hunyuanvideo-foley / app_working.py
wzy013's picture
Create working demo version that actually runs
e78e3fd
import os
import tempfile
import gradio as gr
import torch
import torchaudio
from loguru import logger
from typing import Optional, Tuple
import random
import numpy as np
import requests
import json
# Simplified working version without loading large models
def create_demo_audio(video_file, text_prompt: str, duration: float = 5.0) -> str:
"""Create a simple demo audio file"""
sample_rate = 48000
duration_samples = int(duration * sample_rate)
# Generate a simple tone as demo
t = torch.linspace(0, duration, duration_samples)
frequency = 440 # A note
audio = 0.3 * torch.sin(2 * 3.14159 * frequency * t)
# Add some variation based on text prompt length
if text_prompt:
freq_mod = len(text_prompt) * 10
audio += 0.1 * torch.sin(2 * 3.14159 * freq_mod * t)
# Save to temporary file
temp_dir = tempfile.mkdtemp()
audio_path = os.path.join(temp_dir, "demo_audio.wav")
torchaudio.save(audio_path, audio.unsqueeze(0), sample_rate)
return audio_path
def process_video_demo(video_file, text_prompt: str, guidance_scale: float, inference_steps: int, sample_nums: int) -> Tuple[list, str]:
"""Working demo version that generates simple audio"""
if video_file is None:
return [], "❌ Please upload a video file!"
if text_prompt is None:
text_prompt = ""
try:
logger.info(f"Processing video in demo mode: {video_file}")
logger.info(f"Text prompt: {text_prompt}")
# Generate simple demo audio
video_outputs = []
for i in range(min(sample_nums, 3)): # Limit to 3 samples
demo_audio = create_demo_audio(video_file, f"{text_prompt}_sample_{i+1}")
# For demo, just return the audio file path
# In a real implementation, this would be merged with video
video_outputs.append(demo_audio)
success_msg = f"""βœ… Demo Generation Complete!
πŸ“Ή **Processed**: {os.path.basename(video_file) if hasattr(video_file, 'name') else 'Video file'}
πŸ“ **Prompt**: "{text_prompt}"
βš™οΈ **Settings**: CFG={guidance_scale}, Steps={inference_steps}, Samples={sample_nums}
🎡 **Generated**: {len(video_outputs)} demo audio sample(s)
⚠️ **Note**: This is a working demo with synthetic audio.
For real AI-generated Foley audio, run locally with the full model:
https://github.com/Tencent-Hunyuan/HunyuanVideo-Foley"""
return video_outputs, success_msg
except Exception as e:
logger.error(f"Demo processing failed: {str(e)}")
return [], f"❌ Demo processing failed: {str(e)}"
def create_working_interface():
"""Create a working Gradio interface"""
css = """
.gradio-container {
font-family: 'Inter', sans-serif;
background: linear-gradient(135deg, #f5f7fa 0%, #c3cfe2 100%);
}
.main-header {
text-align: center;
padding: 2rem;
background: linear-gradient(135deg, #667eea 0%, #764ba2 100%);
border-radius: 20px;
margin-bottom: 2rem;
color: white;
}
.demo-notice {
background: #e8f4fd;
border: 2px solid #1890ff;
border-radius: 10px;
padding: 1rem;
margin: 1rem 0;
color: #0050b3;
}
"""
with gr.Blocks(css=css, title="HunyuanVideo-Foley Demo") as app:
# Header
with gr.Column(elem_classes=["main-header"]):
gr.HTML("""
<h1>🎡 HunyuanVideo-Foley</h1>
<p>Working Demo Version</p>
""")
# Demo Notice
gr.HTML("""
<div class="demo-notice">
<strong>🎯 Working Demo:</strong> This version generates synthetic audio to demonstrate the interface.
Upload a video and try the controls to see how it works!<br>
<strong>For real AI audio:</strong> Visit the <a href="https://github.com/Tencent-Hunyuan/HunyuanVideo-Foley" target="_blank">original repository</a>
</div>
""")
with gr.Row():
# Input Section
with gr.Column(scale=1):
gr.Markdown("### πŸ“Ή Video Input")
video_input = gr.Video(
label="Upload Video",
info="Upload any video file to test the interface"
)
text_input = gr.Textbox(
label="🎯 Audio Description",
placeholder="Describe the audio you want (affects demo tone)",
lines=3
)
with gr.Row():
guidance_scale = gr.Slider(
minimum=1.0,
maximum=10.0,
value=4.0,
step=0.1,
label="🎚️ CFG Scale"
)
inference_steps = gr.Slider(
minimum=10,
maximum=100,
value=50,
step=5,
label="⚑ Steps"
)
sample_nums = gr.Slider(
minimum=1,
maximum=3,
value=1,
step=1,
label="🎲 Samples"
)
generate_btn = gr.Button("🎡 Generate Demo Audio", variant="primary")
# Output Section
with gr.Column(scale=1):
gr.Markdown("### 🎡 Generated Audio")
audio_output_1 = gr.Audio(label="Sample 1", visible=True)
audio_output_2 = gr.Audio(label="Sample 2", visible=False)
audio_output_3 = gr.Audio(label="Sample 3", visible=False)
status_output = gr.Textbox(
label="Status",
interactive=False,
lines=6
)
# Event handlers
def update_visibility(sample_nums):
return [
gr.update(visible=True), # Sample 1 always visible
gr.update(visible=sample_nums >= 2),
gr.update(visible=sample_nums >= 3)
]
def process_demo(video_file, text_prompt, guidance_scale, inference_steps, sample_nums):
audio_files, status_msg = process_video_demo(
video_file, text_prompt, guidance_scale, inference_steps, int(sample_nums)
)
# Prepare outputs
outputs = [None, None, None]
for i, audio_file in enumerate(audio_files[:3]):
outputs[i] = audio_file
return outputs[0], outputs[1], outputs[2], status_msg
# Connect events
sample_nums.change(
fn=update_visibility,
inputs=[sample_nums],
outputs=[audio_output_1, audio_output_2, audio_output_3]
)
generate_btn.click(
fn=process_demo,
inputs=[video_input, text_input, guidance_scale, inference_steps, sample_nums],
outputs=[audio_output_1, audio_output_2, audio_output_3, status_output]
)
# Footer
gr.HTML("""
<div style="text-align: center; padding: 2rem; color: #666;">
<p>🎭 <strong>Demo Version:</strong> Generates synthetic audio for interface demonstration</p>
<p>πŸš€ <strong>Full Version:</strong> <a href="https://github.com/Tencent-Hunyuan/HunyuanVideo-Foley" target="_blank">GitHub Repository</a></p>
</div>
""")
return app
if __name__ == "__main__":
# Setup logging
logger.remove()
logger.add(lambda msg: print(msg, end=''), level="INFO")
logger.info("Starting HunyuanVideo-Foley Working Demo...")
# Create and launch app
app = create_working_interface()
logger.info("Demo app ready - will generate synthetic audio for testing")
app.launch(
server_name="0.0.0.0",
server_port=7860,
share=False,
debug=False,
show_error=True
)