos,
+            )
+        return self.forward_post(
+            tgt,
+            memory,
+            tgt_mask,
+            memory_mask,
+            tgt_key_padding_mask,
+            memory_key_padding_mask,
+            pos,
+            query_pos,
+        )
+
+
+def _get_clones(module, N):
+    return nn.ModuleList([copy.deepcopy(module) for i in range(N)])
+
+
+def _get_activation_fn(activation):
+    """Return an activation function given a string"""
+    if activation == "relu":
+        return F.relu
+    if activation == "gelu":
+        return F.gelu
+    if activation == "glu":
+        return F.glu
+    raise RuntimeError(f"activation should be relu/gelu, not {activation}.")
diff --git a/xdecoder/body/xdecoder_head.py b/xdecoder/body/xdecoder_head.py
new file mode 100755
index 0000000000000000000000000000000000000000..b04af973501c2c361de2b4a3a78ebbab1ae44b8a
--- /dev/null
+++ b/xdecoder/body/xdecoder_head.py
@@ -0,0 +1,123 @@
+# Copyright (c) Facebook, Inc. and its affiliates.
+
+# --------------------------------------------------------
+# X-Decoder -- Generalized Decoding for Pixel, Image, and Language
+# Copyright (c) 2022 Microsoft
+# Licensed under The MIT License [see LICENSE for details]
+# Written by Jianwei Yang (jianwyan@microsoft.com), Xueyan Zou (xueyan@cs.wisc.edu)
+# --------------------------------------------------------
+
+from typing import Dict
+
+from torch import nn
+
+from detectron2.layers import ShapeSpec
+
+from .registry import register_body
+from .encoder import build_encoder
+from .decoder import build_decoder
+from ..utils import configurable
+
+
+class XDecoderHead(nn.Module):
+
+    @configurable
+    def __init__(
+        self,
+        input_shape: Dict[str, ShapeSpec],
+        *,
+        num_classes: int,
+        pixel_decoder: nn.Module,
+        loss_weight: float = 1.0,
+        ignore_value: int = -1,
+        # extra parameters
+        transformer_predictor: nn.Module,
+        transformer_in_feature: str,
+    ):
+        """
+        NOTE: this interface is experimental.
+        Args:
+            input_shape: shapes (channels and stride) of the input features
+            num_classes: number of classes to predict
+            pixel_decoder: the pixel decoder module
+            loss_weight: loss weight
+            ignore_value: category id to be ignored during training.
+            transformer_predictor: the transformer decoder that makes prediction
+            transformer_in_feature: input feature name to the transformer_predictor
+        """
+        super().__init__()
+
+        input_shape = sorted(input_shape.items(), key=lambda x: x[1].stride)
+        self.in_features = [k for k, v in input_shape]
+        feature_strides = [v.stride for k, v in input_shape]
+        feature_channels = [v.channels for k, v in input_shape]
+
+        self.ignore_value = ignore_value
+        self.common_stride = 4
+        self.loss_weight = loss_weight
+
+        self.pixel_decoder = pixel_decoder
+        self.predictor = transformer_predictor
+        self.transformer_in_feature = transformer_in_feature
+
+        self.num_classes = num_classes
+
+    @classmethod
+    def from_config(cls, cfg, input_shape: Dict[str, ShapeSpec], lang_encoder: nn.Module, extra: dict):
+
+        in_features_type = cfg['MODEL']['DECODER']['TRANSFORMER_IN_FEATURE']
+        enc_cfg = cfg['MODEL']['ENCODER']
+        dec_cfg = cfg['MODEL']['DECODER']
+
+        # figure out in_channels to transformer predictor
+        if in_features_type == "transformer_encoder":
+            transformer_predictor_in_channels = enc_cfg['CONVS_DIM']
+        elif in_features_type == "pixel_embedding":
+            transformer_predictor_in_channels = enc_cfg['MASK_DIM']
+        elif in_features_type == "multi_scale_pixel_decoder":  # for maskformer2
+            transformer_predictor_in_channels = enc_cfg['CONVS_DIM']
+        else:
+            transformer_predictor_in_channels = input_shape[dec_cfg['TRANSFORMER_IN_FEATURE']].channels
+
+        return {
+            "input_shape": {
+                k: v for k, v in input_shape.items() if k in enc_cfg['IN_FEATURES']
+            },
+            "ignore_value": enc_cfg['IGNORE_VALUE'],
+            "num_classes": enc_cfg.get('NUM_CLASSES', None),
+            "pixel_decoder": build_encoder(cfg, input_shape),
+            "loss_weight": enc_cfg['LOSS_WEIGHT'],
+            "transformer_in_feature": dec_cfg['TRANSFORMER_IN_FEATURE'],
+            "transformer_predictor": build_decoder(
+                cfg,
+                transformer_predictor_in_channels,
+                lang_encoder,
+                mask_classification=True,
+                extra=extra,
+            ),
+        }
+
+    def forward(self, features, mask=None, target_queries=None, target_vlp=None, task='seg', extra={}):
+        return self.layers(features, mask, target_queries, target_vlp, task, extra)
+
+    def layers(self, features, mask=None, target_queries=None, target_vlp=None, task='seg', extra={}):
+        mask_features, transformer_encoder_features, multi_scale_features = self.pixel_decoder.forward_features(features)
+        
+        if self.transformer_in_feature == "multi_scale_pixel_decoder":
+            predictions = self.predictor(multi_scale_features, mask_features, mask, target_queries, target_vlp, task, extra)
+        else:
+            if self.transformer_in_feature == "transformer_encoder":
+                assert (
+                    transformer_encoder_features is not None
+                ), "Please use the TransformerEncoderPixelDecoder."
+                predictions = self.predictor(transformer_encoder_features, mask_features, mask)
+            elif self.transformer_in_feature == "pixel_embedding":
+                predictions = self.predictor(mask_features, mask_features, mask)
+            else:
+                predictions = self.predictor(features[self.transformer_in_feature], mask_features, mask)
+        return predictions
+
+
+@register_body
+def get_xdecoder_head(cfg, input_shape, lang_encoder, extra):
+    return XDecoderHead(cfg, input_shape, lang_encoder, extra)
\ No newline at end of file
diff --git a/xdecoder/language/LangEncoder/__init__.py b/xdecoder/language/LangEncoder/__init__.py
new file mode 100755
index 0000000000000000000000000000000000000000..ebc0a5d2e6bc4a4a93935450838acf09455004f6
--- /dev/null
+++ b/xdecoder/language/LangEncoder/__init__.py
@@ -0,0 +1,8 @@
+from __future__ import absolute_import
+from __future__ import division
+from __future__ import print_function
+
+from .build import build_lang_encoder
+from .build import build_tokenizer
+
+from .transformer import *
\ No newline at end of file
diff --git a/xdecoder/language/LangEncoder/__pycache__/__init__.cpython-38.pyc b/xdecoder/language/LangEncoder/__pycache__/__init__.cpython-38.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..0c45d9e0c0b58321a4899fca74e9af0bbd11d405
Binary files /dev/null and b/xdecoder/language/LangEncoder/__pycache__/__init__.cpython-38.pyc differ
diff --git a/xdecoder/language/LangEncoder/__pycache__/build.cpython-38.pyc b/xdecoder/language/LangEncoder/__pycache__/build.cpython-38.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..f73626d5b666bb6ce2d846ceebf264071e1b1fdb
Binary files /dev/null and b/xdecoder/language/LangEncoder/__pycache__/build.cpython-38.pyc differ
diff --git a/xdecoder/language/LangEncoder/__pycache__/registry.cpython-38.pyc b/xdecoder/language/LangEncoder/__pycache__/registry.cpython-38.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..8104013a2f476ad66c7a3a5d2e084e6c9663ce37
Binary files /dev/null and b/xdecoder/language/LangEncoder/__pycache__/registry.cpython-38.pyc differ
diff --git a/xdecoder/language/LangEncoder/__pycache__/transformer.cpython-38.pyc b/xdecoder/language/LangEncoder/__pycache__/transformer.cpython-38.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..3ba951176c5836dda22a4ec97233b04af7b66432
Binary files /dev/null and b/xdecoder/language/LangEncoder/__pycache__/transformer.cpython-38.pyc differ
diff --git a/xdecoder/language/LangEncoder/build.py b/xdecoder/language/LangEncoder/build.py
new file mode 100755
index 0000000000000000000000000000000000000000..87a39af5e17ad08f583fc294716491fb87469287
--- /dev/null
+++ b/xdecoder/language/LangEncoder/build.py
@@ -0,0 +1,36 @@
+import os
+
+from transformers import CLIPTokenizer, CLIPTokenizerFast
+from transformers import AutoTokenizer
+
+from .registry import lang_encoders
+from .registry import is_lang_encoder
+
+
+def build_lang_encoder(config_encoder, tokenizer, verbose, **kwargs):
+    model_name = config_encoder['NAME']
+
+    if not is_lang_encoder(model_name):
+        raise ValueError(f'Unkown model: {model_name}')
+
+    return lang_encoders(model_name)(config_encoder, tokenizer, verbose, **kwargs)
+
+
+def build_tokenizer(config_encoder):
+    tokenizer = None
+    os.environ['TOKENIZERS_PARALLELISM'] = 'true'
+    if config_encoder['TOKENIZER'] == 'clip':
+        pretrained_tokenizer = config_encoder.get(
+            'PRETRAINED_TOKENIZER', 'openai/clip-vit-base-patch32'
+        )
+        tokenizer = CLIPTokenizer.from_pretrained(pretrained_tokenizer)
+        tokenizer.add_special_tokens({'cls_token': tokenizer.eos_token})
+    elif config_encoder['TOKENIZER'] == 'clip-fast':
+        pretrained_tokenizer = config_encoder.get(
+            'PRETRAINED_TOKENIZER', 'openai/clip-vit-base-patch32'
+        )
+        tokenizer = CLIPTokenizerFast.from_pretrained(pretrained_tokenizer, from_slow=True)
+    else:
+        tokenizer = AutoTokenizer.from_pretrained(config_encoder['TOKENIZER'])
+
+    return tokenizer
diff --git a/xdecoder/language/LangEncoder/registry.py b/xdecoder/language/LangEncoder/registry.py
new file mode 100755
index 0000000000000000000000000000000000000000..8991272a6e2294ea86eee338cf61d87e4123f724
--- /dev/null
+++ b/xdecoder/language/LangEncoder/registry.py
@@ -0,0 +1,18 @@
+_lang_encoders = {}
+
+
+def register_lang_encoder(fn):
+    module_name_split = fn.__module__.split('.')
+    model_name = module_name_split[-1]
+
+    _lang_encoders[model_name] = fn
+
+    return fn
+
+
+def lang_encoders(model_name):
+    return _lang_encoders[model_name]
+
+
+def is_lang_encoder(model_name):
+    return model_name in _lang_encoders
diff --git a/xdecoder/language/LangEncoder/transformer.py b/xdecoder/language/LangEncoder/transformer.py
new file mode 100755
index 0000000000000000000000000000000000000000..00123460f0aa93801bdf750af62e3a14753c0366
--- /dev/null
+++ b/xdecoder/language/LangEncoder/transformer.py
@@ -0,0 +1,222 @@
+from collections import OrderedDict
+from typing import Tuple, Union
+import logging
+import os
+
+import numpy as np
+import torch
+import torch.nn.functional as F
+from torch import nn
+
+from timm.models.layers import DropPath, trunc_normal_
+
+from .registry import register_lang_encoder
+from utils.distributed import is_main_process
+from utils.model import register_norm_module
+
+logger = logging.getLogger(__name__)
+
+
+@register_norm_module
+class LayerNorm(nn.Module):
+    def __init__(self, hidden_size, eps=1e-12):
+        """Construct a layernorm module in the TF style (epsilon inside the square root).
+        """
+        super(LayerNorm, self).__init__()
+        self.weight = nn.Parameter(torch.ones(hidden_size))
+        self.bias = nn.Parameter(torch.zeros(hidden_size))
+        self.variance_epsilon = eps
+
+    def forward(self, x):
+        pdtype = x.dtype
+        x = x.float()
+        u = x.mean(-1, keepdim=True)
+        s = (x - u).pow(2).mean(-1, keepdim=True)
+        x = (x - u) / torch.sqrt(s + self.variance_epsilon)
+        return self.weight * x.to(pdtype) + self.bias
+
+
+class QuickGELU(nn.Module):
+    def forward(self, x: torch.Tensor):
+        return x * torch.sigmoid(1.702 * x)
+
+
+class ResidualAttentionBlock(nn.Module):
+    def __init__(self,
+                 d_model: int,
+                 n_head: int,
+                 attn_mask: torch.Tensor = None,
+                 drop_path: float = 0.0):
+        super().__init__()
+
+        self.attn = nn.MultiheadAttention(d_model, n_head)
+        self.ln_1 = LayerNorm(d_model)
+        self.mlp = nn.Sequential(OrderedDict([
+            ("c_fc", nn.Linear(d_model, d_model * 4)),
+            ("gelu", QuickGELU()),
+            ("c_proj", nn.Linear(d_model * 4, d_model))
+        ]))
+        self.ln_2 = LayerNorm(d_model)
+        self.attn_mask = attn_mask
+        self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
+
+    def attention(self, x: torch.Tensor, key_padding_mask: torch.Tensor = None):
+        self.attn_mask = self.attn_mask.to(dtype=x.dtype, device=x.device) \
+            if self.attn_mask is not None else None
+
+
+        return self.attn(
+            x, x, x,
+            key_padding_mask=key_padding_mask,
+            need_weights=False,
+            attn_mask=self.attn_mask
+        )[0]
+
+    def forward(self, x: torch.Tensor, key_padding_mask: torch.Tensor = None):
+        x = x + self.drop_path(self.attention(self.ln_1(x), key_padding_mask=key_padding_mask))
+        x = x + self.drop_path(self.mlp(self.ln_2(x)))
+        return x
+
+
+class Transformer(nn.Module):
+    def __init__(self,
+                 context_length: int,
+                 vocab_size: int,
+                 width: int,
+                 layers: int,
+                 heads: int,
+                 drop_path: float = 0.0,
+                 autogressive: bool =True):
+        super().__init__()
+
+        self.token_embedding = nn.Embedding(vocab_size, width)
+
+        self.context_length = context_length
+        self.positional_embedding = nn.Parameter(
+            torch.empty(self.context_length, width)
+        )
+
+        self.width = width
+        self.layers = layers
+        self.autogressive = autogressive
+        attn_mask = self.build_attention_mask() if autogressive else None
+        dpr = [x.item() for x in torch.linspace(0, drop_path, layers)]  # stochastic depth decay rule
+        self.resblocks = nn.ModuleList(
+            [
+                ResidualAttentionBlock(width, heads, attn_mask, dpr[i])
+                for i in range(layers)
+            ]
+        )
+
+        self.ln_final = LayerNorm(width)
+
+        trunc_normal_(self.positional_embedding, std=.02)
+        # nn.init.normal_(self.token_embedding, std=.02)
+        trunc_normal_(self.token_embedding.weight, std=.02)
+        self.apply(self._init_weights)
+
+    @property
+    def dim_out(self):
+        return self.width
+
+    def build_attention_mask(self):
+        # lazily create causal attention mask, with full attention between the vision tokens
+        # pytorch uses additive attention mask; fill with -inf
+        mask = torch.empty(self.context_length, self.context_length)
+        mask.fill_(float("-inf"))
+        mask.triu_(1)  # zero out the lower diagonal
+        return mask
+
+    def _init_weights(self, m):
+        if isinstance(m, (nn.Linear, nn.Conv2d)):
+            if is_main_process():
+                logger.info('=> init weight of Linear/Conv2d from trunc norm')
+            trunc_normal_(m.weight, std=0.02)
+            if m.bias is not None:
+                if is_main_process():
+                    logger.info('=> init bias of Linear/Conv2d to zeros')
+                nn.init.constant_(m.bias, 0)
+        elif isinstance(m, (nn.LayerNorm, nn.BatchNorm2d)):
+            nn.init.constant_(m.bias, 0)
+
+    def load_pretrained(self, pretrained='', pretrained_layers=[], verbose=True):
+        if os.path.isfile(pretrained):
+            pretrained_dict = torch.load(pretrained, map_location='cpu')
+            logging.info(f'=> loading pretrained model {pretrained}')
+            model_dict = self.state_dict()
+            stripped_key = lambda x: x[13:] if x.startswith('lang_encoder.') else x
+            pretrained_dict = {
+                stripped_key(k): v for k, v in pretrained_dict.items()
+                if stripped_key(k) in model_dict.keys()
+            }
+            need_init_state_dict = {}
+            for k, v in pretrained_dict.items():
+                need_init = (
+                    k.split('.')[0] in pretrained_layers
+                    or pretrained_layers[0] == '*'
+                )
+                if need_init:
+                    if verbose:
+                        logger.info(f'=> init {k} from {pretrained}')
+
+                    if 'positional_embedding' in k and v.size() != model_dict[k].size():
+                        positional_embedding_pretrained = v
+                        positional_embedding_current = model_dict[k]
+                        L1, nH1 = positional_embedding_pretrained.size()
+                        L2, nH2 = positional_embedding_current.size()
+                        if nH1 != nH2:
+                            logger.info(f"Error in loading {k}, passing")
+                        else:
+                            if L1 != L2:
+                                logger.info(
+                                    '=> load_pretrained: resized variant: {} to {}'
+                                        .format((L1, nH1), (L2, nH2))
+                                )
+
+                                posemb = positional_embedding_pretrained.float()
+                                posemb_grid = posemb.unsqueeze(dim=0).permute(0, 2, 1)
+                                posemb_grid = torch.nn.functional.interpolate(posemb_grid, size=L2, mode='linear')
+                                posemb_grid = posemb_grid.permute(0, 2, 1).squeeze(dim=0)
+                                v = posemb_grid
+
+                    need_init_state_dict[k] = v
+
+            self.load_state_dict(need_init_state_dict, strict=False)
+
+
+    @torch.jit.ignore
+    def no_weight_decay(self):
+        return {
+            'positional_embedding',
+            'token_embedding',
+        }
+
+    def forward(self, input_ids, attention_mask=None):
+        key_padding_mask = (attention_mask == 0) if (not self.autogressive and attention_mask is not None) else None
+        # key_padding_mask = (input_ids == 0) if not self.autogressive else None
+        x = self.token_embedding(input_ids)  # [batch_size, n_ctx, d_model]
+        x = x + self.positional_embedding
+        x = x.permute(1, 0, 2)  # NLD -> LND
+        for block in self.resblocks:
+            x = block(x, key_padding_mask)
+        x = x.permute(1, 0, 2)  # LND -> NLD
+
+        x = self.ln_final(x)
+
+        return {'last_hidden_state': x}
+
+
+@register_lang_encoder
+def lang_encoder(config_encoder, tokenizer, verbose, **kwargs):
+    transformer = Transformer(
+        context_length=config_encoder['CONTEXT_LENGTH'],
+        vocab_size=tokenizer.vocab_size,
+        width=config_encoder['WIDTH'],
+        layers=config_encoder['LAYERS'],
+        heads=config_encoder['HEADS'],
+        autogressive=config_encoder.get('AUTOGRESSIVE', True)
+    )
+
+    if config_encoder.get('LOAD_PRETRAINED', False):
+        transformer.load_pretrained(config_encoder['PRETRAINED'], config_encoder.get('PRETRAINED_LAYERS', ['*']))
+    return transformer
diff --git a/xdecoder/language/__init__.py b/xdecoder/language/__init__.py
new file mode 100755
index 0000000000000000000000000000000000000000..4118dc74282568a13fab564428a19a7b1c30b414
--- /dev/null
+++ b/xdecoder/language/__init__.py
@@ -0,0 +1,3 @@
+from .fixvlpencoder import *
+from .vlpencoder import *
+from .build import build_language_encoder
\ No newline at end of file
diff --git a/xdecoder/language/__pycache__/__init__.cpython-38.pyc b/xdecoder/language/__pycache__/__init__.cpython-38.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..912cfb2bd643a32a5eb6b3d0301b17d865161e90
Binary files /dev/null and b/xdecoder/language/__pycache__/__init__.cpython-38.pyc differ
diff --git a/xdecoder/language/__pycache__/build.cpython-38.pyc b/xdecoder/language/__pycache__/build.cpython-38.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..cba74dd1081bd2bbac0945847421c8d261f3d05a
Binary files /dev/null and b/xdecoder/language/__pycache__/build.cpython-38.pyc differ
diff --git a/xdecoder/language/__pycache__/fixvlpencoder.cpython-38.pyc b/xdecoder/language/__pycache__/fixvlpencoder.cpython-38.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..9c07b0c1d96bd949258c5fcf890b8e00cd65fb97
Binary files /dev/null and b/xdecoder/language/__pycache__/fixvlpencoder.cpython-38.pyc differ
diff --git a/xdecoder/language/__pycache__/loss.cpython-38.pyc b/xdecoder/language/__pycache__/loss.cpython-38.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..93d7dac2b007f5e1e16ffcfd3ffc86e6bdc8a0c8
Binary files /dev/null and b/xdecoder/language/__pycache__/loss.cpython-38.pyc differ
diff --git a/xdecoder/language/__pycache__/registry.cpython-38.pyc b/xdecoder/language/__pycache__/registry.cpython-38.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..7bb421f17c7fffdb65a4f09ace581979d411c5dc
Binary files /dev/null and b/xdecoder/language/__pycache__/registry.cpython-38.pyc differ
diff --git a/xdecoder/language/__pycache__/vlpencoder.cpython-38.pyc b/xdecoder/language/__pycache__/vlpencoder.cpython-38.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..3fe659df3c65cbe6c040485c53d4cd67bcd55dfa
Binary files /dev/null and b/xdecoder/language/__pycache__/vlpencoder.cpython-38.pyc differ
diff --git a/xdecoder/language/build.py b/xdecoder/language/build.py
new file mode 100755
index 0000000000000000000000000000000000000000..8d9acdf9766e3bc1184c4200ef4dace3437617e4
--- /dev/null
+++ b/xdecoder/language/build.py
@@ -0,0 +1,11 @@
+from .registry import model_entrypoints
+from .registry import is_model
+
+
+def build_language_encoder(config, **kwargs):
+    model_name = config['MODEL']['TEXT']['ARCH']
+
+    if not is_model(model_name):
+        raise ValueError(f'Unkown model: {model_name}')
+
+    return model_entrypoints(model_name)(config, **kwargs)
\ No newline at end of file
diff --git a/xdecoder/language/fixvlpencoder.py b/xdecoder/language/fixvlpencoder.py
new file mode 100755
index 0000000000000000000000000000000000000000..dd91faf136b4e479dba03cc81b21ed5f3b47e1e0
--- /dev/null
+++ b/xdecoder/language/fixvlpencoder.py
@@ -0,0 +1,35 @@
+from importlib.metadata import requires
+import torch
+import torch.nn as nn
+
+from .registry import register_model
+from .vlpencoder import LanguageEncoder
+
+class FixLanguageEncoder(LanguageEncoder):
+
+    def __init__(
+        self,
+        *args, **kwargs):
+        super(FixLanguageEncoder, self).__init__(*args, **kwargs)
+        self.logit_scale = nn.Parameter(torch.ones([]), requires_grad=False)
+
+    @torch.no_grad()
+    def get_text_embeddings(self, *args, **kwargs):
+        return super().get_text_embeddings(*args, **kwargs)
+
+    @torch.no_grad()
+    def get_text_token_embeddings(self, *args, **kwargs):
+        return super().get_text_token_embeddings(*args, **kwargs)
+
+    @torch.no_grad()
+    def forward_language(self, *args, **kwargs):
+        return super().forward_language(*args, **kwargs)
+
+    @torch.no_grad()
+    def forward_language_token(self, *args, **kwargs):
+        return super().forward_language_token(*args, **kwargs)
+
+
+@register_model
+def get_language_model(cfg, **kwargs):
+    return FixLanguageEncoder(cfg)        
\ No newline at end of file
diff --git a/xdecoder/language/loss.py b/xdecoder/language/loss.py
new file mode 100755
index 0000000000000000000000000000000000000000..fe7ecd566bbf7f7e5a9981c7789c16c537ecb6b5
--- /dev/null
+++ b/xdecoder/language/loss.py
@@ -0,0 +1,225 @@
+import pickle
+from distutils import log
+
+import torch
+import torch.nn.functional as F
+import torch.distributed as dist
+
+from einops import rearrange, repeat
+from timm.loss import SoftTargetCrossEntropy
+
+soft_cross_entropy = SoftTargetCrossEntropy()
+
+def is_dist_initialized():
+    return torch.distributed.is_initialized()
+
+def get_world_size():
+    if is_dist_initialized():
+        return torch.distributed.get_world_size()
+    return 1
+
+def get_rank():
+    if is_dist_initialized():
+        return dist.get_rank()
+    return 0
+
+def all_gather_grad(x):
+    if get_world_size() > 1:
+        all_x = [torch.zeros_like(x) for _ in range(get_world_size())]
+        torch.distributed.all_gather(all_x, x)
+        all_x[torch.distributed.get_rank()] = x
+        x = torch.cat(all_x, dim=0)
+    return x
+
+def vl_multilabel_contrastive_loss(image_feat, text_feat, temperature=1):
+    """
+    Args:
+        image_feat (torch.Tensor): shape [B, L1, C] # B: batch_size, L1: 1, C: 256
+        text_feat (torch.Tensor): shape [B, L2, C] # B:batch_size, L2: number of selected nouns, C: 256
+
+    Returns:
+    """
+    # [B, L1, C], L1 = 1
+    # image_feat = F.normalize(image_feat, dim=-1)
+    # [B, L2, C]
+    # text_feat = F.normalize(text_feat, dim=-1)
+    # HACK: normalize outside
+    
+    # [B, L1, L2]
+    dist_per_img = image_feat @ rearrange(text_feat, 'b l c -> b c l')    
+    # [B, L2, L1]
+    dist_per_text = text_feat @ rearrange(image_feat, 'b l c -> b c l')
+
+    batch = image_feat.shape[0]
+    img_len = image_feat.shape[1]
+    text_len = text_feat.shape[1]
+    # [B, L1, L2]
+    pos_labels_batch_img = rearrange(torch.ones_like(dist_per_text) / dist_per_text.size(1), 'b l2 l1 -> b l1 l2')
+    # [B, L2, L1]
+    pos_labels_batch_text = rearrange(torch.ones_like(dist_per_img) / dist_per_img.size(1), 'b l1 l2 -> b l2 l1')
+
+    image_x = rearrange(image_feat, 'b l c -> (b l) c')
+    text_x = rearrange(text_feat, 'b l c -> (b l) c')
+
+    logits_per_img = image_x @ all_gather_grad(text_x).t()
+    logits_per_text = text_x @ all_gather_grad(image_x).t()
+
+    # get label globally
+    # [B, L1, B, L2, W]
+    labels_per_img = F.one_hot(
+        torch.ones(batch, img_len, batch, text_len, dtype=torch.long, device=image_x.device) * get_rank(),
+        num_classes=get_world_size()).to(image_x.dtype)
+    labels_per_img *= rearrange(pos_labels_batch_img, 'b l1 l2 -> b l1 1 l2 1') * repeat(
+        torch.eye(batch, dtype=image_x.dtype, device=image_x.device), 'b1 b2 -> b1 1 b2 1 1')
+    # [BxL1, WxBxL2]
+    labels_per_img = rearrange(labels_per_img, 'b1 l1 b2 l2 w -> (b1 l1) (w b2 l2)')
+    # [B, L2, B, L1, W]
+    labels_per_text = F.one_hot(
+        torch.ones(batch, text_len, batch, img_len, dtype=torch.long, device=text_x.device) * get_rank(),
+        num_classes=get_world_size()).to(text_x.dtype)
+    labels_per_text *= rearrange(pos_labels_batch_text, 'b l2 l1 -> b l2 1 l1 1') * repeat(
+        torch.eye(batch, dtype=text_x.dtype, device=image_x.device), 'b2 b1 -> b2 1 b1 1 1')
+    # [BxL2, WxBxL1]
+    labels_per_text = rearrange(labels_per_text, 'b2 l2 b1 l1 w -> (b2 l2) (w b1 l1)')
+
+    logit_scale = temperature.exp().clamp(max=100)
+
+    loss_img = soft_cross_entropy(logit_scale * logits_per_img, labels_per_img)
+    loss_text = soft_cross_entropy(logit_scale * logits_per_text, labels_per_text)
+
+    loss = 0.5 * (loss_img + loss_text)
+    return loss
+
+def vl_contrastive_loss(image_feat, text_feat, temperature=1):
+    # if image_id or text_id is None, it should be None across all GPUs
+    # image_feat = F.normalize(image_feat, dim=1)
+    # text_feat = F.normalize(text_feat, dim=1)
+    # handle normalization outside
+
+    # add the following 4 lines
+    image_feat = all_gather_grad(image_feat)
+    text_feat = all_gather_grad(text_feat)
+    
+    logits = torch.matmul(image_feat, text_feat.t())
+    logit_scale = temperature.exp().clamp(max=100)
+
+    gt = torch.arange(logits.shape[0], device=logits.device)
+    loss1 = F.cross_entropy(logit_scale * logits, gt)
+    loss2 = F.cross_entropy(logit_scale * logits.t(), gt)
+    return (loss1 + loss2) / 2 # scale it up by the number of GPUs
+
+
+def all_gather_pickle(data, device):
+    """
+    Run all_gather on arbitrary picklable data (not necessarily tensors)
+    Args:
+        data: any picklable object
+    Returns:
+        list[data]: list of data gathered from each rank
+    """
+    world_size = get_world_size()
+    if world_size == 1:
+        return [data]
+
+    # serialized to a Tensor
+    buffer = pickle.dumps(data)
+    storage = torch.ByteStorage.from_buffer(buffer)
+    tensor = torch.ByteTensor(storage).to(device)
+
+    # obtain Tensor size of each rank
+    local_size = torch.LongTensor([tensor.numel()]).cuda()
+    size_list = [torch.LongTensor([0]).cuda() for _ in range(world_size)]
+    dist.all_gather(size_list, local_size)
+    size_list = [int(size.item()) for size in size_list]
+    max_size = max(size_list)
+
+    # receiving Tensor from all ranks
+    # we pad the tensor because torch all_gather does not support
+    # gathering tensors of different shapes
+    tensor_list = []
+    for _ in size_list:
+        tensor_list.append(torch.ByteTensor(size=(max_size,)).cuda())
+    if local_size != max_size:
+        padding = torch.ByteTensor(size=(max_size - local_size,)).cuda()
+        tensor = torch.cat((tensor, padding), dim=0)
+    dist.all_gather(tensor_list, tensor)
+
+    data_list = []
+    for size, tensor in zip(size_list, tensor_list):
+        buffer = tensor.cpu().numpy().tobytes()[:size]
+        data_list.append(pickle.loads(buffer))
+
+    return data_list
+
+def all_gather_arbitary_tensor(tensor):
+    if get_world_size() > 1:
+        device = tensor.device
+        tensor_batch = all_gather_pickle(tensor.cpu(), device)
+        tensor_batch = [x.to(device) for x in tensor_batch]
+        tensor_batch[torch.distributed.get_rank()] = tensor
+        tensor_batch = torch.cat(tensor_batch, dim=0)
+    else:
+        tensor_batch = tensor
+    return tensor_batch
+
+def ql_contrastive_loss(image_feat, text_feat, temperature=1):
+    # add the following 4 lines
+    image_feat = all_gather_arbitary_tensor(image_feat)
+    text_feat = all_gather_arbitary_tensor(text_feat)
+
+    logits = torch.matmul(image_feat, text_feat.t())
+    logit_scale = temperature.exp().clamp(max=100)
+
+    gt = torch.arange(logits.shape[0], device=logits.device)
+    loss1 = F.cross_entropy(logit_scale * logits, gt)
+    loss2 = F.cross_entropy(logit_scale * logits.t(), gt)
+    return (loss1 + loss2) / 2 # scale it up by the number of GPUs
+
+def vl_similarity(image_feat, text_feat, temperature=1):
+    # Only support single GPU for now.
+    logits = torch.matmul(image_feat, text_feat.t())
+    logits = temperature.exp().clamp(max=100) * logits
+    return logits
+
+def ql_multi_contrastive_loss(image_feat, text_feat, text_hash, temperature=1):
+    # add the following 4 lines
+    image_feat = all_gather_arbitary_tensor(image_feat)
+    text_feat = all_gather_arbitary_tensor(text_feat)
+
+    text_hash_batch = all_gather_pickle(text_hash, text_feat.device)
+    text_hash_all = torch.cat(text_hash_batch)
+    
+    text_hash_all_unique = torch.unique(text_hash_all).tolist()
+    gt = torch.zeros((image_feat.shape[0], len(text_hash_all_unique)), device=text_feat.device)
+    text_hash_all = text_hash_all.tolist()
+    text_feat_unique = torch.stack([text_feat[text_hash_all.index(txt)] for txt in text_hash_all_unique])
+
+    for idx, txt in enumerate(text_hash_all):
+        gt[idx][text_hash_all_unique.index(txt)] = 1
+    
+    logits = torch.matmul(image_feat, text_feat_unique.t())
+    logits = logits*temperature.exp().clamp(max=100)
+    
+    loss_img = soft_cross_entropy(logits, gt)
+    loss_text = soft_cross_entropy(logits.t(), gt.t() / gt.t().sum(-1, keepdim=True))
+
+    loss = 0.7 * loss_img + 0.3 * loss_text
+    return loss
+
+def image_text_contrastive_loss_queue(image_feat_inp, text_feat_inp, lang_enc, training):
+    # add the following 4 lines
+    image_feat = all_gather_grad(image_feat_inp.contiguous())
+    text_feat = all_gather_grad(text_feat_inp.contiguous())
+
+    image_feat = image_feat / (image_feat.norm(dim=-1, keepdim=True) + 1e-7)
+    text_feat = text_feat / (text_feat.norm(dim=-1, keepdim=True) + 1e-7)
+
+    temperature = lang_enc.logit_scale
+    logits = torch.matmul(image_feat, text_feat.t())
+    logit_scale = temperature.exp().clamp(max=100)
+
+    gt = torch.arange(logits.shape[0], device=logits.device)
+    loss1 = F.cross_entropy(logit_scale * logits, gt)
+    loss2 = F.cross_entropy(logit_scale * logits.t(), gt)
+
+    return (loss1 + loss2) / 2 # scale it up by the number of GPUs
\ No newline at end of file
diff --git a/xdecoder/language/misc.py b/xdecoder/language/misc.py
new file mode 100755
index 0000000000000000000000000000000000000000..faf172fbb8a90ed49ca0de9a9ca1d875f2f96215
--- /dev/null
+++ b/xdecoder/language/misc.py
@@ -0,0 +1,64 @@
+import random
+
+import nltk
+nltk.data.path.append('/mnt/data/nltk_data')
+import numpy as np
+
+from utils.constants import IMAGENET_DEFAULT_TEMPLATES
+
+
+def get_tag(tokenized, tags):
+    if not isinstance(tags, (list, tuple)):
+        tags = [tags]
+    ret = []
+    for (word, pos) in nltk.pos_tag(tokenized):
+        for tag in tags:
+            if pos == tag:
+                ret.append(word)
+    return ret
+
+def get_noun_phrase(tokenized):
+    # Taken from Su Nam Kim Paper...
+    grammar = r"""
+        NBAR:
+            {<NN.*|JJ>*<NN.*>}  # Nouns and Adjectives, terminated with Nouns
+
+        NP:
+            {<NBAR>}
+            {<NBAR><IN><NBAR>}  # Above, connected with in/of/etc...
+    """
+    chunker = nltk.RegexpParser(grammar)
+
+    chunked = chunker.parse(nltk.pos_tag(tokenized))
+    continuous_chunk = []
+    current_chunk = []
+
+    for subtree in chunked:
+        if isinstance(subtree, nltk.Tree):
+            current_chunk.append(' '.join([token for token, pos in subtree.leaves()]))
+        elif current_chunk:
+            named_entity = ' '.join(current_chunk)
+            if named_entity not in continuous_chunk:
+                continuous_chunk.append(named_entity)
+                current_chunk = []
+        else:
+            continue
+
+    return continuous_chunk
+
+def text_noun_with_prompt_all(text, phrase_prob=0.0, append_text=True):
+    tokenized = nltk.word_tokenize(text)
+    
+    if random.random() >= phrase_prob:
+        nouns = get_tag(tokenized, ['NN', 'NNS', 'NNP'])
+    else:
+        nouns = get_noun_phrase(tokenized)
+
+
+    prompt_texts = [np.random.choice(IMAGENET_DEFAULT_TEMPLATES).format(noun) for noun in nouns]
+    
+    if append_text:
+        prompt_texts += [text]
+        nouns += [text]
+    
+    return prompt_texts, nouns
\ No newline at end of file
diff --git a/xdecoder/language/registry.py b/xdecoder/language/registry.py
new file mode 100755
index 0000000000000000000000000000000000000000..940e4560f7d052aed4915187410266ab5a4cb4d0
--- /dev/null
+++ b/xdecoder/language/registry.py
@@ -0,0 +1,13 @@
+_model_entrypoints = {}
+
+def register_model(fn):
+    module_name_split = fn.__module__.split('.')
+    model_name = module_name_split[-1]
+    _model_entrypoints[model_name] = fn
+    return fn
+
+def model_entrypoints(model_name):
+    return _model_entrypoints[model_name]
+
+def is_model(model_name):
+    return model_name in _model_entrypoints
\ No newline at end of file
diff --git a/xdecoder/language/vlpencoder.py b/xdecoder/language/vlpencoder.py
new file mode 100755
index 0000000000000000000000000000000000000000..ce6fd4709255e8869749d7401babb373b187d697
--- /dev/null
+++ b/xdecoder/language/vlpencoder.py
@@ -0,0 +1,168 @@
+
+import torch
+from torch import nn
+from torch.nn import functional as F
+
+from timm.models.layers import trunc_normal_
+
+from .registry import register_model
+from ..utils import configurable
+from .LangEncoder import build_tokenizer, build_lang_encoder
+from utils.misc import prompt_engineering, get_prompt_templates
+
+
+class LanguageEncoder(nn.Module):
+
+    @configurable
+    def __init__(
+        self,
+        tokenizer,
+        tokenizer_type,
+        lang_encoder,
+        lang_projection,
+        max_token_num,
+    ):
+        super().__init__()
+        self.tokenizer = tokenizer
+        self.tokenizer_type = tokenizer_type
+        self.lang_encoder = lang_encoder
+        self.lang_proj = lang_projection
+        self.max_token_num = max_token_num
+        self.logit_scale = nn.Parameter(torch.ones([]))
+
+    @classmethod
+    def from_config(cls, cfg):
+        tokenizer = build_tokenizer(cfg['MODEL']['TEXT'])
+        tokenizer_type = cfg['MODEL']['TEXT']['TOKENIZER']
+        lang_encoder = build_lang_encoder(cfg['MODEL']['TEXT'], tokenizer, cfg['VERBOSE'])
+        max_token_num = cfg['MODEL']['TEXT']['CONTEXT_LENGTH']
+        
+        dim_lang = cfg['MODEL']['TEXT']['WIDTH']
+        dim_projection = cfg['MODEL']['DIM_PROJ']
+        lang_projection = nn.Parameter(torch.empty(dim_lang, dim_projection))
+        trunc_normal_(lang_projection, std=.02)
+        
+        return {
+            "tokenizer": tokenizer,
+            "tokenizer_type": tokenizer_type,
+            "lang_encoder": lang_encoder,
+            "lang_projection": lang_projection,
+            "max_token_num": max_token_num,
+        }
+
+    def get_text_embeddings(self, class_names, name='default', is_eval=False, add_bgd=False, prompt=True, norm=True):
+        if not is_eval:
+            if prompt:
+                # randomly sample one template
+                arbitary_concepts = [
+                    prompt_engineering(class_names[label].replace('-other','').replace('-merged','').replace('-stuff',''), topk=10000, suffix='.') \
+                    for label in range(len(class_names))
+                ]
+                if add_bgd:
+                    arbitary_concepts.append("A background in coco.")
+            else:
+                arbitary_concepts = class_names
+            
+            input_ids = []
+            attention_masks = []
+            for txt in arbitary_concepts:
+                tokens = self.tokenizer(
+                    txt, padding='max_length', truncation=True, max_length=self.max_token_num, return_tensors='pt'
+                )
+                tokens['input_ids'].squeeze_()
+                tokens['attention_mask'].squeeze_()
+
+                input_ids.append(tokens['input_ids'])
+                attention_masks.append(tokens['attention_mask'])
+
+            arbitary_tokens = torch.stack(input_ids)
+            arbitary_attention_masks = torch.stack(attention_masks)
+
+            text_emb = self.forward_language((arbitary_tokens.cuda(), arbitary_attention_masks.cuda()), norm=norm)
+            setattr(self, '{}_text_embeddings'.format(name), text_emb)
+        else:
+            with torch.no_grad():
+                def extract_mean_emb(txts):
+                    tokens = self.tokenizer(
+                        txts, padding='max_length', truncation=True, max_length=self.max_token_num, return_tensors='pt'
+                    )
+                    clss_embedding = self.forward_language((tokens['input_ids'].cuda(), tokens['attention_mask'].cuda()), norm=norm)
+                    clss_embedding = clss_embedding.mean(dim=0)
+                    clss_embedding /= clss_embedding.norm()
+                    return clss_embedding
+
+                templates = get_prompt_templates()
+                clss_embeddings = []
+                if prompt:
+                    for clss in class_names:
+                        txts = [template.format(clss.replace('-other','').replace('-merged','').replace('-stuff','')) for template in templates]
+                        clss_embeddings.append(extract_mean_emb(txts))
+                else:
+                    clss_embeddings.append(extract_mean_emb(class_names))
+
+                if add_bgd:
+                    txts = ["A background in coco."]
+                    clss_embeddings.append(extract_mean_emb(txts))
+
+                text_emb = torch.stack(clss_embeddings, dim=0)
+                setattr(self, '{}_text_embeddings'.format(name), text_emb)
+
+    def get_text_token_embeddings(self, txts, name='default', token=False, norm=False):
+        if not token:
+            tokens = self.tokenizer(
+                txts, padding='max_length', truncation=True, max_length=self.max_token_num, return_tensors='pt'
+            )
+            tokens = {key: value.cuda() for key, value in tokens.items()}
+        else:
+            tokens = txts
+        token_emb, class_emb = self.forward_language_token((tokens['input_ids'], tokens['attention_mask']), norm=norm)
+        ret = {"tokens": tokens,
+                "token_emb": token_emb,
+                "class_emb": class_emb,}
+        setattr(self, '{}_token_embeddings'.format(name), ret)
+        return ret
+
+    def forward_language(self, texts, norm=True):
+        x = self.lang_encoder(*texts)
+        x = x['last_hidden_state']
+
+        if self.tokenizer_type == 'clip':
+            x = x[torch.arange(x.size(0)), texts[0].argmax(dim=-1)]
+        else:
+            x = x[:, 0]
+
+        x = x @ self.lang_proj
+        if norm:
+            x = x / (x.norm(dim=-1, keepdim=True) + 1e-7)
+        return x
+    
+    def forward_language_token(self, texts, norm=False):
+        x = self.lang_encoder(*texts)
+        token_x = x['last_hidden_state']
+
+        if self.tokenizer_type == 'clip':
+            class_x = token_x[torch.arange(token_x.size(0)), texts[0].argmax(dim=-1)]
+        else:
+            class_x = token_x[:, 0]
+
+        class_x = class_x @ self.lang_proj
+        token_x = token_x @ self.lang_proj
+
+        if norm:
+            class_x = class_x / (class_x.norm(dim=-1, keepdim=True) + 1e-7)
+            token_x = token_x / (token_x.norm(dim=-1, keepdim=True) + 1e-7)
+
+        return token_x, class_x
+    
+    def compute_similarity(self, v_emb, name='default', fake=False):
+        if fake:
+            return None
+        v_emb = v_emb / (v_emb.norm(dim=-1, keepdim=True) + 1e-7)
+        t_emb = getattr(self, '{}_text_embeddings'.format(name))
+        output = self.logit_scale.exp() * v_emb @ t_emb.unsqueeze(0).transpose(1, 2)
+        return output
+
+
+@register_model
+def get_language_model(cfg, **kwargs):
+    return LanguageEncoder(cfg)
\ No newline at end of file
diff --git a/xdecoder/modules/__init__.py b/xdecoder/modules/__init__.py
new file mode 100755
index 0000000000000000000000000000000000000000..6bbbff85221d3e15d34b52f69706896896c47ef3
--- /dev/null
+++ b/xdecoder/modules/__init__.py
@@ -0,0 +1,3 @@
+from .position_encoding import *
+from .attention import *
+from .postprocessing import *
\ No newline at end of file
diff --git a/xdecoder/modules/__pycache__/__init__.cpython-38.pyc b/xdecoder/modules/__pycache__/__init__.cpython-38.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..06c8296c576ff1d2d4f508d0a8ad06b02ab46056
Binary files /dev/null and b/xdecoder/modules/__pycache__/__init__.cpython-38.pyc differ
diff --git a/xdecoder/modules/__pycache__/attention.cpython-38.pyc b/xdecoder/modules/__pycache__/attention.cpython-38.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..8599bf5769136c530047178a65bb3c41b5bd3652
Binary files /dev/null and b/xdecoder/modules/__pycache__/attention.cpython-38.pyc differ
diff --git a/xdecoder/modules/__pycache__/position_encoding.cpython-38.pyc b/xdecoder/modules/__pycache__/position_encoding.cpython-38.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..aaff0366ebd20b0f273948fe43e3ccfeb58e4a16
Binary files /dev/null and b/xdecoder/modules/__pycache__/position_encoding.cpython-38.pyc differ
diff --git a/xdecoder/modules/__pycache__/postprocessing.cpython-38.pyc b/xdecoder/modules/__pycache__/postprocessing.cpython-38.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..de6962a35528219c9536bfcc0e8df2914cedf92a
Binary files /dev/null and b/xdecoder/modules/__pycache__/postprocessing.cpython-38.pyc differ
diff --git a/xdecoder/modules/attention.py b/xdecoder/modules/attention.py
new file mode 100755
index 0000000000000000000000000000000000000000..a0eadeee1454cfbea58a96595af7c9e552088c6a
--- /dev/null
+++ b/xdecoder/modules/attention.py
@@ -0,0 +1,489 @@
+# Code copy from PyTorch, modified by Xueyan Zou
+
+import warnings
+from typing import Optional, Tuple
+
+import torch
+import torch.nn as nn
+from torch import Tensor
+from torch.nn.init import constant_, xavier_normal_, xavier_uniform_
+from torch.nn.parameter import Parameter
+from torch.overrides import has_torch_function, handle_torch_function
+from torch.nn.functional import pad, linear, softmax, dropout
+
+
+def multi_head_attention_forward(
+    query: Tensor,
+    key: Tensor,
+    value: Tensor,
+    embed_dim_to_check: int,
+    num_heads: int,
+    in_proj_weight: Tensor,
+    in_proj_bias: Tensor,
+    bias_k: Optional[Tensor],
+    bias_v: Optional[Tensor],
+    add_zero_attn: bool,
+    dropout_p: float,
+    out_proj_weight: Tensor,
+    out_proj_bias: Tensor,
+    training: bool = True,
+    key_padding_mask: Optional[Tensor] = None,
+    need_weights: bool = True,
+    attn_mask: Optional[Tensor] = None,
+    use_separate_proj_weight: bool = False,
+    q_proj_weight: Optional[Tensor] = None,
+    k_proj_weight: Optional[Tensor] = None,
+    v_proj_weight: Optional[Tensor] = None,
+    static_k: Optional[Tensor] = None,
+    static_v: Optional[Tensor] = None,
+) -> Tuple[Tensor, Optional[Tensor]]:
+    r"""
+    Args:
+        query, key, value: map a query and a set of key-value pairs to an output.
+            See "Attention Is All You Need" for more details.
+        embed_dim_to_check: total dimension of the model.
+        num_heads: parallel attention heads.
+        in_proj_weight, in_proj_bias: input projection weight and bias.
+        bias_k, bias_v: bias of the key and value sequences to be added at dim=0.
+        add_zero_attn: add a new batch of zeros to the key and
+                       value sequences at dim=1.
+        dropout_p: probability of an element to be zeroed.
+        out_proj_weight, out_proj_bias: the output projection weight and bias.
+        training: apply dropout if is ``True``.
+        key_padding_mask: if provided, specified padding elements in the key will
+            be ignored by the attention. This is an binary mask. When the value is True,
+            the corresponding value on the attention layer will be filled with -inf.
+        need_weights: output attn_output_weights.
+        attn_mask: 2D or 3D mask that prevents attention to certain positions. A 2D mask will be broadcasted for all
+            the batches while a 3D mask allows to specify a different mask for the entries of each batch.
+        use_separate_proj_weight: the function accept the proj. weights for query, key,
+            and value in different forms. If false, in_proj_weight will be used, which is
+            a combination of q_proj_weight, k_proj_weight, v_proj_weight.
+        q_proj_weight, k_proj_weight, v_proj_weight, in_proj_bias: input projection weight and bias.
+        static_k, static_v: static key and value used for attention operators.
+
+
+    Shape:
+        Inputs:
+        - query: :math:`(L, N, E)` where L is the target sequence length, N is the batch size, E is
+          the embedding dimension.
+        - key: :math:`(S, N, E)`, where S is the source sequence length, N is the batch size, E is
+          the embedding dimension.
+        - value: :math:`(S, N, E)` where S is the source sequence length, N is the batch size, E is
+          the embedding dimension.
+        - key_padding_mask: :math:`(N, S)` where N is the batch size, S is the source sequence length.
+          If a ByteTensor is provided, the non-zero positions will be ignored while the zero positions
+          will be unchanged. If a BoolTensor is provided, the positions with the
+          value of ``True`` will be ignored while the position with the value of ``False`` will be unchanged.
+        - attn_mask: 2D mask :math:`(L, S)` where L is the target sequence length, S is the source sequence length.
+          3D mask :math:`(N*num_heads, L, S)` where N is the batch size, L is the target sequence length,
+          S is the source sequence length. attn_mask ensures that position i is allowed to attend the unmasked
+          positions. If a ByteTensor is provided, the non-zero positions are not allowed to attend
+          while the zero positions will be unchanged. If a BoolTensor is provided, positions with ``True``
+          are not allowed to attend while ``False`` values will be unchanged. If a FloatTensor
+          is provided, it will be added to the attention weight.
+        - static_k: :math:`(N*num_heads, S, E/num_heads)`, where S is the source sequence length,
+          N is the batch size, E is the embedding dimension. E/num_heads is the head dimension.
+        - static_v: :math:`(N*num_heads, S, E/num_heads)`, where S is the source sequence length,
+          N is the batch size, E is the embedding dimension. E/num_heads is the head dimension.
+
+        Outputs:
+        - attn_output: :math:`(L, N, E)` where L is the target sequence length, N is the batch size,
+          E is the embedding dimension.
+        - attn_output_weights: :math:`(N, L, S)` where N is the batch size,
+          L is the target sequence length, S is the source sequence length.
+    """
+    tens_ops = (query, key, value, in_proj_weight, in_proj_bias, bias_k, bias_v, out_proj_weight, out_proj_bias)
+    if has_torch_function(tens_ops):
+        return handle_torch_function(
+            multi_head_attention_forward,
+            tens_ops,
+            query,
+            key,
+            value,
+            embed_dim_to_check,
+            num_heads,
+            in_proj_weight,
+            in_proj_bias,
+            bias_k,
+            bias_v,
+            add_zero_attn,
+            dropout_p,
+            out_proj_weight,
+            out_proj_bias,
+            training=training,
+            key_padding_mask=key_padding_mask,
+            need_weights=need_weights,
+            attn_mask=attn_mask,
+            use_separate_proj_weight=use_separate_proj_weight,
+            q_proj_weight=q_proj_weight,
+            k_proj_weight=k_proj_weight,
+            v_proj_weight=v_proj_weight,
+            static_k=static_k,
+            static_v=static_v,
+        )
+    tgt_len, bsz, embed_dim = query.size()
+    assert embed_dim == embed_dim_to_check
+    # allow MHA to have different sizes for the feature dimension
+    assert key.size(0) == value.size(0) and key.size(1) == value.size(1)
+
+    head_dim = embed_dim // num_heads
+    assert head_dim * num_heads == embed_dim, "embed_dim must be divisible by num_heads"
+    scaling = float(head_dim) ** -0.5
+
+    if not use_separate_proj_weight:
+        if (query is key or torch.equal(query, key)) and (key is value or torch.equal(key, value)):
+            # self-attention
+            q, k, v = linear(query, in_proj_weight, in_proj_bias).chunk(3, dim=-1)
+
+        elif key is value or torch.equal(key, value):
+            # encoder-decoder attention
+            # This is inline in_proj function with in_proj_weight and in_proj_bias
+            _b = in_proj_bias
+            _start = 0
+            _end = embed_dim
+            _w = in_proj_weight[_start:_end, :]
+            if _b is not None:
+                _b = _b[_start:_end]
+            q = linear(query, _w, _b)
+
+            if key is None:
+                assert value is None
+                k = None
+                v = None
+            else:
+
+                # This is inline in_proj function with in_proj_weight and in_proj_bias
+                _b = in_proj_bias
+                _start = embed_dim
+                _end = None
+                _w = in_proj_weight[_start:, :]
+                if _b is not None:
+                    _b = _b[_start:]
+                k, v = linear(key, _w, _b).chunk(2, dim=-1)
+
+        else:
+            # This is inline in_proj function with in_proj_weight and in_proj_bias
+            _b = in_proj_bias
+            _start = 0
+            _end = embed_dim
+            _w = in_proj_weight[_start:_end, :]
+            if _b is not None:
+                _b = _b[_start:_end]
+            q = linear(query, _w, _b)
+
+            # This is inline in_proj function with in_proj_weight and in_proj_bias
+            _b = in_proj_bias
+            _start = embed_dim
+            _end = embed_dim * 2
+            _w = in_proj_weight[_start:_end, :]
+            if _b is not None:
+                _b = _b[_start:_end]
+            k = linear(key, _w, _b)
+
+            # This is inline in_proj function with in_proj_weight and in_proj_bias
+            _b = in_proj_bias
+            _start = embed_dim * 2
+            _end = None
+            _w = in_proj_weight[_start:, :]
+            if _b is not None:
+                _b = _b[_start:]
+            v = linear(value, _w, _b)
+    else:
+        q_proj_weight_non_opt = torch.jit._unwrap_optional(q_proj_weight)
+        len1, len2 = q_proj_weight_non_opt.size()
+        assert len1 == embed_dim and len2 == query.size(-1)
+
+        k_proj_weight_non_opt = torch.jit._unwrap_optional(k_proj_weight)
+        len1, len2 = k_proj_weight_non_opt.size()
+        assert len1 == embed_dim and len2 == key.size(-1)
+
+        v_proj_weight_non_opt = torch.jit._unwrap_optional(v_proj_weight)
+        len1, len2 = v_proj_weight_non_opt.size()
+        assert len1 == embed_dim and len2 == value.size(-1)
+
+        if in_proj_bias is not None:
+            q = linear(query, q_proj_weight_non_opt, in_proj_bias[0:embed_dim])
+            k = linear(key, k_proj_weight_non_opt, in_proj_bias[embed_dim : (embed_dim * 2)])
+            v = linear(value, v_proj_weight_non_opt, in_proj_bias[(embed_dim * 2) :])
+        else:
+            q = linear(query, q_proj_weight_non_opt, in_proj_bias)
+            k = linear(key, k_proj_weight_non_opt, in_proj_bias)
+            v = linear(value, v_proj_weight_non_opt, in_proj_bias)
+    q = q * scaling
+
+    if attn_mask is not None:
+        assert (
+            attn_mask.dtype == torch.float32
+            or attn_mask.dtype == torch.float64
+            or attn_mask.dtype == torch.float16
+            or attn_mask.dtype == torch.uint8
+            or attn_mask.dtype == torch.bool
+        ), "Only float, byte, and bool types are supported for attn_mask, not {}".format(attn_mask.dtype)
+        if attn_mask.dtype == torch.uint8:
+            warnings.warn("Byte tensor for attn_mask in nn.MultiheadAttention is deprecated. Use bool tensor instead.")
+            attn_mask = attn_mask.to(torch.bool)
+
+        if attn_mask.dim() == 2:
+            attn_mask = attn_mask.unsqueeze(0)
+            if list(attn_mask.size()) != [1, query.size(0), key.size(0)]:
+                raise RuntimeError("The size of the 2D attn_mask is not correct.")
+        elif attn_mask.dim() == 3:
+            if list(attn_mask.size()) != [bsz * num_heads, query.size(0), key.size(0)]:
+                raise RuntimeError("The size of the 3D attn_mask is not correct.")
+        else:
+            raise RuntimeError("attn_mask's dimension {} is not supported".format(attn_mask.dim()))
+        # attn_mask's dim is 3 now.
+
+    # convert ByteTensor key_padding_mask to bool
+    if key_padding_mask is not None and key_padding_mask.dtype == torch.uint8:
+        warnings.warn(
+            "Byte tensor for key_padding_mask in nn.MultiheadAttention is deprecated. Use bool tensor instead."
+        )
+        key_padding_mask = key_padding_mask.to(torch.bool)
+
+    if bias_k is not None and bias_v is not None:
+        if static_k is None and static_v is None:
+            k = torch.cat([k, bias_k.repeat(1, bsz, 1)])
+            v = torch.cat([v, bias_v.repeat(1, bsz, 1)])
+            if attn_mask is not None:
+                attn_mask = pad(attn_mask, (0, 1))
+            if key_padding_mask is not None:
+                key_padding_mask = pad(key_padding_mask, (0, 1))
+        else:
+            assert static_k is None, "bias cannot be added to static key."
+            assert static_v is None, "bias cannot be added to static value."
+    else:
+        assert bias_k is None
+        assert bias_v is None
+
+    q = q.contiguous().view(tgt_len, bsz * num_heads, head_dim).transpose(0, 1)
+    if k is not None:
+        k = k.contiguous().view(-1, bsz * num_heads, head_dim).transpose(0, 1)
+    if v is not None:
+        v = v.contiguous().view(-1, bsz * num_heads, head_dim).transpose(0, 1)
+
+    if static_k is not None:
+        assert static_k.size(0) == bsz * num_heads
+        assert static_k.size(2) == head_dim
+        k = static_k
+
+    if static_v is not None:
+        assert static_v.size(0) == bsz * num_heads
+        assert static_v.size(2) == head_dim
+        v = static_v
+
+    src_len = k.size(1)
+
+    if key_padding_mask is not None:
+        # assert key_padding_mask.size(0) == bsz
+        assert key_padding_mask.size(1) == src_len
+
+    if add_zero_attn:
+        src_len += 1
+        k = torch.cat([k, torch.zeros((k.size(0), 1) + k.size()[2:], dtype=k.dtype, device=k.device)], dim=1)
+        v = torch.cat([v, torch.zeros((v.size(0), 1) + v.size()[2:], dtype=v.dtype, device=v.device)], dim=1)
+        if attn_mask is not None:
+            attn_mask = pad(attn_mask, (0, 1))
+        if key_padding_mask is not None:
+            key_padding_mask = pad(key_padding_mask, (0, 1))
+
+    attn_output_weights = torch.bmm(q, k.transpose(1, 2))
+    assert list(attn_output_weights.size()) == [bsz * num_heads, tgt_len, src_len]
+
+    if attn_mask is not None:
+        if attn_mask.dtype == torch.bool:
+            attn_output_weights.masked_fill_(attn_mask, float("-inf"))
+        else:
+            attn_output_weights += attn_mask
+
+    if key_padding_mask is not None:
+        attn_output_weights = attn_output_weights.view(bsz, num_heads, tgt_len, src_len)
+        attn_output_weights = attn_output_weights.masked_fill(
+            key_padding_mask.unsqueeze(1),
+            float("-inf"),
+        )
+        attn_output_weights = attn_output_weights.view(bsz * num_heads, tgt_len, src_len)
+
+    attn_output_weights = softmax(attn_output_weights, dim=-1)
+    attn_output_weights = dropout(attn_output_weights, p=dropout_p, training=training)
+
+    attn_output = torch.bmm(attn_output_weights, v)
+    assert list(attn_output.size()) == [bsz * num_heads, tgt_len, head_dim]
+    attn_output = attn_output.transpose(0, 1).contiguous().view(tgt_len, bsz, embed_dim)
+    attn_output = linear(attn_output, out_proj_weight, out_proj_bias)
+
+    if need_weights:
+        # average attention weights over heads
+        attn_output_weights = attn_output_weights.view(bsz, num_heads, tgt_len, src_len)
+        return attn_output, attn_output_weights.sum(dim=1) / num_heads
+    else:
+        return attn_output, None
+
+
+# This class exists solely for Transformer; it has an annotation stating
+# that bias is never None, which appeases TorchScript
+class _LinearWithBias(nn.Linear):
+    bias: Tensor  # type: ignore
+
+    def __init__(self, in_features: int, out_features: int) -> None:
+        super().__init__(in_features, out_features, bias=True)  # type: ignore
+
+
+class MultiheadAttention(nn.Module):
+    r"""Allows the model to jointly attend to information
+    from different representation subspaces.
+    See `Attention Is All You Need <https://arxiv.org/abs/1706.03762>`_
+
+    .. math::
+        \text{MultiHead}(Q, K, V) = \text{Concat}(head_1,\dots,head_h)W^O
+
+    where :math:`head_i = \text{Attention}(QW_i^Q, KW_i^K, VW_i^V)`.
+
+    Args:
+        embed_dim: total dimension of the model.
+        num_heads: parallel attention heads.
+        dropout: a Dropout layer on attn_output_weights. Default: 0.0.
+        bias: add bias as module parameter. Default: True.
+        add_bias_kv: add bias to the key and value sequences at dim=0.
+        add_zero_attn: add a new batch of zeros to the key and
+                       value sequences at dim=1.
+        kdim: total number of features in key. Default: None.
+        vdim: total number of features in value. Default: None.
+
+    Note that if :attr:`kdim` and :attr:`vdim` are None, they will be set
+    to :attr:`embed_dim` such that query, key, and value have the same
+    number of features.
+
+    Examples::
+
+        >>> multihead_attn = nn.MultiheadAttention(embed_dim, num_heads)
+        >>> attn_output, attn_output_weights = multihead_attn(query, key, value)
+    """
+    bias_k: Optional[torch.Tensor]
+    bias_v: Optional[torch.Tensor]
+
+    def __init__(self, embed_dim, num_heads, dropout=0., bias=True, add_bias_kv=False, add_zero_attn=False, kdim=None, vdim=None):
+        super(MultiheadAttention, self).__init__()
+        self.embed_dim = embed_dim
+        self.kdim = kdim if kdim is not None else embed_dim
+        self.vdim = vdim if vdim is not None else embed_dim
+        self._qkv_same_embed_dim = self.kdim == embed_dim and self.vdim == embed_dim
+
+        self.num_heads = num_heads
+        self.dropout = dropout
+        self.head_dim = embed_dim // num_heads
+        assert self.head_dim * num_heads == self.embed_dim, "embed_dim must be divisible by num_heads"
+
+        if self._qkv_same_embed_dim is False:
+            self.q_proj_weight = Parameter(torch.Tensor(embed_dim, embed_dim))
+            self.k_proj_weight = Parameter(torch.Tensor(embed_dim, self.kdim))
+            self.v_proj_weight = Parameter(torch.Tensor(embed_dim, self.vdim))
+            self.register_parameter('in_proj_weight', None)
+        else:
+            self.in_proj_weight = Parameter(torch.empty(3 * embed_dim, embed_dim))
+            self.register_parameter('q_proj_weight', None)
+            self.register_parameter('k_proj_weight', None)
+            self.register_parameter('v_proj_weight', None)
+
+        if bias:
+            self.in_proj_bias = Parameter(torch.empty(3 * embed_dim))
+        else:
+            self.register_parameter('in_proj_bias', None)
+        self.out_proj = _LinearWithBias(embed_dim, embed_dim)
+
+        if add_bias_kv:
+            self.bias_k = Parameter(torch.empty(1, 1, embed_dim))
+            self.bias_v = Parameter(torch.empty(1, 1, embed_dim))
+        else:
+            self.bias_k = self.bias_v = None
+
+        self.add_zero_attn = add_zero_attn
+
+        self._reset_parameters()
+
+    def _reset_parameters(self):
+        if self._qkv_same_embed_dim:
+            xavier_uniform_(self.in_proj_weight)
+        else:
+            xavier_uniform_(self.q_proj_weight)
+            xavier_uniform_(self.k_proj_weight)
+            xavier_uniform_(self.v_proj_weight)
+
+        if self.in_proj_bias is not None:
+            constant_(self.in_proj_bias, 0.)
+            constant_(self.out_proj.bias, 0.)
+        if self.bias_k is not None:
+            xavier_normal_(self.bias_k)
+        if self.bias_v is not None:
+            xavier_normal_(self.bias_v)
+
+    def __setstate__(self, state):
+        # Support loading old MultiheadAttention checkpoints generated by v1.1.0
+        if '_qkv_same_embed_dim' not in state:
+            state['_qkv_same_embed_dim'] = True
+
+        super(MultiheadAttention, self).__setstate__(state)
+
+    def forward(self, query: Tensor, key: Tensor, value: Tensor, key_padding_mask: Optional[Tensor] = None,
+                need_weights: bool = True, attn_mask: Optional[Tensor] = None) -> Tuple[Tensor, Optional[Tensor]]:
+        r"""
+    Args:
+        query, key, value: map a query and a set of key-value pairs to an output.
+            See "Attention Is All You Need" for more details.
+        key_padding_mask: if provided, specified padding elements in the key will
+            be ignored by the attention. When given a binary mask and a value is True,
+            the corresponding value on the attention layer will be ignored. When given
+            a byte mask and a value is non-zero, the corresponding value on the attention
+            layer will be ignored
+        need_weights: output attn_output_weights.
+        attn_mask: 2D or 3D mask that prevents attention to certain positions. A 2D mask will be broadcasted for all
+            the batches while a 3D mask allows to specify a different mask for the entries of each batch.
+
+    Shapes for inputs:
+        - query: :math:`(L, N, E)` where L is the target sequence length, N is the batch size, E is
+          the embedding dimension.
+        - key: :math:`(S, N, E)`, where S is the source sequence length, N is the batch size, E is
+          the embedding dimension.
+        - value: :math:`(S, N, E)` where S is the source sequence length, N is the batch size, E is
+          the embedding dimension.
+        - key_padding_mask: :math:`(N, S)` where N is the batch size, S is the source sequence length.
+          If a ByteTensor is provided, the non-zero positions will be ignored while the position
+          with the zero positions will be unchanged. If a BoolTensor is provided, the positions with the
+          value of ``True`` will be ignored while the position with the value of ``False`` will be unchanged.
+        - attn_mask: if a 2D mask: :math:`(L, S)` where L is the target sequence length, S is the
+          source sequence length.
+
+          If a 3D mask: :math:`(N\cdot\text{num\_heads}, L, S)` where N is the batch size, L is the target sequence
+          length, S is the source sequence length. ``attn_mask`` ensure that position i is allowed to attend
+          the unmasked positions. If a ByteTensor is provided, the non-zero positions are not allowed to attend
+          while the zero positions will be unchanged. If a BoolTensor is provided, positions with ``True``
+          is not allowed to attend while ``False`` values will be unchanged. If a FloatTensor
+          is provided, it will be added to the attention weight.
+
+    Shapes for outputs:
+        - attn_output: :math:`(L, N, E)` where L is the target sequence length, N is the batch size,
+          E is the embedding dimension.
+        - attn_output_weights: :math:`(N, L, S)` where N is the batch size,
+          L is the target sequence length, S is the source sequence length.
+        """
+        if not self._qkv_same_embed_dim:
+            return multi_head_attention_forward(
+                query, key, value, self.embed_dim, self.num_heads,
+                self.in_proj_weight, self.in_proj_bias,
+                self.bias_k, self.bias_v, self.add_zero_attn,
+                self.dropout, self.out_proj.weight, self.out_proj.bias,
+                training=self.training,
+                key_padding_mask=key_padding_mask, need_weights=need_weights,
+                attn_mask=attn_mask, use_separate_proj_weight=True,
+                q_proj_weight=self.q_proj_weight, k_proj_weight=self.k_proj_weight,
+                v_proj_weight=self.v_proj_weight)
+        else:
+            return multi_head_attention_forward(
+                query, key, value, self.embed_dim, self.num_heads,
+                self.in_proj_weight, self.in_proj_bias,
+                self.bias_k, self.bias_v, self.add_zero_attn,
+                self.dropout, self.out_proj.weight, self.out_proj.bias,
+                training=self.training,
+                key_padding_mask=key_padding_mask, need_weights=need_weights,
+                attn_mask=attn_mask)
\ No newline at end of file
diff --git a/xdecoder/modules/position_encoding.py b/xdecoder/modules/position_encoding.py
new file mode 100755
index 0000000000000000000000000000000000000000..09faa117bcd04b9c3f70301347630c4ace39cac2
--- /dev/null
+++ b/xdecoder/modules/position_encoding.py
@@ -0,0 +1,64 @@
+# Copyright (c) Facebook, Inc. and its affiliates.
+## Modified by Bowen Cheng from: https://github.com/facebookresearch/detr/blob/master/models/position_encoding.py
+"""
+Various positional encodings for the transformer.
+"""
+import math
+
+import torch
+from torch import nn
+
+
+class PositionEmbeddingSine(nn.Module):
+    """
+    This is a more standard version of the position embedding, very similar to the one
+    used by the Attention is all you need paper, generalized to work on images.
+    """
+
+    def __init__(self, num_pos_feats=64, temperature=10000, normalize=False, scale=None):
+        super().__init__()
+        self.num_pos_feats = num_pos_feats
+        self.temperature = temperature
+        self.normalize = normalize
+        if scale is not None and normalize is False:
+            raise ValueError("normalize should be True if scale is passed")
+        if scale is None:
+            scale = 2 * math.pi
+        self.scale = scale
+
+    def forward(self, x, mask=None):
+        if mask is None:
+            mask = torch.zeros((x.size(0), x.size(2), x.size(3)), device=x.device, dtype=torch.bool)
+        not_mask = ~mask
+        y_embed = not_mask.cumsum(1, dtype=x.dtype)
+        x_embed = not_mask.cumsum(2, dtype=x.dtype)
+        if self.normalize:
+            eps = 1e-6
+            y_embed = y_embed / (y_embed[:, -1:, :] + eps) * self.scale
+            x_embed = x_embed / (x_embed[:, :, -1:] + eps) * self.scale
+
+        dim_t = torch.arange(self.num_pos_feats, dtype=x.dtype, device=x.device)
+        dim_t = self.temperature ** (2 * (dim_t // 2) / self.num_pos_feats)
+
+        pos_x = x_embed[:, :, :, None] / dim_t
+        pos_y = y_embed[:, :, :, None] / dim_t
+        pos_x = torch.stack(
+            (pos_x[:, :, :, 0::2].sin(), pos_x[:, :, :, 1::2].cos()), dim=4
+        ).flatten(3)
+        pos_y = torch.stack(
+            (pos_y[:, :, :, 0::2].sin(), pos_y[:, :, :, 1::2].cos()), dim=4
+        ).flatten(3)
+        pos = torch.cat((pos_y, pos_x), dim=3).permute(0, 3, 1, 2)
+        return pos
+    
+    def __repr__(self, _repr_indent=4):
+        head = "Positional encoding " + self.__class__.__name__
+        body = [
+            "num_pos_feats: {}".format(self.num_pos_feats),
+            "temperature: {}".format(self.temperature),
+            "normalize: {}".format(self.normalize),
+            "scale: {}".format(self.scale),
+        ]
+        # _repr_indent = 4
+        lines = [head] + [" " * _repr_indent + line for line in body]
+        return "\n".join(lines)
diff --git a/xdecoder/modules/postprocessing.py b/xdecoder/modules/postprocessing.py
new file mode 100644
index 0000000000000000000000000000000000000000..eef2047589674fda092bebc310bd394a3db57074
--- /dev/null
+++ b/xdecoder/modules/postprocessing.py
@@ -0,0 +1,122 @@
+# Copyright (c) Facebook, Inc. and its affiliates.
+import torch
+from torch.nn import functional as F
+
+from detectron2.structures import Instances, ROIMasks
+
+
+# perhaps should rename to "resize_instance"
+def detector_postprocess(
+    results: Instances, output_height: int, output_width: int, mask_threshold: float = 0.5
+):
+    """
+    Resize the output instances.
+    The input images are often resized when entering an object detector.
+    As a result, we often need the outputs of the detector in a different
+    resolution from its inputs.
+
+    This function will resize the raw outputs of an R-CNN detector
+    to produce outputs according to the desired output resolution.
+
+    Args:
+        results (Instances): the raw outputs from the detector.
+            `results.image_size` contains the input image resolution the detector sees.
+            This object might be modified in-place.
+        output_height, output_width: the desired output resolution.
+
+    Returns:
+        Instances: the resized output from the model, based on the output resolution
+    """
+    if isinstance(output_width, torch.Tensor):
+        # This shape might (but not necessarily) be tensors during tracing.
+        # Converts integer tensors to float temporaries to ensure true
+        # division is performed when computing scale_x and scale_y.
+        output_width_tmp = output_width.float()
+        output_height_tmp = output_height.float()
+        new_size = torch.stack([output_height, output_width])
+    else:
+        new_size = (output_height, output_width)
+        output_width_tmp = output_width
+        output_height_tmp = output_height
+
+    scale_x, scale_y = (
+        output_width_tmp / results.image_size[1],
+        output_height_tmp / results.image_size[0],
+    )
+    results = Instances(new_size, **results.get_fields())
+
+    if results.has("pred_boxes"):
+        output_boxes = results.pred_boxes
+    elif results.has("proposal_boxes"):
+        output_boxes = results.proposal_boxes
+    else:
+        output_boxes = None
+    assert output_boxes is not None, "Predictions must contain boxes!"
+
+    output_boxes.scale(scale_x, scale_y)
+    output_boxes.clip(results.image_size)
+
+    results = results[output_boxes.nonempty()]
+
+    if results.has("pred_masks"):
+        if isinstance(results.pred_masks, ROIMasks):
+            roi_masks = results.pred_masks
+        else:
+            # pred_masks is a tensor of shape (N, 1, M, M)
+            roi_masks = ROIMasks(results.pred_masks[:, 0, :, :])
+        results.pred_masks = roi_masks.to_bitmasks(
+            results.pred_boxes, output_height, output_width, mask_threshold
+        ).tensor  # TODO return ROIMasks/BitMask object in the future
+
+    if results.has("pred_keypoints"):
+        results.pred_keypoints[:, :, 0] *= scale_x
+        results.pred_keypoints[:, :, 1] *= scale_y
+
+    return results
+
+def bbox_postprocess(result, input_size, img_size, output_height, output_width):
+    """
+    result: [xc,yc,w,h] range [0,1] to [x1,y1,x2,y2] range [0,w], [0,h]
+    """
+    if result is None:
+        return None
+    
+    scale = torch.tensor([input_size[1], input_size[0], input_size[1], input_size[0]])[None,:].to(result.device)
+    result = result.sigmoid() * scale
+    x1,y1,x2,y2 = result[:,0] - result[:,2]/2, result[:,1] - result[:,3]/2, result[:,0] + result[:,2]/2, result[:,1] + result[:,3]/2
+    h,w = img_size
+
+    x1 = x1.clamp(min=0, max=w)
+    y1 = y1.clamp(min=0, max=h)
+    x2 = x2.clamp(min=0, max=w)
+    y2 = y2.clamp(min=0, max=h)
+
+    box = torch.stack([x1,y1,x2,y2]).permute(1,0)
+    scale = torch.tensor([output_width/w, output_height/h, output_width/w, output_height/h])[None,:].to(result.device)
+    box = box*scale
+    return box
+
+def sem_seg_postprocess(result, img_size, output_height, output_width):
+    """
+    Return semantic segmentation predictions in the original resolution.
+
+    The input images are often resized when entering semantic segmentor. Moreover, in same
+    cases, they also padded inside segmentor to be divisible by maximum network stride.
+    As a result, we often need the predictions of the segmentor in a different
+    resolution from its inputs.
+
+    Args:
+        result (Tensor): semantic segmentation prediction logits. A tensor of shape (C, H, W),
+            where C is the number of classes, and H, W are the height and width of the prediction.
+        img_size (tuple): image size that segmentor is taking as input.
+        output_height, output_width: the desired output resolution.
+
+    Returns:
+        semantic segmentation prediction (Tensor): A tensor of the shape
+            (C, output_height, output_width) that contains per-pixel soft predictions.
+    """
+    result = result[:, : img_size[0], : img_size[1]].expand(1, -1, -1, -1)
+    result = F.interpolate(
+        result, size=(output_height, output_width), mode="bilinear", align_corners=False
+    )[0]
+    return result
diff --git a/xdecoder/utils/__init__.py b/xdecoder/utils/__init__.py
new file mode 100755
index 0000000000000000000000000000000000000000..4ca95fb0709a0af80e45d7fc35aa3eb31bac9f13
--- /dev/null
+++ b/xdecoder/utils/__init__.py
@@ -0,0 +1,4 @@
+from .config import *
+from .misc import *
+from .box_ops import *
+from .it_contrastive import *
\ No newline at end of file
diff --git a/xdecoder/utils/__pycache__/__init__.cpython-38.pyc b/xdecoder/utils/__pycache__/__init__.cpython-38.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..485f23b2eab026e23ba0be7f13d480ef5988b244
Binary files /dev/null and b/xdecoder/utils/__pycache__/__init__.cpython-38.pyc differ
diff --git a/xdecoder/utils/__pycache__/box_ops.cpython-38.pyc b/xdecoder/utils/__pycache__/box_ops.cpython-38.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..5145924c6995d3162fe5da54eb38cdbaa7ed181c
Binary files /dev/null and b/xdecoder/utils/__pycache__/box_ops.cpython-38.pyc differ
diff --git a/xdecoder/utils/__pycache__/config.cpython-38.pyc b/xdecoder/utils/__pycache__/config.cpython-38.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..06b75298a9860396aa9f7e836617bd97ad5960b7
Binary files /dev/null and b/xdecoder/utils/__pycache__/config.cpython-38.pyc differ
diff --git a/xdecoder/utils/__pycache__/it_contrastive.cpython-38.pyc b/xdecoder/utils/__pycache__/it_contrastive.cpython-38.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..8f900a2c5a5ee8e00110cac1b9f883212957e6df
Binary files /dev/null and b/xdecoder/utils/__pycache__/it_contrastive.cpython-38.pyc differ
diff --git a/xdecoder/utils/__pycache__/misc.cpython-38.pyc b/xdecoder/utils/__pycache__/misc.cpython-38.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..e2dbc16f0f1752f05c7b386aef63c4109db434eb
Binary files /dev/null and b/xdecoder/utils/__pycache__/misc.cpython-38.pyc differ
diff --git a/xdecoder/utils/box_ops.py b/xdecoder/utils/box_ops.py
new file mode 100755
index 0000000000000000000000000000000000000000..42f93d5d48e25657e9f46ccef1a17064b8c192f7
--- /dev/null
+++ b/xdecoder/utils/box_ops.py
@@ -0,0 +1,93 @@
+# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved
+"""
+Utilities for bounding box manipulation and GIoU.
+"""
+import torch
+from torchvision.ops.boxes import box_area
+
+
+def box_cxcywh_to_xyxy(x):
+    x_c, y_c, w, h = x.unbind(-1)
+    b = [(x_c - 0.5 * w), (y_c - 0.5 * h),
+         (x_c + 0.5 * w), (y_c + 0.5 * h)]
+    return torch.stack(b, dim=-1)
+
+
+def box_xyxy_to_cxcywh(x):
+    x0, y0, x1, y1 = x.unbind(-1)
+    b = [(x0 + x1) / 2, (y0 + y1) / 2,
+         (x1 - x0), (y1 - y0)]
+    return torch.stack(b, dim=-1)
+
+def box_xywh_to_xyxy(x):
+    x0, y0, x1, y1 = x.unbind(-1)
+    b = [x0, y0, (x0 + x1), (y0 + y1)]
+    return torch.stack(b, dim=-1)
+
+
+# modified from torchvision to also return the union
+def box_iou(boxes1, boxes2):
+    area1 = box_area(boxes1)
+    area2 = box_area(boxes2)
+
+    lt = torch.max(boxes1[:, None, :2], boxes2[:, :2])  # [N,M,2]
+    rb = torch.min(boxes1[:, None, 2:], boxes2[:, 2:])  # [N,M,2]
+
+    wh = (rb - lt).clamp(min=0)  # [N,M,2]
+    inter = wh[:, :, 0] * wh[:, :, 1]  # [N,M]
+
+    union = area1[:, None] + area2 - inter
+
+    iou = inter / union
+    return iou, union
+
+
+def generalized_box_iou(boxes1, boxes2):
+    """
+    Generalized IoU from https://giou.stanford.edu/
+
+    The boxes should be in [x0, y0, x1, y1] format
+
+    Returns a [N, M] pairwise matrix, where N = len(boxes1)
+    and M = len(boxes2)
+    """
+    # degenerate boxes gives inf / nan results
+    # so do an early check
+    assert (boxes1[:, 2:] >= boxes1[:, :2]).all()
+    assert (boxes2[:, 2:] >= boxes2[:, :2]).all()
+    iou, union = box_iou(boxes1, boxes2)
+
+    lt = torch.min(boxes1[:, None, :2], boxes2[:, :2])
+    rb = torch.max(boxes1[:, None, 2:], boxes2[:, 2:])
+
+    wh = (rb - lt).clamp(min=0)  # [N,M,2]
+    area = wh[:, :, 0] * wh[:, :, 1]
+
+    return iou - (area - union) / area
+
+
+def masks_to_boxes(masks):
+    """Compute the bounding boxes around the provided masks
+
+    The masks should be in format [N, H, W] where N is the number of masks, (H, W) are the spatial dimensions.
+
+    Returns a [N, 4] tensors, with the boxes in xyxy format
+    """
+    if masks.numel() == 0:
+        return torch.zeros((0, 4), device=masks.device)
+
+    h, w = masks.shape[-2:]
+
+    y = torch.arange(0, h, dtype=torch.float)
+    x = torch.arange(0, w, dtype=torch.float)
+    y, x = torch.meshgrid(y, x)
+
+    x_mask = (masks * x.unsqueeze(0))
+    x_max = x_mask.flatten(1).max(-1)[0]
+    x_min = x_mask.masked_fill(~(masks.bool()), 1e8).flatten(1).min(-1)[0]
+
+    y_mask = (masks * y.unsqueeze(0))
+    y_max = y_mask.flatten(1).max(-1)[0]
+    y_min = y_mask.masked_fill(~(masks.bool()), 1e8).flatten(1).min(-1)[0]
+
+    return torch.stack([x_min, y_min, x_max, y_max], 1)
\ No newline at end of file
diff --git a/xdecoder/utils/config.py b/xdecoder/utils/config.py
new file mode 100755
index 0000000000000000000000000000000000000000..766bb386498f0f034485a19027d5b30b0b6d20ff
--- /dev/null
+++ b/xdecoder/utils/config.py
@@ -0,0 +1,140 @@
+# -*- coding: utf-8 -*-
+# Copyright (c) Facebook, Inc. and its affiliates.
+
+import functools
+import inspect
+
+def configurable(init_func=None, *, from_config=None):
+    """
+    Decorate a function or a class's __init__ method so that it can be called
+    with a :class:`CfgNode` object using a :func:`from_config` function that translates
+    :class:`CfgNode` to arguments.
+
+    Examples:
+    ::
+        # Usage 1: Decorator on __init__:
+        class A:
+            @configurable
+            def __init__(self, a, b=2, c=3):
+                pass
+
+            @classmethod
+            def from_config(cls, cfg):   # 'cfg' must be the first argument
+                # Returns kwargs to be passed to __init__
+                return {"a": cfg.A, "b": cfg.B}
+
+        a1 = A(a=1, b=2)  # regular construction
+        a2 = A(cfg)       # construct with a cfg
+        a3 = A(cfg, b=3, c=4)  # construct with extra overwrite
+
+        # Usage 2: Decorator on any function. Needs an extra from_config argument:
+        @configurable(from_config=lambda cfg: {"a: cfg.A, "b": cfg.B})
+        def a_func(a, b=2, c=3):
+            pass
+
+        a1 = a_func(a=1, b=2)  # regular call
+        a2 = a_func(cfg)       # call with a cfg
+        a3 = a_func(cfg, b=3, c=4)  # call with extra overwrite
+
+    Args:
+        init_func (callable): a class's ``__init__`` method in usage 1. The
+            class must have a ``from_config`` classmethod which takes `cfg` as
+            the first argument.
+        from_config (callable): the from_config function in usage 2. It must take `cfg`
+            as its first argument.
+    """
+
+    if init_func is not None:
+        assert (
+            inspect.isfunction(init_func)
+            and from_config is None
+            and init_func.__name__ == "__init__"
+        ), "Incorrect use of @configurable. Check API documentation for examples."
+
+        @functools.wraps(init_func)
+        def wrapped(self, *args, **kwargs):
+            try:
+                from_config_func = type(self).from_config
+            except AttributeError as e:
+                raise AttributeError(
+                    "Class with @configurable must have a 'from_config' classmethod."
+                ) from e
+            if not inspect.ismethod(from_config_func):
+                raise TypeError("Class with @configurable must have a 'from_config' classmethod.")
+
+            if _called_with_cfg(*args, **kwargs):
+                explicit_args = _get_args_from_config(from_config_func, *args, **kwargs)
+                init_func(self, **explicit_args)
+            else:
+                init_func(self, *args, **kwargs)
+
+        return wrapped
+
+    else:
+        if from_config is None:
+            return configurable  # @configurable() is made equivalent to @configurable
+        assert inspect.isfunction(
+            from_config
+        ), "from_config argument of configurable must be a function!"
+
+        def wrapper(orig_func):
+            @functools.wraps(orig_func)
+            def wrapped(*args, **kwargs):
+                if _called_with_cfg(*args, **kwargs):
+                    explicit_args = _get_args_from_config(from_config, *args, **kwargs)
+                    return orig_func(**explicit_args)
+                else:
+                    return orig_func(*args, **kwargs)
+
+            wrapped.from_config = from_config
+            return wrapped
+
+        return wrapper
+
+def _called_with_cfg(*args, **kwargs):
+    """
+    Returns:
+        bool: whether the arguments contain CfgNode and should be considered
+            forwarded to from_config.
+    """
+    from omegaconf import DictConfig
+
+    if len(args) and isinstance(args[0], (dict)):
+        return True
+    if isinstance(kwargs.pop("cfg", None), (dict)):
+        return True
+    # `from_config`'s first argument is forced to be "cfg".
+    # So the above check covers all cases.
+    return False
+
+def _get_args_from_config(from_config_func, *args, **kwargs):
+    """
+    Use `from_config` to obtain explicit arguments.
+
+    Returns:
+        dict: arguments to be used for cls.__init__
+    """
+    signature = inspect.signature(from_config_func)
+    if list(signature.parameters.keys())[0] != "cfg":
+        if inspect.isfunction(from_config_func):
+            name = from_config_func.__name__
+        else:
+            name = f"{from_config_func.__self__}.from_config"
+        raise TypeError(f"{name} must take 'cfg' as the first argument!")
+    support_var_arg = any(
+        param.kind in [param.VAR_POSITIONAL, param.VAR_KEYWORD]
+        for param in signature.parameters.values()
+    )
+    if support_var_arg:  # forward all arguments to from_config, if from_config accepts them
+        ret = from_config_func(*args, **kwargs)
+    else:
+        # forward supported arguments to from_config
+        supported_arg_names = set(signature.parameters.keys())
+        extra_kwargs = {}
+        for name in list(kwargs.keys()):
+            if name not in supported_arg_names:
+                extra_kwargs[name] = kwargs.pop(name)
+        ret = from_config_func(*args, **kwargs)
+        # forward the other arguments to __init__
+        ret.update(extra_kwargs)
+    return ret
\ No newline at end of file
diff --git a/xdecoder/utils/it_contrastive.py b/xdecoder/utils/it_contrastive.py
new file mode 100755
index 0000000000000000000000000000000000000000..b30fd2dae6221c2c244e5b48109e282a6e2e1533
--- /dev/null
+++ b/xdecoder/utils/it_contrastive.py
@@ -0,0 +1,59 @@
+import torch
+import torch.nn as nn
+import torch.nn.functional as F
+
+def is_dist_initialized():
+    return torch.distributed.is_initialized()
+
+def get_world_size():
+    if is_dist_initialized():
+        return torch.distributed.get_world_size()
+    return 1
+
+def all_gather_grad(x):
+    if get_world_size() > 1:
+        all_x = [torch.zeros_like(x) for _ in range(get_world_size())]
+        torch.distributed.all_gather(all_x, x)
+        all_x[torch.distributed.get_rank()] = x
+        x = torch.cat(all_x, dim=0)
+    return x
+
+@torch.no_grad()
+def all_gather_nograd(tensor):
+    # from albef
+    """
+    Performs all_gather operation on the provided tensors.
+    *** Warning ***: torch.distributed.all_gather has no gradient.
+    """
+    if get_world_size() > 1:
+        tensors_gather = [torch.ones_like(tensor)
+            for _ in range(torch.distributed.get_world_size())]
+        torch.distributed.all_gather(tensors_gather, tensor, async_op=False)
+
+        tensor = torch.cat(tensors_gather, dim=0)
+    return tensor
+
+def image_text_contrastive_loss(image_feat, text_feat, temperature, image_id=None, text_id=None):
+    # add the following 4 lines
+    image_feat = all_gather_grad(image_feat)
+    text_feat = all_gather_grad(text_feat)
+    
+    logits = torch.matmul(image_feat, text_feat.t())
+    logits /= temperature
+    
+    if image_id is None and text_id is None:
+        gt = torch.arange(logits.shape[0], device=logits.device)
+        loss1 = F.cross_entropy(logits, gt)
+        loss2 = F.cross_entropy(logits.t(), gt)        
+    else:
+        image_id = all_gather_grad(image_id)
+        text_id = all_gather_grad(text_id)
+
+        gt_image = image_id.reshape((-1, 1)) == image_id.reshape((1, -1))
+        gt_text = text_id.reshape((-1, 1)) == text_id.reshape((1, -1))
+        gt = torch.logical_or(gt_image, gt_text)
+
+        loss1 = -torch.sum(gt * F.log_softmax(logits, dim=1)) / gt.sum()
+        loss2 = -torch.sum(gt.t() * F.log_softmax(logits.t(), dim=1)) / gt.sum()
+
+    return (loss1 + loss2) / 2 * get_world_size() # scale it up by the number of GPUs
diff --git a/xdecoder/utils/misc.py b/xdecoder/utils/misc.py
new file mode 100755
index 0000000000000000000000000000000000000000..e7bfa08060344fedcb1d5017b932a3c16fc5bc86
--- /dev/null
+++ b/xdecoder/utils/misc.py
@@ -0,0 +1,157 @@
+# Copyright (c) Facebook, Inc. and its affiliates.
+# Modified by Bowen Cheng from https://github.com/facebookresearch/detr/blob/master/util/misc.py
+# Modified by Xueyan Zou
+"""
+Misc functions, including distributed helpers.
+
+Mostly copy-paste from torchvision references.
+"""
+from typing import List, Optional
+
+import torch
+import torch.distributed as dist
+import torchvision
+from torch import Tensor
+
+def _max_by_axis(the_list):
+    # type: (List[List[int]]) -> List[int]
+    maxes = the_list[0]
+    for sublist in the_list[1:]:
+        for index, item in enumerate(sublist):
+            maxes[index] = max(maxes[index], item)
+    return maxes
+
+class NestedTensor(object):
+    def __init__(self, tensors, mask: Optional[Tensor]):
+        self.tensors = tensors
+        self.mask = mask
+
+    def to(self, device):
+        # type: (Device) -> NestedTensor # noqa
+        cast_tensor = self.tensors.to(device)
+        mask = self.mask
+        if mask is not None:
+            assert mask is not None
+            cast_mask = mask.to(device)
+        else:
+            cast_mask = None
+        return NestedTensor(cast_tensor, cast_mask)
+
+    def decompose(self):
+        return self.tensors, self.mask
+
+    def __repr__(self):
+        return str(self.tensors)
+
+def nested_tensor_from_tensor_list(tensor_list: List[Tensor]):
+    # TODO make this more general
+    if tensor_list[0].ndim == 3:
+        if torchvision._is_tracing():
+            # nested_tensor_from_tensor_list() does not export well to ONNX
+            # call _onnx_nested_tensor_from_tensor_list() instead
+            return _onnx_nested_tensor_from_tensor_list(tensor_list)
+
+        # TODO make it support different-sized images
+        max_size = _max_by_axis([list(img.shape) for img in tensor_list])
+        # min_size = tuple(min(s) for s in zip(*[img.shape for img in tensor_list]))
+        batch_shape = [len(tensor_list)] + max_size
+        b, c, h, w = batch_shape
+        dtype = tensor_list[0].dtype
+        device = tensor_list[0].device
+        tensor = torch.zeros(batch_shape, dtype=dtype, device=device)
+        mask = torch.ones((b, h, w), dtype=torch.bool, device=device)
+        for img, pad_img, m in zip(tensor_list, tensor, mask):
+            pad_img[: img.shape[0], : img.shape[1], : img.shape[2]].copy_(img)
+            m[: img.shape[1], : img.shape[2]] = False
+    elif tensor_list[0].ndim == 2:
+        if torchvision._is_tracing():
+            # nested_tensor_from_tensor_list() does not export well to ONNX
+            # call _onnx_nested_tensor_from_tensor_list() instead
+            return _onnx_nested_tensor_from_tensor_list(tensor_list)
+
+        # TODO make it support different-sized images
+        max_size = _max_by_axis([list(txt.shape) for txt in tensor_list])
+        # min_size = tuple(min(s) for s in zip(*[img.shape for img in tensor_list]))
+        batch_shape = [len(tensor_list)] + max_size
+        b, c, l = batch_shape
+        dtype = tensor_list[0].dtype
+        device = tensor_list[0].device
+        tensor = torch.zeros(batch_shape, dtype=dtype, device=device)
+        mask = torch.ones((b, l), dtype=torch.bool, device=device)
+        for txt, pad_txt, m in zip(tensor_list, tensor, mask):
+            pad_txt[: txt.shape[0], : txt.shape[1]] = txt
+            m[: txt.shape[1]] = False
+    else:
+        raise ValueError("not supported")
+    return NestedTensor(tensor, mask)
+
+def _collate_and_pad_divisibility(tensor_list: list, div=32):
+    max_size = []
+    for i in range(tensor_list[0].dim()):
+        max_size_i = torch.max(
+            torch.tensor([img.shape[i] for img in tensor_list]).to(torch.float32)
+        ).to(torch.int64)
+        max_size.append(max_size_i)
+    max_size = tuple(max_size)
+
+    c,h,w = max_size
+    pad_h = (div - h % div) if h % div != 0 else 0
+    pad_w = (div - w % div) if w % div != 0 else 0
+    max_size = (c,h+pad_h,w+pad_w)
+    
+    # work around for
+    # pad_img[: img.shape[0], : img.shape[1], : img.shape[2]].copy_(img)
+    # m[: img.shape[1], :img.shape[2]] = False
+    # which is not yet supported in onnx
+    padded_imgs = []
+    padded_masks = []
+    for img in tensor_list:
+        padding = [(s1 - s2) for s1, s2 in zip(max_size, tuple(img.shape))]
+        padded_img = torch.nn.functional.pad(img, (0, padding[2], 0, padding[1], 0, padding[0]))
+        padded_imgs.append(padded_img)
+
+        m = torch.zeros_like(img[0], dtype=torch.int, device=img.device)
+        padded_mask = torch.nn.functional.pad(m, (0, padding[2], 0, padding[1]), "constant", 1)
+        padded_masks.append(padded_mask.to(torch.bool))
+    
+    return padded_imgs
+
+# _onnx_nested_tensor_from_tensor_list() is an implementation of
+# nested_tensor_from_tensor_list() that is supported by ONNX tracing.
+@torch.jit.unused
+def _onnx_nested_tensor_from_tensor_list(tensor_list: List[Tensor]) -> NestedTensor:
+    max_size = []
+    for i in range(tensor_list[0].dim()):
+        max_size_i = torch.max(
+            torch.stack([img.shape[i] for img in tensor_list]).to(torch.float32)
+        ).to(torch.int64)
+        max_size.append(max_size_i)
+    max_size = tuple(max_size)
+
+    # work around for
+    # pad_img[: img.shape[0], : img.shape[1], : img.shape[2]].copy_(img)
+    # m[: img.shape[1], :img.shape[2]] = False
+    # which is not yet supported in onnx
+    padded_imgs = []
+    padded_masks = []
+    for img in tensor_list:
+        padding = [(s1 - s2) for s1, s2 in zip(max_size, tuple(img.shape))]
+        padded_img = torch.nn.functional.pad(img, (0, padding[2], 0, padding[1], 0, padding[0]))
+        padded_imgs.append(padded_img)
+
+        m = torch.zeros_like(img[0], dtype=torch.int, device=img.device)
+        padded_mask = torch.nn.functional.pad(m, (0, padding[2], 0, padding[1]), "constant", 1)
+        padded_masks.append(padded_mask.to(torch.bool))
+
+    tensor = torch.stack(padded_imgs)
+    mask = torch.stack(padded_masks)
+
+    return NestedTensor(tensor, mask=mask)
+
+
+def is_dist_avail_and_initialized():
+    if not dist.is_available():
+        return False
+    if not dist.is_initialized():
+        return False
+    return True
\ No newline at end of file
diff --git a/xdecoder_focalt_last.pt b/xdecoder_focalt_last.pt
new file mode 100644
index 0000000000000000000000000000000000000000..9cbf4b0274c0eb16d1921a687ab84618e70c3630
--- /dev/null
+++ b/xdecoder_focalt_last.pt
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:9ddc9672a1fb8c0e463b4bc0c0e788739d08899b89c5cb901e581e3bbda6fb6d
+size 658330805
diff --git a/xdecoder_focalt_last_novg.pt b/xdecoder_focalt_last_novg.pt
new file mode 100644
index 0000000000000000000000000000000000000000..81f3b4720da031198269851fc5288a3599416819
--- /dev/null
+++ b/xdecoder_focalt_last_novg.pt
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:d9d18e951784e9d6d84897cd1d87849b0c69333dafe8e5b358b284f4282990d0
+size 658330805