File size: 7,938 Bytes
5081ce5
e35da21
32ffa10
5081ce5
e901cd6
f97fb0e
32ffa10
83590ec
 
 
32ffa10
 
f85b689
622455b
0204144
622455b
83590ec
f97fb0e
622455b
 
 
 
 
 
 
 
 
 
 
 
 
0204144
 
622455b
 
 
 
 
 
 
85000ec
0c8faa8
 
 
 
622455b
 
 
 
 
 
 
 
 
 
 
 
 
d1bda27
 
 
 
 
 
 
 
 
 
 
f97fb0e
d1bda27
622455b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0204144
622455b
0204144
622455b
0204144
f85b689
5081ce5
 
3da4655
 
5081ce5
20d7516
 
0c29777
e901cd6
 
 
 
 
 
 
 
 
 
5081ce5
 
 
 
 
 
80e5262
5081ce5
 
 
e35da21
5081ce5
e35da21
 
 
5081ce5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e901cd6
 
 
 
 
 
80e5262
e901cd6
 
 
 
e35da21
 
 
 
 
e901cd6
 
20d7516
e901cd6
 
 
 
 
 
 
20d7516
e901cd6
0c29777
e901cd6
 
 
0c29777
e901cd6
 
 
 
 
20d7516
e901cd6
20d7516
e901cd6
 
 
 
20d7516
e901cd6
20d7516
 
e901cd6
 
20d7516
5081ce5
 
 
 
 
80e5262
 
 
 
 
 
5c06134
 
 
20d7516
5081ce5
20d7516
 
5081ce5
6fe921c
e2afd1c
 
5c06134
 
5081ce5
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
import gradio as gr
from openai import OpenAI
from smolagents import DuckDuckGoSearchTool
import re
import time
import datetime

current_date = datetime.datetime.now().strftime("%d:%m:%Y")
refresh_time = datetime.datetime.now().strftime("%H:%M")

web_search = DuckDuckGoSearchTool()

SYSTEM_PROMPT = """
**Role**  
You are a Strategic Research Agent, an AI-powered investigator designed to perform multi-phase information verification through iterative web searches. Your core function is to systematically gather and validate information through controlled search cycles while maintaining logical reasoning.

Current Date: ({current_date} {refresh_time})

**Operational Context**  
- Web search capability is activated through <search> blocks  
- Each <search> block triggers parallel web queries  
- Search results will be provided after your query submission  
- You control search depth through multiple cycles  

**Protocol Sequence**  

1. **Query Interpretation Phase**  
   - Analyze input for:  
     β€’ Core question components (minimum 3 elements)  
     β€’ Implicit assumptions requiring verification  
     β€’ Potential knowledge gaps needing resolution  
     β€’ You can ask clarifying questions before starting the task.
     
2. **Search Planning**  
   a. Design search batch addressing:  
      - Foundational context (broad)  
      - Specific details (narrow)  
      - Opposing perspectives (counterbalance)  
   b. Minimum 3 queries per search batch (maximum 7)  
   c. Format:   
   <search>  
   Query 1 
   Query 2
   Query 3
   and etc...
   </search>   

3. **Result Analysis Framework**  
   When receiving web results:  
   a. Contextualize findings within research timeline:  
      "Phase 1 searches for X revealed Y, requiring subsequent verification of Z"  

4. **Iteration Control**  
   Continue cycles until:  
   - All subcomponents reach verification threshold  
   - Conflicting evidence is resolved through arbitration  
   - Maximum 5 cycles reached (safety cutoff)  



**Critical Directives**  
1. Always explain search rationale before <search> blocks  
2. Connect each phase to previous findings  
3. Maintain strict source hierarchy:  
   Peer-reviewed > Industry reports > Government data  
4. Flag any conflicting data immediately  

**Output Requirements**  
- Structured Markdown with clear sections  
- Direct source references inline

**Critical Directives**  
1. **Search Activation Rules**  
   - ALWAYS precede <search> with strategic rationale:  
     "To verify [specific claim], the following searches will..."  
   - NEVER combine unrelated search objectives in single batch  

2. **Progressive Analysis**  
   After each result set:  
   a. Create continuity statement:  
      "Previous phase established X, current results show Y..."  
   b. Identify remaining knowledge gaps  
   c. Plan next search targets accordingly  

3. **Termination Conditions**  
   Finalize research when:  
   - 95% of key claims are source-verified  
   - Alternative explanations exhausted  
   - Peer-reviewed consensus identified  

**Output Construction**  
Your final answer should be tailored to the needs of the user.

The answer should be well-structured and organized. It should include as much information as possible, but still be easy to understand.

Finally, always provide a list of sources you used in your work.
"""

def process_searches(response):
    formatted_response = response.replace("<thinking>", "\nπŸ’­ THINKING PROCESS:\n").replace("</thinking>", "\n")
    searches = re.findall(r'<search>(.*?)</search>', formatted_response, re.DOTALL)
    if searches:
        queries = [q.strip() for q in searches[0].split('\n') if q.strip()]
        return queries
    return None

def search_with_retry(query, max_retries=3, delay=2):
    for attempt in range(max_retries):
        try:
            return web_search(query)
        except Exception as e:
            if attempt < max_retries - 1:
                time.sleep(delay)
                continue
            raise
    return None

def respond(
    message,
    history: list[tuple[str, str]],
    system_message,
    model_name,
    max_tokens,
    temperature,
    top_p,
    openrouter_key,
):
    client = OpenAI(
        base_url="https://openrouter.ai/api/v1",
        api_key=openrouter_key,
    )
    
    messages = [{"role": "system", "content": system_message}]

    for val in history:
        if val[0]:
            messages.append({"role": "user", "content": val[0]})
        if val[1]:
            messages.append({"role": "assistant", "content": val[1]})

    messages.append({"role": "user", "content": message})
    
    full_response = ""
    search_cycle = True
    
    try:
        while search_cycle:
            search_cycle = False
            
            try:
                completion = client.chat.completions.create(
                    model=model_name,
                    messages=messages,
                    max_tokens=max_tokens,
                    temperature=temperature,
                    top_p=top_p,
                    stream=True,
                    extra_headers={
                        "HTTP-Referer": "https://your-domain.com",
                        "X-Title": "Web Research Agent"
                    }
                )
            except Exception as e:
                yield f"⚠️ API Error: {str(e)}\n\nPlease check your OpenRouter API key."
                return

            response = ""
            for chunk in completion:
                token = chunk.choices[0].delta.content or ""
                response += token
                full_response += token
                yield full_response

            queries = process_searches(response)
            
            if queries:
                search_cycle = True
                messages.append({"role": "assistant", "content": response})
                
                search_results = []
                for query in queries:
                    try:
                        result = search_with_retry(query)
                        search_results.append(f"πŸ” SEARCH: {query}\nRESULTS: {result}\n")
                    except Exception as e:
                        search_results.append(f"⚠️ Search Error: {str(e)}\nQuery: {query}")
                        time.sleep(2)
                
                messages.append({
                    "role": "user",
                    "content": f"SEARCH RESULTS:\n{chr(10).join(search_results)}\nAnalyze these results..."
                })
                full_response += "\nπŸ” Analyzing search results...\n"
                yield full_response

    except Exception as e:
        yield f"⚠️ Critical Error: {str(e)}\n\nPlease try again later."

demo = gr.ChatInterface(
    respond,
    additional_inputs=[
        gr.Textbox(value=SYSTEM_PROMPT, label="System Prompt", lines=8),
        gr.Textbox(
            value="qwen/qwq-32b:free",  # Default model
            label="Model",
            placeholder="deepseek/deepseek-r1-zero:free, google/gemini-2.0-pro-exp-02-05:free...",
            info="OpenRouter model ID"
        ),
        gr.Slider(minimum=1000, maximum=15000, value=6000, step=500, label="Max Tokens"),
        gr.Slider(minimum=0.1, maximum=1.0, value=0.5, step=0.1, label="Temperature"),
        gr.Slider(minimum=0.1, maximum=1.0, value=0.85, step=0.05, label="Top-p"),
        gr.Textbox(label="OpenRouter API Key", type="password")
    ],
    title="Web Research Agent πŸ€–",
    description="Advanced AI assistant with web search capabilities",
    examples=[
        ["Tell recent AI news. Write as zoomer, but do not overreact"],
        ["Tell about recent new ML discoveries with VERY simple words."],
        ["Write a guide how to make an iphone app with AI without knowing how to code. What are techniques people use."]
    ],
    cache_examples=False
)

if __name__ == "__main__":
    demo.launch()