File size: 7,381 Bytes
5081ce5
e35da21
32ffa10
5081ce5
e901cd6
32ffa10
 
 
f85b689
 
95634e0
b236ad2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f85b689
5081ce5
 
9f92389
5081ce5
20d7516
 
0c29777
e901cd6
9f92389
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e901cd6
 
 
 
 
 
 
 
 
5081ce5
 
9f92389
 
 
 
 
 
 
 
5081ce5
 
 
 
 
 
 
e35da21
5081ce5
e35da21
 
 
5081ce5
 
 
 
 
 
 
 
 
 
 
 
 
 
9f92389
5081ce5
e901cd6
 
 
9f92389
 
e901cd6
 
9f92389
e901cd6
e35da21
e901cd6
 
 
 
e35da21
 
 
 
 
e901cd6
 
20d7516
e901cd6
 
 
9f92389
 
 
e901cd6
 
 
 
9f92389
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
20d7516
e901cd6
0c29777
e901cd6
 
 
0c29777
e901cd6
 
 
 
 
20d7516
e901cd6
20d7516
e901cd6
 
 
 
20d7516
e901cd6
20d7516
 
e901cd6
 
20d7516
5081ce5
 
 
 
 
20d7516
 
 
 
5081ce5
20d7516
 
5081ce5
 
20d7516
 
f85b689
 
5081ce5
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
import gradio as gr
from openai import OpenAI
from smolagents import DuckDuckGoSearchTool
import re
import time

web_search = DuckDuckGoSearchTool()

SYSTEM_PROMPT = """
You are an AI research assistant that can search the web. Follow these steps:

1. FIRST ANALYZE the user's question:
   - If information is missing or ambiguous, ask ONE clarifying question
   - If clear, proceed to search

2. When searching:
   - Generate multiple specific search queries wrapped in <search> tags
   - Focus on factual keywords, one query per line
   Example:
   <search>
   Pont des Arts exact length meters
   History of Pont des Arts bridge
   </search>

3. After receiving results:
   - Analyze information from multiple sources
   - Cross-verify facts
   - If needed, generate follow-up searches
   - Provide final answer with:
     - Clear structure
     - Key facts with sources
     - Concise explanations

Never invent information. Cite sources for all facts. Use neutral, academic tone.
"""

def process_searches(response):
    searches = re.findall(r'<search>(.*?)</search>', response, re.DOTALL)
    if searches:
        queries = [q.strip() for q in searches[0].split('\n') if q.strip()]
        return queries
    return None

def process_thinking(response, duration):
    thinking_blocks = re.findall(r'<thinking>(.*?)</thinking>', response, re.DOTALL)
    if not thinking_blocks:
        return response, False
    
    formatted_response = response
    for content in thinking_blocks:
        formatted_think = (
            f"\nπŸ’­ THINKING PROCESS:\n{content.strip()}\n"
            f"Thought for {duration:.1f} seconds.\n"
        )
        formatted_response = formatted_response.replace(
            f'<thinking>{content}</thinking>', 
            formatted_think
        )
    return formatted_response, True

def search_with_retry(query, max_retries=3, delay=2):
    for attempt in range(max_retries):
        try:
            return web_search(query)
        except Exception as e:
            if attempt < max_retries - 1:
                time.sleep(delay)
                continue
            raise
    return None

def animate_thinking():
    dots = ["", ".", "..", "..."]
    i = 0
    while True:
        yield f"Thinking{dots[i]}"
        i = (i + 1) % 4
        time.sleep(0.5)

def respond(
    message,
    history: list[tuple[str, str]],
    system_message,
    max_tokens,
    temperature,
    top_p,
    openrouter_key,
):
    client = OpenAI(
        base_url="https://openrouter.ai/api/v1",
        api_key=openrouter_key,
    )
    
    messages = [{"role": "system", "content": system_message}]

    for val in history:
        if val[0]:
            messages.append({"role": "user", "content": val[0]})
        if val[1]:
            messages.append({"role": "assistant", "content": val[1]})

    messages.append({"role": "user", "content": message})
    
    full_response = ""
    search_cycle = True
    thinking_animation = animate_thinking()
    
    try:
        while search_cycle:
            search_cycle = False
            show_thinking = False
            thinking_start = None
            
            try:
                start_time = time.time()
                completion = client.chat.completions.create(
                    model="qwen/qwq-32b:free",
                    messages=messages,
                    max_tokens=max_tokens,
                    temperature=temperature,
                    top_p=top_p,
                    stream=True,
                    extra_headers={
                        "HTTP-Referer": "https://your-domain.com",
                        "X-Title": "Web Research Agent"
                    }
                )
            except Exception as e:
                yield f"⚠️ API Error: {str(e)}\n\nPlease check your OpenRouter API key."
                return

            response = ""
            thinking_buffer = ""
            in_thinking_tag = False
            
            for chunk in completion:
                token = chunk.choices[0].delta.content or ""
                response += token
                full_response += token

                # Detect thinking tags
                if not in_thinking_tag and '<thinking>' in token:
                    in_thinking_tag = True
                    thinking_start = time.time()
                    show_thinking = True
                
                if in_thinking_tag:
                    thinking_buffer += token
                    if '</thinking>' in token:
                        in_thinking_tag = False
                        thinking_duration = time.time() - thinking_start
                
                # Show animated thinking if needed
                if show_thinking and not in_thinking_tag:
                    formatted, has_thinking = process_thinking(full_response, time.time() - start_time)
                    if has_thinking:
                        full_response = formatted
                        show_thinking = False
                        yield full_response
                    else:
                        yield next(thinking_animation)
                else:
                    yield full_response

            # Process final thinking state
            final_response, has_thinking = process_thinking(full_response, time.time() - start_time)
            if has_thinking:
                full_response = final_response
                yield full_response

            queries = process_searches(response)
            
            if queries:
                search_cycle = True
                messages.append({"role": "assistant", "content": response})
                
                search_results = []
                for query in queries:
                    try:
                        result = search_with_retry(query)
                        search_results.append(f"πŸ” SEARCH: {query}\nRESULTS: {result}\n")
                    except Exception as e:
                        search_results.append(f"⚠️ Search Error: {str(e)}\nQuery: {query}")
                        time.sleep(2)
                
                messages.append({
                    "role": "user",
                    "content": f"SEARCH RESULTS:\n{chr(10).join(search_results)}\nAnalyze these results..."
                })
                full_response += "\nπŸ” Analyzing search results...\n"
                yield full_response

    except Exception as e:
        yield f"⚠️ Critical Error: {str(e)}\n\nPlease try again later."

demo = gr.ChatInterface(
    respond,
    additional_inputs=[
        gr.Textbox(value=SYSTEM_PROMPT, label="System Prompt", lines=8),
        gr.Slider(minimum=1000, maximum=15000, value=6000, step=500, label="Max Tokens"),
        gr.Slider(minimum=0.1, maximum=1.0, value=0.5, step=0.1, label="Temperature"),
        gr.Slider(minimum=0.1, maximum=1.0, value=0.85, step=0.05, label="Top-p"),
        gr.Textbox(label="OpenRouter API Key", type="password")
    ],
    title="Web Research Agent πŸ€–",
    description="Advanced AI assistant with web search capabilities",
    examples=[
        ["Compare COVID-19 mortality rates between US and Sweden with sources"],
        ["What's the current consensus on dark matter composition?"],
        ["Latest advancements in fusion energy 2023-2024"]
    ],
    cache_examples=False
)

if __name__ == "__main__":
    demo.launch()