Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,36 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import streamlit as st
|
| 2 |
+
from transformers import pipeline
|
| 3 |
+
|
| 4 |
+
# Summarization
|
| 5 |
+
def summarization(text):
|
| 6 |
+
text_model = pipeline("text-generation", model="ainize/bart-base-cnn")
|
| 7 |
+
summary = text_model(text, max_length=100, do_sample=False)[0]["generated_text"]
|
| 8 |
+
return summary
|
| 9 |
+
|
| 10 |
+
# Sentiment Classification
|
| 11 |
+
def sentiment_classification(summary):
|
| 12 |
+
sentiment_model = pipeline("text-classification", model="wxrrrrrrr/finetuned_sentiment_analysis")
|
| 13 |
+
result = sentiment_model(summary, max_length=100, do_sample=False)[0]['label']
|
| 14 |
+
return result
|
| 15 |
+
|
| 16 |
+
def main():
|
| 17 |
+
st.set_page_config(page_title="Your Text Analysis", page_icon="🦜")
|
| 18 |
+
st.header("Tell me your comments!")
|
| 19 |
+
text_input = st.text_input("Enter your text here:")
|
| 20 |
+
|
| 21 |
+
if text_input:
|
| 22 |
+
# Stage 1: Summarization
|
| 23 |
+
st.text('Processing text...')
|
| 24 |
+
summary = summarization(text_input)
|
| 25 |
+
# st.write(summary)
|
| 26 |
+
|
| 27 |
+
# Stage 2: Sentiment Classification
|
| 28 |
+
st.text('Analyzing sentiment...')
|
| 29 |
+
sentiment = sentiment_classification(summary)
|
| 30 |
+
st.write(sentiment)
|
| 31 |
+
|
| 32 |
+
# Display the classification result
|
| 33 |
+
st.write("Sentiment:", sentiment)
|
| 34 |
+
|
| 35 |
+
if __name__ == '__main__':
|
| 36 |
+
main()
|