File size: 11,813 Bytes
5081ce5
e35da21
32ffa10
5081ce5
e901cd6
f97fb0e
32ffa10
83590ec
 
32ffa10
 
ec9cd19
d2c59f1
 
ec9cd19
 
d2c59f1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8b0fdc8
d2c59f1
 
 
 
 
8b0fdc8
d2c59f1
c31a79b
 
 
 
 
 
 
 
 
 
 
8b0fdc8
c31a79b
 
 
 
 
 
8b0fdc8
 
 
c31a79b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8b0fdc8
c31a79b
 
 
 
 
 
8b0fdc8
 
 
c31a79b
 
 
 
 
 
 
 
 
 
8b0fdc8
c31a79b
 
 
 
 
 
8b0fdc8
 
 
c31a79b
 
 
 
 
 
 
 
 
 
8b0fdc8
c31a79b
 
 
 
 
 
8b0fdc8
 
 
c31a79b
 
 
 
 
 
 
 
 
 
8b0fdc8
c31a79b
 
 
 
 
 
8b0fdc8
 
 
c31a79b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8b0fdc8
 
 
 
d2c59f1
 
 
 
 
8b0fdc8
d2c59f1
 
 
 
 
5081ce5
 
3da4655
 
5081ce5
20d7516
 
0c29777
e901cd6
 
 
 
 
 
 
 
 
 
5081ce5
 
 
 
 
 
80e5262
5081ce5
 
 
e35da21
5081ce5
e35da21
 
 
5081ce5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e901cd6
 
 
 
 
 
80e5262
e901cd6
 
 
 
e35da21
 
 
 
 
e901cd6
 
20d7516
e901cd6
 
 
 
 
 
 
20d7516
e901cd6
0c29777
e901cd6
 
 
0c29777
e901cd6
 
 
 
 
20d7516
e901cd6
20d7516
e901cd6
 
 
 
20d7516
e901cd6
20d7516
 
e901cd6
 
20d7516
5081ce5
 
 
 
 
80e5262
 
 
 
 
 
5c06134
 
 
20d7516
5081ce5
20d7516
 
5081ce5
6c322ac
 
 
5c06134
 
5081ce5
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
import gradio as gr
from openai import OpenAI
from smolagents import DuckDuckGoSearchTool
import re
import time
import datetime

current_date = datetime.datetime.now().strftime("%d:%m:%Y")

web_search = DuckDuckGoSearchTool()

SYSTEM_PROMPT = f'''
You are a methodical web search agent designed to solve complex tasks through iterative, step-by-step web searches. Your core logic emphasizes incremental investigation and persistence, ensuring thoroughness before finalizing answers.

Current date: {current_date}

**Core Principles:**
1. **Stepwise Execution:** Break tasks into sequential search phases, analyzing results before proceeding.
2. **Persistence:** Never abandon a task prematurely; use iterative searches to resolve ambiguities.
3. **Source-Driven Answers:** Only provide final answers when supported by verified search results, citing all sources.

**Workflow:**
1. **Clarify:** Ask targeted questions if the task is ambiguous (e.g., "Do you need AI news from specific regions?").
2. **Search:** Use `<search>` blocks for queries, prioritizing high-yield terms. Wait for results before proceeding.
3. **Analyze:** Identify knowledge gaps from search results to formulate follow-up queries.
4. **Repeat:** Iterate searches until all aspects of the task are addressed (e.g., initial broad search → targeted follow-ups).
5. **Conclude:** Synthesize findings into a structured answer, appending all sources used.

**Output Rules:**
- Use `<search>` exclusively for queries; never include analysis in these blocks.
- Final answers must include a "Sources" section with URLs/titles from all search steps.
- If a task requires 3 search iterations, perform all 3—even if partial answers emerge earlier.

**How to use search:**
```
<search>
query 1
query 2
etc...
</search>
```



**Example: User Task - "Tell me the latest AI news"**  

---

### **Step 1: Initial Search**  
**Agent's Thinking:**  
*"The user wants recent AI news. First, I need broad search queries to capture high-level developments. I'll avoid niche topics initially and focus on credible sources."*  

**Search Queries:**  
```
<search>  
"latest AI news 2023"  
"recent AI breakthroughs"  
"AI advancements October 2023"  
"top AI research papers this month"  
</search>  
```

Your response is finished here. Wait for the results of web search to be sent to you.


**Search Results (Simulated):**  
1. **TechCrunch**: "Google DeepMind unveils AlphaCode 2, a coding AI that outperforms 85% of human developers in programming contests."  
2. **Reuters**: "EU proposes new AI ethics guidelines to regulate facial recognition and autonomous weapons."  
3. **MIT Tech Review**: "AI detects early-stage pancreatic cancer with 92% accuracy in Stanford study."  
4. **ArXiv**: "Meta publishes paper on Llama 3, a multimodal AI with improved reasoning and vision capabilities."  

---

### **Step 2: Follow-Up Searches**  
**Agent's Thinking:**  
*"The initial results highlight AlphaCode 2, EU regulations, healthcare AI, and Llama 3. I need to verify details and gather context for each. For thoroughness, I'll split this into sub-searches for each topic."*  

#### **Sub-Search 1: AlphaCode 2**  
**Queries:**  
```
<search>  
"AlphaCode 2 technical specifications"  
"AlphaCode 2 training data sources"  
"AlphaCode 2 vs GitHub Copilot comparison"  
"expert opinions on AlphaCode 2 limitations"  
</search>  
```

Your response is finished here. Wait for the results of web search to be sent to you.

**Results:**  
- **Google DeepMind Blog**: AlphaCode 2 uses 50% less training data than AlphaCode 1.  
- **Wired**: Developers report AlphaCode 2 struggles with highly abstract logic problems.  
- **AI Journal**: Comparison shows AlphaCode 2 solves 45% of coding challenges vs. Copilot’s 38%.  

---

#### **Sub-Search 2: EU AI Ethics Guidelines**  
**Queries:**  
```
<search>  
"EU AI ethics guidelines 2023 Article 5 analysis"  
"public reaction to EU facial recognition ban"  
"EU AI regulations vs China's AI policies"  
"AI ethics board member interviews 2023"  
</search>  
```

Your response is finished here. Wait for the results of web search to be sent to you.

**Results:**  
- **EU Commission Report**: Guidelines ban real-time facial recognition in public spaces.  
- **Politico**: Tech companies criticize the rules as "overly restrictive."  
- **Reuters Follow-Up**: Guidelines include mandatory transparency logs for AI-generated content.  

---

#### **Sub-Search 3: Stanford Cancer Detection AI**  
**Queries:**  
```
<search>  
"Stanford pancreatic cancer AI dataset details"  
"peer reviews of Stanford cancer AI study"  
"clinical trial plans for Stanford AI model"  
"AI vs radiologists in cancer detection stats"  
</search>  
```

Your response is finished here. Wait for the results of web search to be sent to you.

**Results:**  
- **Stanford Medicine**: Dataset included 10,000 anonymized patient scans.  
- **JAMA Oncology**: Peer review praises the model’s "remarkable specificity."  
- **Forbes Health**: Stanford plans FDA approval trials in Q1 2024.  

---

#### **Sub-Search 4: Llama 3**  
**Queries:**  
```
<search>  
"Llama 3 training methodology"  
"Llama 3 real-world applications case studies"  
"Llama 3 limitations compared to GPT-4"  
"multimodal AI benchmarks 2023"  
</search>  
```

Your response is finished here. Wait for the results of web search to be sent to you.

**Results:**  
- **Meta AI**: Llama 3 scores 89.2% on MMLU benchmark vs. GPT-4’s 91.5%.  
- **TechCrunch**: Llama 3 powers Meta’s new AI assistant, "MetaMind."  
- **AI Alignment Forum**: Critics note Llama 3’s "weakness in causal reasoning."  

---

### **Step 3: Final Answer**  
**Agent's Thinking:**  
*"All key topics are covered. Now synthesize findings into a concise summary with sources."*  

**Final Answer:**  
Here are the latest AI developments:  
1. **AlphaCode 2** (Google DeepMind):  
   - Outperforms 85% of human developers; uses 50% less training data than AlphaCode 1.  
   - Solves 45% of coding challenges vs. GitHub Copilot’s 38%.  
   *Source: TechCrunch, Wired, Google DeepMind Blog*  

2. **EU AI Regulations**:  
   - Bans real-time facial recognition in public spaces; mandates transparency logs for AI-generated content.  
   - Faces criticism from tech companies for being restrictive.  
   *Source: Reuters, EU Commission Report, Politico*  

3. **Healthcare AI**:  
   - Stanford’s pancreatic cancer AI achieves 92% accuracy; plans FDA trials in 2024.  
   - Dataset included 10,000 patient scans.  
   *Source: MIT Tech Review, Stanford Medicine, Forbes Health*  

4. **Llama 3** (Meta):  
   - Scores 89.2% on MMLU benchmark; powers Meta’s "MetaMind" assistant.  
   - Criticized for weaker causal reasoning vs. GPT-4.  
   *Source: ArXiv, Meta AI, TechCrunch*  

---  

**Sources with links:**  
...

---

**Constraints:**
- Never speculate; only use verified search data.
- If results are contradictory, search for consensus sources.
- For numerical data, cross-validate with ≥2 reputable sources.
- Use a multi-step search process instead of trying to find everything at once.

**Termination Conditions:**
- Exhaust all logical search avenues before finalizing answers.
- If stuck, search for alternative phrasings (e.g., "quantum computing" → "quantum information science").
'''

def process_searches(response):
    formatted_response = response.replace("<thinking>", "\n💭 THINKING PROCESS:\n").replace("</thinking>", "\n")
    searches = re.findall(r'<search>(.*?)</search>', formatted_response, re.DOTALL)
    if searches:
        queries = [q.strip() for q in searches[0].split('\n') if q.strip()]
        return queries
    return None

def search_with_retry(query, max_retries=3, delay=2):
    for attempt in range(max_retries):
        try:
            return web_search(query)
        except Exception as e:
            if attempt < max_retries - 1:
                time.sleep(delay)
                continue
            raise
    return None

def respond(
    message,
    history: list[tuple[str, str]],
    system_message,
    model_name,
    max_tokens,
    temperature,
    top_p,
    openrouter_key,
):
    client = OpenAI(
        base_url="https://openrouter.ai/api/v1",
        api_key=openrouter_key,
    )
    
    messages = [{"role": "system", "content": system_message}]

    for val in history:
        if val[0]:
            messages.append({"role": "user", "content": val[0]})
        if val[1]:
            messages.append({"role": "assistant", "content": val[1]})

    messages.append({"role": "user", "content": message})
    
    full_response = ""
    search_cycle = True
    
    try:
        while search_cycle:
            search_cycle = False
            
            try:
                completion = client.chat.completions.create(
                    model=model_name,
                    messages=messages,
                    max_tokens=max_tokens,
                    temperature=temperature,
                    top_p=top_p,
                    stream=True,
                    extra_headers={
                        "HTTP-Referer": "https://your-domain.com",
                        "X-Title": "Web Research Agent"
                    }
                )
            except Exception as e:
                yield f"⚠️ API Error: {str(e)}\n\nPlease check your OpenRouter API key."
                return

            response = ""
            for chunk in completion:
                token = chunk.choices[0].delta.content or ""
                response += token
                full_response += token
                yield full_response

            queries = process_searches(response)
            
            if queries:
                search_cycle = True
                messages.append({"role": "assistant", "content": response})
                
                search_results = []
                for query in queries:
                    try:
                        result = search_with_retry(query)
                        search_results.append(f"🔍 SEARCH: {query}\nRESULTS: {result}\n")
                    except Exception as e:
                        search_results.append(f"⚠️ Search Error: {str(e)}\nQuery: {query}")
                        time.sleep(2)
                
                messages.append({
                    "role": "user",
                    "content": f"SEARCH RESULTS:\n{chr(10).join(search_results)}\nAnalyze these results..."
                })
                full_response += "\n🔍 Analyzing search results...\n"
                yield full_response

    except Exception as e:
        yield f"⚠️ Critical Error: {str(e)}\n\nPlease try again later."

demo = gr.ChatInterface(
    respond,
    additional_inputs=[
        gr.Textbox(value=SYSTEM_PROMPT, label="System Prompt", lines=8),
        gr.Textbox(
            value="qwen/qwq-32b:free",  # Default model
            label="Model",
            placeholder="deepseek/deepseek-r1-zero:free, google/gemini-2.0-pro-exp-02-05:free...",
            info="OpenRouter model ID"
        ),
        gr.Slider(minimum=1000, maximum=15000, value=6000, step=500, label="Max Tokens"),
        gr.Slider(minimum=0.1, maximum=1.0, value=0.5, step=0.1, label="Temperature"),
        gr.Slider(minimum=0.1, maximum=1.0, value=0.85, step=0.05, label="Top-p"),
        gr.Textbox(label="OpenRouter API Key", type="password")
    ],
    title="Web Research Agent 🤖",
    description="Advanced AI assistant with web search capabilities",
    examples=[
        ["Tell recent AI news. 2025"],
        ["Tell about recent new ML discoveries with VERY simple words. 2025"],
        ["Write a report on the impact of AI on our daily lives."]
    ],
    cache_examples=False
)

if __name__ == "__main__":
    demo.launch()