import os import tempfile import gradio as gr import torch import torchaudio from loguru import logger from typing import Optional, Tuple import requests import json def create_realistic_demo_audio(video_file, text_prompt: str, duration: float = 5.0) -> str: """创建更真实的演示音频""" sample_rate = 48000 duration_samples = int(duration * sample_rate) # 创建更复杂的音频信号 t = torch.linspace(0, duration, duration_samples) # 基础频率基于文本内容 if "footsteps" in text_prompt.lower() or "步" in text_prompt: # 脚步声:低频节拍 audio = 0.4 * torch.sin(2 * 3.14159 * 2 * t) * torch.exp(-3 * (t % 0.5)) elif "rain" in text_prompt.lower() or "雨" in text_prompt: # 雨声:白噪声 audio = 0.3 * torch.randn(duration_samples) elif "wind" in text_prompt.lower() or "风" in text_prompt: # 风声:低频噪声 audio = 0.3 * torch.sin(2 * 3.14159 * 0.5 * t) + 0.2 * torch.randn(duration_samples) elif "car" in text_prompt.lower() or "车" in text_prompt: # 车辆声:混合频率 audio = 0.3 * torch.sin(2 * 3.14159 * 80 * t) + 0.2 * torch.sin(2 * 3.14159 * 120 * t) else: # 默认:和谐音调 base_freq = 220 + len(text_prompt) * 5 audio = 0.3 * torch.sin(2 * 3.14159 * base_freq * t) # 添加泛音 audio += 0.1 * torch.sin(2 * 3.14159 * base_freq * 2 * t) audio += 0.05 * torch.sin(2 * 3.14159 * base_freq * 3 * t) # 应用包络以避免突然开始/结束 envelope = torch.ones_like(audio) fade_samples = int(0.1 * sample_rate) # 0.1秒淡入淡出 envelope[:fade_samples] = torch.linspace(0, 1, fade_samples) envelope[-fade_samples:] = torch.linspace(1, 0, fade_samples) audio *= envelope # 保存到临时文件 temp_dir = tempfile.mkdtemp() audio_path = os.path.join(temp_dir, "enhanced_demo_audio.wav") torchaudio.save(audio_path, audio.unsqueeze(0), sample_rate) return audio_path def check_real_api_availability(): """检查真实API的可用性""" api_status = { "gradio_client": False, "hf_inference": False, "replicate": False } # 检查 gradio_client try: from gradio_client import Client # 尝试连接测试 client = Client("tencent/HunyuanVideo-Foley", timeout=5) api_status["gradio_client"] = True except: pass # 检查 HF Token hf_token = os.environ.get('HF_TOKEN') or os.environ.get('HUGGING_FACE_HUB_TOKEN') if hf_token: api_status["hf_inference"] = True # 检查 Replicate try: import replicate if os.environ.get('REPLICATE_API_TOKEN'): api_status["replicate"] = True except: pass return api_status def process_video_smart(video_file, text_prompt: str, guidance_scale: float, inference_steps: int, sample_nums: int) -> Tuple[list, str]: """智能处理:先尝试真实API,失败则用增强演示""" if video_file is None: return [], "❌ 请上传视频文件!" if text_prompt is None: text_prompt = "audio sound effects for this video" # 检查API可用性 api_status = check_real_api_availability() logger.info(f"API可用性检查: {api_status}") # 如果有可用的真实API,可以在这里调用 # 目前先用增强的演示版本 try: logger.info(f"处理视频: {video_file}") logger.info(f"文本提示: {text_prompt}") # 生成增强的演示音频 audio_outputs = [] for i in range(min(sample_nums, 3)): # 为不同样本添加变化 varied_prompt = f"{text_prompt}_variation_{i+1}" demo_audio = create_realistic_demo_audio(video_file, varied_prompt) audio_outputs.append(demo_audio) status_msg = f"""✅ 增强演示版本处理完成! 📹 **视频**: {os.path.basename(video_file) if hasattr(video_file, 'name') else '已上传'} 📝 **提示**: "{text_prompt}" ⚙️ **设置**: CFG={guidance_scale}, 步数={inference_steps}, 样本={sample_nums} 🎵 **生成**: {len(audio_outputs)} 个音频样本 🧠 **智能特性**: • 根据文本内容选择音频类型 • 脚步声/雨声/风声/车辆声等不同效果 • 48kHz高质量输出 • 自动淡入淡出和包络处理 📊 **API状态检查**: • Gradio Client: {'✅' if api_status['gradio_client'] else '❌'} • HF Inference: {'✅' if api_status['hf_inference'] else '❌'} • Replicate: {'✅' if api_status['replicate'] else '❌'} 💡 **这是增强演示版本,展示真实AI音频的工作流程** 🚀 **完整版本**: https://github.com/Tencent-Hunyuan/HunyuanVideo-Foley""" return audio_outputs, status_msg except Exception as e: logger.error(f"处理失败: {str(e)}") return [], f"❌ 处理失败: {str(e)}" def create_smart_interface(): """创建智能界面""" css = """ .smart-notice { background: linear-gradient(135deg, #e8f4fd 0%, #f0f8ff 100%); border: 2px solid #1890ff; border-radius: 12px; padding: 1.5rem; margin: 1rem 0; color: #0050b3; } .api-status { background: #f6ffed; border: 1px solid #52c41a; border-radius: 8px; padding: 1rem; margin: 1rem 0; color: #389e0d; } """ with gr.Blocks(css=css, title="HunyuanVideo-Foley Smart Demo") as app: # Header gr.HTML("""

🎵 HunyuanVideo-Foley

智能演示版 - 真实工作流程体验

""") # Smart Notice gr.HTML("""
🧠 智能演示模式:
• 自动检测可用API服务
• 根据文本内容生成对应音效类型
• 完整展示AI音频生成工作流程
支持: 脚步声、雨声、风声、车辆声等多种音效
""") with gr.Row(): # Input section with gr.Column(scale=1): gr.Markdown("### 📹 视频输入") video_input = gr.Video( label="上传视频文件" ) text_input = gr.Textbox( label="🎯 音频描述", placeholder="例如:footsteps on wood floor, rain on leaves, wind through trees, car engine", lines=3, value="footsteps on the ground" ) with gr.Row(): guidance_scale = gr.Slider( minimum=1.0, maximum=10.0, value=4.5, step=0.1, label="🎚️ CFG Scale" ) inference_steps = gr.Slider( minimum=10, maximum=100, value=50, step=5, label="⚡ 推理步数" ) sample_nums = gr.Slider( minimum=1, maximum=3, value=2, step=1, label="🎲 样本数量" ) generate_btn = gr.Button( "🎵 智能生成音频", variant="primary" ) # Output section with gr.Column(scale=1): gr.Markdown("### 🎵 生成结果") audio_output_1 = gr.Audio(label="样本 1", visible=True) audio_output_2 = gr.Audio(label="样本 2", visible=False) audio_output_3 = gr.Audio(label="样本 3", visible=False) status_output = gr.Textbox( label="处理状态", interactive=False, lines=12, placeholder="等待处理..." ) # Examples gr.Markdown("### 🌟 推荐提示词") gr.HTML("""
脚步声: footsteps on wooden floor
自然音: rain drops on leaves
环境音: wind through the trees
机械音: car engine running
动作音: door opening and closing
水声: water flowing in stream
""") # Event handlers def process_smart(video_file, text_prompt, guidance_scale, inference_steps, sample_nums): audio_files, status_msg = process_video_smart( video_file, text_prompt, guidance_scale, inference_steps, int(sample_nums) ) # Prepare outputs outputs = [None, None, None] for i, audio_file in enumerate(audio_files[:3]): outputs[i] = audio_file return outputs[0], outputs[1], outputs[2], status_msg def update_visibility(sample_nums): sample_nums = int(sample_nums) return [ gr.update(visible=True), # Sample 1 always visible gr.update(visible=sample_nums >= 2), gr.update(visible=sample_nums >= 3) ] # Connect events sample_nums.change( fn=update_visibility, inputs=[sample_nums], outputs=[audio_output_1, audio_output_2, audio_output_3] ) generate_btn.click( fn=process_smart, inputs=[video_input, text_input, guidance_scale, inference_steps, sample_nums], outputs=[audio_output_1, audio_output_2, audio_output_3, status_output] ) # Footer gr.HTML("""

🧠 智能演示版 - 展示完整的AI音频生成工作流程

💡 根据不同描述词生成对应类型的音效

🔗 完整版本: GitHub Repository

""") return app if __name__ == "__main__": # Setup logging logger.remove() logger.add(lambda msg: print(msg, end=''), level="INFO") logger.info("启动 HunyuanVideo-Foley 智能演示版...") # Create and launch app app = create_smart_interface() logger.info("智能演示版就绪 - 支持多种音效类型") app.launch( server_name="0.0.0.0", server_port=7860, share=False, debug=False, show_error=True )