Spaces:
Running
Running
""" | |
att_uncontrol9_adam以及之前的都是用这个 | |
""" | |
import numpy as np | |
import torch | |
import torch.nn as nn | |
import math | |
class SubPixelConv(nn.Module): | |
def __init__(self, in_channels, out_channels, kernel_size, stride=1, scale_factor=2): | |
super(SubPixelConv, self).__init__() | |
self.conv = nn.Conv2d(in_channels, out_channels * scale_factor ** 2, kernel_size, stride, | |
padding=kernel_size // 2) | |
self.pixel_shuffle = nn.PixelShuffle(scale_factor) | |
def forward(self, x): | |
x = self.conv(x) | |
x = self.pixel_shuffle(x) | |
return x | |
class Swish(nn.Module): | |
def __init__(self): | |
super(Swish, self).__init__() | |
def forward(self, x): | |
# swish | |
return x * torch.sigmoid(x) | |
def zero_module(module): | |
""" | |
Zero out the parameters of a module and return it. | |
""" | |
for p in module.parameters(): | |
p.detach().zero_() | |
return module | |
class AttentionBlock(nn.Module): | |
""" | |
An attention block that allows spatial positions to attend to each other. | |
Originally ported from here, but adapted to the N-d case. | |
https://github.com/hojonathanho/diffusion/blob/1e0dceb3b3495bbe19116a5e1b3596cd0706c543/diffusion_tf/models/unet.py#L66. | |
""" | |
def __init__(self, channels, num_heads=-1, use_checkpoint=False): | |
super().__init__() | |
self.channels = channels | |
self.num_heads = num_heads if num_heads != -1 else min(channels // 32, 8) | |
self.use_checkpoint = use_checkpoint | |
self.norm = nn.GroupNorm(16, channels, eps=1e-6) | |
self.qkv = nn.Conv1d(channels, channels * 3, 1) | |
self.attention = QKVAttention() | |
self.proj_out = zero_module(nn.Conv1d(channels, channels, 1)) | |
def forward(self, x): | |
b, c, *spatial = x.shape | |
x = x.reshape(b, c, -1) | |
qkv = self.qkv(self.norm(x)) | |
qkv = qkv.reshape(b * self.num_heads, -1, qkv.shape[2]) | |
h = self.attention(qkv) | |
h = h.reshape(b, -1, h.shape[-1]) | |
h = self.proj_out(h) | |
return (x + h).reshape(b, c, *spatial) | |
class QKVAttention(nn.Module): | |
""" | |
A module which performs QKV attention. | |
""" | |
def forward(self, qkv): | |
""" | |
Apply QKV attention. | |
:param qkv: an [N x (C * 3) x T] tensor of Qs, Ks, and Vs. | |
:return: an [N x C x T] tensor after attention. | |
""" | |
ch = qkv.shape[1] // 3 | |
q, k, v = torch.split(qkv, ch, dim=1) | |
scale = 1 / math.sqrt(math.sqrt(ch)) | |
weight = torch.einsum( | |
"bct,bcs->bts", q * scale, k * scale | |
) # More stable with f16 than dividing afterwards | |
weight = torch.softmax(weight.float(), dim=-1).type(weight.dtype) | |
return torch.einsum("bts,bcs->bct", weight, v) | |
def count_flops(model, _x, y): | |
""" | |
A counter for the `thop` package to count the operations in an | |
attention operation. | |
Meant to be used like: | |
macs, params = thop.profile( | |
model, | |
inputs=(inputs, timestamps), | |
custom_ops={QKVAttention: QKVAttention.count_flops}, | |
) | |
""" | |
b, c, *spatial = y[0].shape | |
num_spatial = int(np.prod(spatial)) | |
# We perform two matmuls with the same number of ops. | |
# The first computes the weight matrix, the second computes | |
# the combination of the value vectors. | |
matmul_ops = 2 * b * (num_spatial ** 2) * c | |
model.total_ops += torch.DoubleTensor([matmul_ops]) | |
# ==================================================================== | |
class TEncoder(nn.Module): | |
def __init__(self, out_c=256, scale=30.): | |
super(TEncoder, self).__init__() | |
# 随机映射 | |
self.out_c = out_c | |
self.W = nn.Parameter(torch.randn(out_c // 2) * scale, requires_grad=False) | |
self.linear = nn.Sequential(nn.Linear(out_c, out_c), | |
Swish(), | |
nn.Linear(out_c, out_c), | |
) | |
def timestep_embedding(self, timesteps, max_period=10000): | |
""" | |
Create sinusoidal timestep embeddings. | |
:param timesteps: a 1-D Tensor of N indices, one per batch element. | |
These may be fractional. | |
:param dim: the dimension of the output. | |
:param max_period: controls the minimum frequency of the embeddings. | |
:return: an [N x dim] Tensor of positional embeddings. | |
""" | |
half = self.out_c // 2 | |
freqs = torch.exp( | |
-math.log(max_period) * torch.arange(start=0, end=half, dtype=torch.float32) / half | |
).to(device=timesteps.device) | |
args = timesteps[:, None].float() * freqs[None] | |
embedding = torch.cat([torch.cos(args), torch.sin(args)], dim=-1) | |
if self.out_c % 2: | |
embedding = torch.cat([embedding, torch.zeros_like(embedding[:, :1])], dim=-1) | |
return embedding | |
def forward(self, t): | |
# t_proj = t * self.W[None, :] * 2 * np.pi | |
# t_proj = torch.cat((torch.sin(t_proj), torch.cos(t_proj)), dim=-1) | |
t_proj = self.timestep_embedding(t)[:, 0, :] | |
encoded_t = self.linear(t_proj) | |
return encoded_t | |
class EncoderBlock(nn.Module): | |
def __init__(self, in_c, out_c, kernel_size, stride, t_in_c, att_num_head=-1, block_deep=4): | |
super(EncoderBlock, self).__init__() | |
self.in_c = in_c | |
self.out_c = out_c | |
self.stride = stride | |
self.model_list_len = block_deep # 一个block有多少次卷积 | |
padding = kernel_size // 2 | |
self.model_list = nn.ModuleList() | |
self.model_list.append(nn.Sequential( | |
nn.Conv2d(in_c, out_c, kernel_size=kernel_size, stride=stride, padding=padding), | |
nn.GroupNorm(16, out_c, eps=1e-6), | |
Swish())) | |
if att_num_head != 0: # stride == 1 | |
self.att_block = AttentionBlock(out_c, num_heads=att_num_head) | |
else: | |
self.att_block = nn.Identity() | |
for _ in range(self.model_list_len - 2): # -2是减一头一尾 | |
self.model_list.append( | |
nn.Sequential( | |
nn.Conv2d(out_c, out_c, kernel_size=kernel_size, stride=1, | |
padding=padding), | |
nn.GroupNorm(16, out_c, eps=1e-6), | |
Swish(), | |
)) | |
self.model_list.append( | |
nn.Sequential( | |
nn.Conv2d(out_c, out_c, kernel_size=kernel_size, stride=1, | |
padding=padding), | |
nn.GroupNorm(16, out_c, eps=1e-6), | |
)) | |
# 编码时间t | |
self.encode_t = nn.ModuleList( | |
[nn.Linear(t_in_c, out_c) for _ in range(len(self.model_list) - 1)]) | |
if self.in_c != self.out_c or self.stride != 1: | |
self.conv_skip = nn.Conv2d(in_c, out_c, kernel_size=1, stride=stride, padding=0) | |
else: | |
self.conv_skip = nn.Identity() | |
self.act_skip = Swish() | |
def forward(self, x, t): | |
skip = self.conv_skip(x) | |
for i, layer in enumerate(self.model_list): | |
x = layer(x) | |
if i == 0: | |
x = self.att_block(x) | |
if i < self.model_list_len - 1: | |
t_ = self.encode_t[i](t) | |
# t_ = torch.tile(t[:, :, None, None], dims=[1, 1, x.shape[2], x.shape[3]]) | |
t_ = t_[:, :, None, None] | |
x = x + t_ | |
return self.act_skip(x + skip) | |
class DecoderBlock(nn.Module): | |
def __init__(self, in_c, out_c, kernel_size, upsample="none", t_in_c=256, att_num_head=-1, block_deep=4): | |
super(DecoderBlock, self).__init__() | |
self.in_c = in_c | |
self.out_c = out_c | |
self.model_list_len = block_deep # 一个block有多少次卷积 | |
self.model_list = nn.ModuleList() | |
if upsample == "subpix": | |
self.model_list.append(nn.Sequential( | |
SubPixelConv(in_c, out_c, kernel_size=3), | |
nn.GroupNorm(16, out_c, eps=1e-6), | |
Swish() | |
)) | |
self.upsample = SubPixelConv(in_c, in_c, kernel_size=3) | |
elif upsample == "convt": | |
self.model_list.append(nn.Sequential( | |
nn.ConvTranspose2d(in_c, out_c, kernel_size=4, stride=2, padding=1), | |
nn.GroupNorm(16, out_c, eps=1e-6), | |
Swish() | |
)) | |
self.upsample = nn.ConvTranspose2d(in_c, in_c, kernel_size=4, stride=2, padding=1) | |
else: | |
self.model_list.append(nn.Sequential( | |
nn.Conv2d(in_c, out_c, kernel_size=kernel_size, stride=1, | |
padding=kernel_size // 2), | |
nn.GroupNorm(16, out_c, eps=1e-6), | |
Swish() | |
)) | |
self.upsample = nn.Identity() | |
if att_num_head != 0: # upsample != "none" | |
self.att_block = AttentionBlock(out_c, num_heads=att_num_head) | |
else: | |
self.att_block = nn.Identity() | |
for _ in range(self.model_list_len - 2): | |
self.model_list.append(nn.Sequential(nn.Conv2d(out_c, out_c, kernel_size=kernel_size, stride=1, | |
padding=kernel_size // 2), | |
nn.GroupNorm(16, out_c, eps=1e-6), | |
Swish())) | |
self.model_list.append(nn.Sequential(nn.Conv2d(out_c, out_c, kernel_size=kernel_size, stride=1, | |
padding=kernel_size // 2), | |
nn.GroupNorm(16, out_c, eps=1e-6))) | |
# 编码时间t | |
self.encode_t = nn.ModuleList([nn.Linear(t_in_c, out_c) for _ in range(len(self.model_list) - 1)]) | |
self.conv_skip = nn.Conv2d(in_c, out_c, kernel_size=1, stride=1, padding=0) | |
self.act_skip = Swish() | |
def forward(self, x, t): | |
skip = self.upsample(x) | |
skip = self.conv_skip(skip) | |
for i, layer in enumerate(self.model_list): | |
x = layer(x) | |
if i == 0: | |
x = self.att_block(x) | |
if i < self.model_list_len - 1: | |
t_ = self.encode_t[i](t) | |
# t_ = torch.tile(t[:, :, None, None], dims=[1, 1, x.shape[2], x.shape[3]]) | |
t_ = t_[:, :, None, None] | |
x = x + t_ | |
return self.act_skip(x + skip) | |
class Encoder(nn.Module): | |
def __init__(self, | |
model_in_c=8, | |
out_cs=(64, 64, 128, 128, 256, 256, 512, 512), | |
down_sample=(0, 0, 1, 0, 1, 0, 1, 0), | |
skip_out=(0, 1, 0, 1, 0, 1, 0, 1), | |
att_num_heads=(-1, -1, -1, -1, -1, -1, -1, -1), | |
t_in_c=256, | |
block_deep=4): | |
""" | |
:param out_cs: 每一个块输出的尺寸 | |
:param down_sample: 是否下采样 | |
:param skip_out: unet的条连 | |
""" | |
super(Encoder, self).__init__() | |
self.skip_out = skip_out | |
self.model_list = nn.ModuleList() | |
for i, (out_c, down, att_num_head) in enumerate(zip(out_cs, down_sample, att_num_heads)): | |
in_c = model_in_c if i == 0 else out_cs[i - 1] | |
self.model_list.append( | |
EncoderBlock(in_c, out_cs[i], kernel_size=3, stride=down + 1, t_in_c=t_in_c, | |
att_num_head=att_num_head, block_deep=block_deep)) | |
def forward(self, x, t): | |
res_x = [] | |
for i, layer in enumerate(self.model_list): | |
x = layer(x, t) | |
if self.skip_out[i] == 1: | |
res_x.append(x) | |
return res_x | |
class Decoder(nn.Module): | |
def __init__(self, | |
in_c, | |
model_out_c=8, | |
out_cs=(512, 256, 256, 128, 128, 64, 64, 32), | |
up_sample=("none", "convt", "none", "subpix", "none", "subpix", "none", "none"), | |
skip_out=(1, 0, 1, 0, 1, 0, 1, 0), | |
att_num_heads=(-1, -1, -1, -1, -1, -1, -1, -1), | |
t_in_c=256, | |
block_deep=4): | |
""" | |
:param out_cs: 每一个块输出的尺寸 | |
:param up_sample: 上采样方法,none是不进行上采样 | |
:param skip_out: unet的跳连 | |
""" | |
super(Decoder, self).__init__() | |
self.skip_out = skip_out | |
self.model_list = nn.ModuleList() | |
for i, (out_c, up, att_num_head) in enumerate(zip(out_cs, up_sample, att_num_heads)): | |
if self.skip_out[i] == 1 and i > 0: | |
in_c *= 2 | |
self.model_list.append( | |
DecoderBlock(in_c, out_cs[i], kernel_size=3, upsample=up, t_in_c=t_in_c, | |
att_num_head=att_num_head, block_deep=block_deep)) | |
in_c = out_cs[i] | |
self.Conv1 = nn.Conv2d(out_cs[-1], model_out_c, kernel_size=1, stride=1, padding=0) | |
def forward(self, x, t): | |
x_list = x | |
# print([xx.shape for xx in x_list]) | |
x = None | |
for i, layer in enumerate(self.model_list): | |
if self.skip_out[i] == 1: | |
# print("skip_x:", x_list[-1].shape) | |
if i == 0: | |
x = x_list.pop() | |
else: | |
x = torch.cat([x, x_list.pop()], dim=1) | |
# print("x:", x.shape) | |
x = layer(x, t) | |
x = self.Conv1(x) | |
return x | |
class UNet(nn.Module): | |
def __init__(self, | |
en_out_c, | |
en_down, | |
en_skip, | |
en_att_heads, | |
de_out_c, | |
de_up, | |
de_skip, | |
de_att_heads, | |
t_out_c, | |
vae_c=8, | |
block_deep=4): | |
""" | |
:param en_out_c: encoder参数 | |
:param en_down: | |
:param en_skip: | |
:param de_out_c: decoder参数 | |
:param de_up: | |
:param de_skip: | |
""" | |
super(UNet, self).__init__() | |
self.encoder = Encoder(model_in_c=vae_c, | |
out_cs=en_out_c, | |
down_sample=en_down, | |
skip_out=en_skip, | |
att_num_heads=en_att_heads, | |
t_in_c=t_out_c, | |
block_deep=block_deep) | |
self.decoder = Decoder(in_c=en_out_c[-1], | |
model_out_c=vae_c, | |
out_cs=de_out_c, | |
up_sample=de_up, | |
skip_out=de_skip, | |
att_num_heads=de_att_heads, | |
t_in_c=t_out_c, | |
block_deep=block_deep) | |
self.t_encoder = TEncoder(t_out_c) | |
def forward(self, x, t): | |
t = self.t_encoder(t) | |
# print("encoded_t:", torch.mean(t), torch.std(t)) | |
# print("t:", t.shape) | |
encoder_out = self.encoder(x, t) | |
# print("encode:") | |
# for e in encoder_out: | |
# print(e.shape) | |
decoder_out = self.decoder(encoder_out, t) | |
# print("decoder:") | |
# print(decoder_out.shape) | |
return decoder_out | |