import torch from ..common.quaternion import qinv, qrot # Recover global angle and positions for rotation dataset # root_rot_velocity (B, seq_len, 1) # root_linear_velocity (B, seq_len, 2) # root_y (B, seq_len, 1) # ric_data (B, seq_len, (joint_num - 1)*3) # rot_data (B, seq_len, (joint_num - 1)*6) # local_velocity (B, seq_len, joint_num*3) # foot contact (B, seq_len, 4) def recover_root_rot_pos(data: torch.Tensor) -> tuple[torch.Tensor, torch.Tensor]: rot_vel = data[..., 0] r_rot_ang = torch.zeros_like(rot_vel).to(data.device) '''Get Y-axis rotation from rotation velocity''' r_rot_ang[..., 1:] = rot_vel[..., :-1] r_rot_ang = torch.cumsum(r_rot_ang, dim=-1) r_rot_quat = torch.zeros(data.shape[:-1] + (4,)).to(data.device) r_rot_quat[..., 0] = torch.cos(r_rot_ang) r_rot_quat[..., 2] = torch.sin(r_rot_ang) r_pos = torch.zeros(data.shape[:-1] + (3,)).to(data.device) r_pos[..., 1:, [0, 2]] = data[..., :-1, 1:3] '''Add Y-axis rotation to root position''' r_pos = qrot(qinv(r_rot_quat), r_pos) r_pos = torch.cumsum(r_pos, dim=-2) r_pos[..., 1] = data[..., 3] return r_rot_quat, r_pos def recover_from_ric(data: torch.Tensor, joints_num: int) -> torch.Tensor: r_rot_quat, r_pos = recover_root_rot_pos(data) positions = data[..., 4:(joints_num - 1) * 3 + 4] positions = positions.view(positions.shape[:-1] + (-1, 3)) '''Add Y-axis rotation to local joints''' positions = qrot(qinv(r_rot_quat[..., None, :]).expand(positions.shape[:-1] + (4,)), positions) '''Add root XZ to joints''' positions[..., 0] += r_pos[..., 0:1] positions[..., 2] += r_pos[..., 2:3] '''Concat root and joints''' positions = torch.cat([r_pos.unsqueeze(-2), positions], dim=-2) return positions