|
from typing import Optional |
|
|
|
import torch |
|
import torch.nn as nn |
|
from torch.distributions.distribution import Distribution |
|
|
|
from mld.models.operator.attention import ( |
|
SkipTransformerEncoder, |
|
SkipTransformerDecoder, |
|
TransformerDecoder, |
|
TransformerDecoderLayer, |
|
TransformerEncoder, |
|
TransformerEncoderLayer |
|
) |
|
from mld.models.operator.position_encoding import build_position_encoding |
|
|
|
|
|
class MldVae(nn.Module): |
|
|
|
def __init__(self, |
|
nfeats: int, |
|
latent_dim: list = [1, 256], |
|
hidden_dim: Optional[int] = None, |
|
force_pre_post_proj: bool = False, |
|
ff_size: int = 1024, |
|
num_layers: int = 9, |
|
num_heads: int = 4, |
|
dropout: float = 0.1, |
|
arch: str = "encoder_decoder", |
|
normalize_before: bool = False, |
|
norm_eps: float = 1e-5, |
|
activation: str = "gelu", |
|
norm_post: bool = True, |
|
activation_post: Optional[str] = None, |
|
position_embedding: str = "learned") -> None: |
|
super(MldVae, self).__init__() |
|
|
|
self.latent_size = latent_dim[0] |
|
self.latent_dim = latent_dim[-1] if hidden_dim is None else hidden_dim |
|
add_pre_post_proj = force_pre_post_proj or (hidden_dim is not None and hidden_dim != latent_dim[-1]) |
|
self.latent_pre = nn.Linear(self.latent_dim, latent_dim[-1]) if add_pre_post_proj else nn.Identity() |
|
self.latent_post = nn.Linear(latent_dim[-1], self.latent_dim) if add_pre_post_proj else nn.Identity() |
|
|
|
self.arch = arch |
|
|
|
self.query_pos_encoder = build_position_encoding( |
|
self.latent_dim, position_embedding=position_embedding) |
|
|
|
encoder_layer = TransformerEncoderLayer( |
|
self.latent_dim, |
|
num_heads, |
|
ff_size, |
|
dropout, |
|
activation, |
|
normalize_before, |
|
norm_eps |
|
) |
|
encoder_norm = nn.LayerNorm(self.latent_dim, eps=norm_eps) if norm_post else None |
|
self.encoder = SkipTransformerEncoder(encoder_layer, num_layers, encoder_norm, activation_post) |
|
|
|
if self.arch == "all_encoder": |
|
decoder_norm = nn.LayerNorm(self.latent_dim, eps=norm_eps) if norm_post else None |
|
self.decoder = SkipTransformerEncoder(encoder_layer, num_layers, decoder_norm, activation_post) |
|
elif self.arch == 'encoder_decoder': |
|
self.query_pos_decoder = build_position_encoding( |
|
self.latent_dim, position_embedding=position_embedding) |
|
|
|
decoder_layer = TransformerDecoderLayer( |
|
self.latent_dim, |
|
num_heads, |
|
ff_size, |
|
dropout, |
|
activation, |
|
normalize_before, |
|
norm_eps |
|
) |
|
decoder_norm = nn.LayerNorm(self.latent_dim, eps=norm_eps) if norm_post else None |
|
self.decoder = SkipTransformerDecoder(decoder_layer, num_layers, decoder_norm, activation_post) |
|
else: |
|
raise ValueError(f"Not support architecture: {self.arch}!") |
|
|
|
self.global_motion_token = nn.Parameter(torch.randn(self.latent_size * 2, self.latent_dim)) |
|
self.skel_embedding = nn.Linear(nfeats, self.latent_dim) |
|
self.final_layer = nn.Linear(self.latent_dim, nfeats) |
|
|
|
def forward(self, features: torch.Tensor, mask: torch.Tensor) -> tuple[torch.Tensor, torch.Tensor, Distribution]: |
|
z, dist = self.encode(features, mask) |
|
feats_rst = self.decode(z, mask) |
|
return feats_rst, z, dist |
|
|
|
def encode(self, features: torch.Tensor, mask: torch.Tensor) -> tuple[torch.Tensor, Distribution]: |
|
bs, nframes, nfeats = features.shape |
|
x = self.skel_embedding(features) |
|
x = x.permute(1, 0, 2) |
|
dist = torch.tile(self.global_motion_token[:, None, :], (1, bs, 1)) |
|
dist_masks = torch.ones((bs, dist.shape[0]), dtype=torch.bool, device=x.device) |
|
aug_mask = torch.cat((dist_masks, mask), 1) |
|
xseq = torch.cat((dist, x), 0) |
|
|
|
xseq = self.query_pos_encoder(xseq) |
|
dist = self.encoder(xseq, src_key_padding_mask=~aug_mask)[0][:dist.shape[0]] |
|
dist = self.latent_pre(dist) |
|
|
|
mu = dist[0:self.latent_size, ...] |
|
logvar = dist[self.latent_size:, ...] |
|
|
|
std = logvar.exp().pow(0.5) |
|
dist = torch.distributions.Normal(mu, std) |
|
latent = dist.rsample() |
|
|
|
latent = latent.permute(1, 0, 2) |
|
return latent, dist |
|
|
|
def decode(self, z: torch.Tensor, mask: torch.Tensor) -> torch.Tensor: |
|
|
|
z = self.latent_post(z) |
|
z = z.permute(1, 0, 2) |
|
bs, nframes = mask.shape |
|
queries = torch.zeros(nframes, bs, self.latent_dim, device=z.device) |
|
|
|
if self.arch == "all_encoder": |
|
xseq = torch.cat((z, queries), axis=0) |
|
z_mask = torch.ones((bs, self.latent_size), dtype=torch.bool, device=z.device) |
|
aug_mask = torch.cat((z_mask, mask), axis=1) |
|
xseq = self.query_pos_decoder(xseq) |
|
output = self.decoder(xseq, src_key_padding_mask=~aug_mask)[0][z.shape[0]:] |
|
elif self.arch == "encoder_decoder": |
|
queries = self.query_pos_decoder(queries) |
|
output = self.decoder(tgt=queries, memory=z, tgt_key_padding_mask=~mask)[0] |
|
else: |
|
raise ValueError(f"Not support architecture: {self.arch}!") |
|
|
|
output = self.final_layer(output) |
|
output[~mask.T] = 0 |
|
feats = output.permute(1, 0, 2) |
|
return feats |
|
|