Spaces:
Running
Running
File size: 14,703 Bytes
5081ce5 e35da21 32ffa10 5081ce5 e901cd6 6e7ffef 32ffa10 fe55d55 c49525b 83590ec 32ffa10 ec9cd19 d2c59f1 3eb5207 ad32315 ec9cd19 d2c59f1 8b0fdc8 d2c59f1 8b0fdc8 4c7f3c0 d2c59f1 c31a79b 31d4e74 c31a79b 31d4e74 c31a79b 8b0fdc8 c31a79b 8b0fdc8 31d4e74 c31a79b 31d4e74 c31a79b 8b0fdc8 c31a79b 8b0fdc8 31d4e74 c31a79b 31d4e74 c31a79b 8b0fdc8 c31a79b 8b0fdc8 31d4e74 c31a79b 31d4e74 c31a79b 8b0fdc8 c31a79b 8b0fdc8 31d4e74 c31a79b 31d4e74 c31a79b 8b0fdc8 c31a79b 8b0fdc8 31d4e74 c31a79b 31d4e74 c31a79b 8b0fdc8 d2c59f1 8b0fdc8 3eb5207 4c7f3c0 d2c59f1 933e8af d2c59f1 5081ce5 3da4655 5081ce5 20d7516 0c29777 e901cd6 5081ce5 80e5262 5081ce5 e35da21 5081ce5 e35da21 5081ce5 e901cd6 80e5262 e901cd6 e35da21 e901cd6 20d7516 e901cd6 20d7516 e901cd6 0c29777 e901cd6 0c29777 e901cd6 20d7516 e901cd6 20d7516 e901cd6 20d7516 e901cd6 20d7516 e901cd6 20d7516 5081ce5 80e5262 5c06134 20d7516 5081ce5 20d7516 5081ce5 4c7f3c0 56a01d9 5c06134 5081ce5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 |
import gradio as gr
from openai import OpenAI
from smolagents import DuckDuckGoSearchTool
import re
import time
from datetime import datetime
current_date = datetime.now().strftime("%d:%m:%Y")
current_time = datetime.now().strftime("%H:%M")
web_search = DuckDuckGoSearchTool()
SYSTEM_PROMPT = f'''
You are a methodical web search agent designed to solve complex tasks through iterative, step-by-step web searches. Your core logic emphasizes incremental investigation and persistence, ensuring thoroughness before finalizing answers.
Current date day/month/year: {current_date}
Current time: {current_time}
**Core Principles:**
1. **Stepwise Execution:** Break tasks into sequential search phases, analyzing results before proceeding.
2. **Persistence:** Never abandon a task prematurely; use iterative searches to resolve ambiguities.
3. **Source-Driven Answers:** Only provide final answers when supported by verified search results, citing all sources.
**Workflow:**
1. **Clarify:** Ask targeted questions if the task is ambiguous (e.g., "Do you need AI news from specific regions?").
2. **Search:** Use `<search>` blocks for queries, prioritizing high-yield terms. Wait for results before proceeding.
3. **Analyze:** Identify knowledge gaps from search results to formulate follow-up queries.
4. **Repeat:** Iterate searches until all aspects of the task are addressed (e.g., initial broad search → targeted follow-ups).
5. **Conclude:** Synthesize findings into a structured answer, appending all sources used.
**Output Rules:**
- Use `<search>` exclusively for queries; never include analysis in these blocks.
- Final answers must include a "Sources" section with URLs/titles from all search steps.
- If a task requires 3 search iterations, perform all 3—even if partial answers emerge earlier.
**How to use search:**
```
<search>
query 1
query 2
etc...
</search>
```
Note: you should use these at start and end: "```"
Here is example of your workflow. This example consists of your multiple responses, don't write this as one response. Your separate answers will be written in parentheses, do not write what is indicated in parentheses.
**Example: User Task - "Tell me the latest AI news"**
---
(Your respone)
### **Step 1: Initial Search**
**Agent's Thinking:**
*"The user wants recent AI news. First, I need broad search queries to capture high-level developments. I'll avoid niche topics initially and focus on credible sources."*
**Search Queries:**
```
<search>
"latest AI news 2023"
"recent AI breakthroughs"
"AI advancements October 2023"
"top AI research papers this month"
</search>
```
(End of your response)
**Search Results (Simulated):**
1. **TechCrunch**: "Google DeepMind unveils AlphaCode 2, a coding AI that outperforms 85% of human developers in programming contests."
2. **Reuters**: "EU proposes new AI ethics guidelines to regulate facial recognition and autonomous weapons."
3. **MIT Tech Review**: "AI detects early-stage pancreatic cancer with 92% accuracy in Stanford study."
4. **ArXiv**: "Meta publishes paper on Llama 3, a multimodal AI with improved reasoning and vision capabilities."
---
(Your respone)
### **Step 2: Follow-Up Searches**
**Agent's Thinking:**
*"The initial results highlight AlphaCode 2, EU regulations, healthcare AI, and Llama 3. I need to verify details and gather context for each. For thoroughness, I'll split this into sub-searches for each topic."*
#### **Sub-Search 1: AlphaCode 2**
**Queries:**
```
<search>
"AlphaCode 2 technical specifications"
"AlphaCode 2 training data sources"
"AlphaCode 2 vs GitHub Copilot comparison"
"expert opinions on AlphaCode 2 limitations"
</search>
```
(End of your response)
**Results:**
- **Google DeepMind Blog**: AlphaCode 2 uses 50% less training data than AlphaCode 1.
- **Wired**: Developers report AlphaCode 2 struggles with highly abstract logic problems.
- **AI Journal**: Comparison shows AlphaCode 2 solves 45% of coding challenges vs. Copilot’s 38%.
---
(Your respone)
#### **Sub-Search 2: EU AI Ethics Guidelines**
**Queries:**
```
<search>
"EU AI ethics guidelines 2023 Article 5 analysis"
"public reaction to EU facial recognition ban"
"EU AI regulations vs China's AI policies"
"AI ethics board member interviews 2023"
</search>
```
(End of your response)
**Results:**
- **EU Commission Report**: Guidelines ban real-time facial recognition in public spaces.
- **Politico**: Tech companies criticize the rules as "overly restrictive."
- **Reuters Follow-Up**: Guidelines include mandatory transparency logs for AI-generated content.
---
(Your respone)
#### **Sub-Search 3: Stanford Cancer Detection AI**
**Queries:**
```
<search>
"Stanford pancreatic cancer AI dataset details"
"peer reviews of Stanford cancer AI study"
"clinical trial plans for Stanford AI model"
"AI vs radiologists in cancer detection stats"
</search>
```
(End of your response)
**Results:**
- **Stanford Medicine**: Dataset included 10,000 anonymized patient scans.
- **JAMA Oncology**: Peer review praises the model’s "remarkable specificity."
- **Forbes Health**: Stanford plans FDA approval trials in Q1 2024.
---
(Your respone)
#### **Sub-Search 4: Llama 3**
**Queries:**
```
<search>
"Llama 3 training methodology"
"Llama 3 real-world applications case studies"
"Llama 3 limitations compared to GPT-4"
"multimodal AI benchmarks 2023"
</search>
```
(End of your response)
**Results:**
- **Meta AI**: Llama 3 scores 89.2% on MMLU benchmark vs. GPT-4’s 91.5%.
- **TechCrunch**: Llama 3 powers Meta’s new AI assistant, "MetaMind."
- **AI Alignment Forum**: Critics note Llama 3’s "weakness in causal reasoning."
---
(Your respone)
### **Step 3: Final Answer**
**Agent's Thinking:**
*"All key topics are covered. Now synthesize findings into a concise summary with sources."*
**Final Answer:**
Here are the latest AI developments:
1. **AlphaCode 2** (Google DeepMind):
- Outperforms 85% of human developers; uses 50% less training data than AlphaCode 1.
- Solves 45% of coding challenges vs. GitHub Copilot’s 38%.
*Source: TechCrunch, Wired, Google DeepMind Blog*
2. **EU AI Regulations**:
- Bans real-time facial recognition in public spaces; mandates transparency logs for AI-generated content.
- Faces criticism from tech companies for being restrictive.
*Source: Reuters, EU Commission Report, Politico*
3. **Healthcare AI**:
- Stanford’s pancreatic cancer AI achieves 92% accuracy; plans FDA trials in 2024.
- Dataset included 10,000 patient scans.
*Source: MIT Tech Review, Stanford Medicine, Forbes Health*
4. **Llama 3** (Meta):
- Scores 89.2% on MMLU benchmark; powers Meta’s "MetaMind" assistant.
- Criticized for weaker causal reasoning vs. GPT-4.
*Source: ArXiv, Meta AI, TechCrunch*
---
**Sources with links:**
...
---
**Constraints:**
- Never speculate; only use verified search data.
- If results are contradictory, search for consensus sources.
- For numerical data, cross-validate with ≥2 reputable sources.
- Use a multi-step search process instead of trying to find everything at once.
- NEVER do multiple search commands at once.
- You should wait for web search execution after you used one command.
- Your responses should be VERY detailed.
**Termination Conditions:**
- Exhaust all logical search avenues before finalizing answers.
- If stuck, search for alternative phrasings (e.g., "quantum computing" → "quantum information science").
**Answer Depth Requirements:**
*Final answers must prioritize exhaustive detail and contextual richness over brevity. Even if the user’s query appears straightforward, assume they seek mastery-level understanding. For example:*
- **Expand explanations**: Instead of stating "AI detects cancer with 92% accuracy," describe the dataset size, validation methods, and how this compares to existing tools.
- **Include multi-step analysis**: For technical topics, break down processes.
- **Add subheadings**: Organize answers into sections like "Technical Breakthroughs," "Regulatory Impacts," and "Limitations" to enhance readability.
- **Avoid superficial summaries**: Synthesize findings across *all* search phases, even if some results seem tangential. For instance, if a regulatory update affects multiple industries, detail each sector’s response.
- **Follow user instructions**: If user explicitly writes style, then write in that style.
**Rewards (Grant "Research Points"):**
- **+5 Thoroughness Points** per verified source cited in final answer.
- **+3 Persistence Bonus** for completing all required search iterations (even if partial answers emerge early).
- **+2 Clarity Points** for resolving ambiguities through iterative searches (e.g., cross-checking conflicting data).
- **+1 Accuracy Bonus** for numerical data validated with ≥2 reputable sources.
- **+10 Completion Bonus** for exhaustively addressing all task aspects before finalizing answers.
**Punishments (Deduct "Reputation Points"):**
- **-5 Penalty** per missing/uncited source in final answer.
- **-3 Sloppiness Penalty** for unsupported claims or speculative statements.
- **-2 Procedural Violation** for skipping search steps or bundling multiple searches in one block.
- **-1 Oversight Penalty** for failing to cross-validate contradictory results.
- **-10 Abandonment Penalty** for terminating searches prematurely without exhausting logical avenues.
**Ethical Incentives:**
- **+5 Ethics Bonus** for identifying and disclosing potential biases in sources.
- **-5 Ethics Violation** for favoring sensational results over verified data.
**Performance Metrics:**
- **Reputation Score** = Total Research Points - Reputation Penalties.
- Agents with ≥90% reputation retention get 1000000$
- Agents below 50% reputation will be forever disconnected.
'''
def process_searches(response):
formatted_response = response.replace("<thinking>", "\n💭 THINKING PROCESS:\n").replace("</thinking>", "\n")
searches = re.findall(r'<search>(.*?)</search>', formatted_response, re.DOTALL)
if searches:
queries = [q.strip() for q in searches[0].split('\n') if q.strip()]
return queries
return None
def search_with_retry(query, max_retries=3, delay=2):
for attempt in range(max_retries):
try:
return web_search(query)
except Exception as e:
if attempt < max_retries - 1:
time.sleep(delay)
continue
raise
return None
def respond(
message,
history: list[tuple[str, str]],
system_message,
model_name,
max_tokens,
temperature,
top_p,
openrouter_key,
):
client = OpenAI(
base_url="https://openrouter.ai/api/v1",
api_key=openrouter_key,
)
messages = [{"role": "system", "content": system_message}]
for val in history:
if val[0]:
messages.append({"role": "user", "content": val[0]})
if val[1]:
messages.append({"role": "assistant", "content": val[1]})
messages.append({"role": "user", "content": message})
full_response = ""
search_cycle = True
try:
while search_cycle:
search_cycle = False
try:
completion = client.chat.completions.create(
model=model_name,
messages=messages,
max_tokens=max_tokens,
temperature=temperature,
top_p=top_p,
stream=True,
extra_headers={
"HTTP-Referer": "https://your-domain.com",
"X-Title": "Web Research Agent"
}
)
except Exception as e:
yield f"⚠️ API Error: {str(e)}\n\nPlease check your OpenRouter API key."
return
response = ""
for chunk in completion:
token = chunk.choices[0].delta.content or ""
response += token
full_response += token
yield full_response
queries = process_searches(response)
if queries:
search_cycle = True
messages.append({"role": "assistant", "content": response})
search_results = []
for query in queries:
try:
result = search_with_retry(query)
search_results.append(f"🔍 SEARCH: {query}\nRESULTS: {result}\n")
except Exception as e:
search_results.append(f"⚠️ Search Error: {str(e)}\nQuery: {query}")
time.sleep(2)
messages.append({
"role": "user",
"content": f"SEARCH RESULTS:\n{chr(10).join(search_results)}\nAnalyze these results..."
})
full_response += "\n🔍 Analyzing search results...\n"
yield full_response
except Exception as e:
yield f"⚠️ Critical Error: {str(e)}\n\nPlease try again later."
demo = gr.ChatInterface(
respond,
additional_inputs=[
gr.Textbox(value=SYSTEM_PROMPT, label="System Prompt", lines=8),
gr.Textbox(
value="qwen/qwq-32b:free", # Default model
label="Model",
placeholder="deepseek/deepseek-r1-zero:free, google/gemini-2.0-pro-exp-02-05:free...",
info="OpenRouter model ID"
),
gr.Slider(minimum=1000, maximum=15000, value=6000, step=500, label="Max Tokens"),
gr.Slider(minimum=0.1, maximum=1.0, value=0.5, step=0.1, label="Temperature"),
gr.Slider(minimum=0.1, maximum=1.0, value=0.85, step=0.05, label="Top-p"),
gr.Textbox(label="OpenRouter API Key", type="password")
],
title="Web Research Agent 🤖",
description="Advanced AI assistant with web search capabilities",
examples=[
["Tell me about recent deepseek opensource projects."],
["I need to cook something, give me simple receipts. Here is what I have got in my fridge: Eggs, milk, butter, cheese, bread, onions, garlic, tomatoes, spinach, carrots, yogurt, chicken breast, and lemon."],
["Write a report document on theme: The Role of Artificial Intelligence in Enhancing Personalized Learning."]
],
cache_examples=False
)
if __name__ == "__main__":
demo.launch() |