MotionLCM / mld /models /architectures /mld_traj_encoder.py
wxDai's picture
[Init]
eb339cb
from typing import Optional
import torch
import torch.nn as nn
from mld.models.operator.attention import SkipTransformerEncoder, TransformerEncoderLayer
from mld.models.operator.position_encoding import build_position_encoding
class MldTrajEncoder(nn.Module):
def __init__(self,
nfeats: int,
latent_dim: list = [1, 256],
hidden_dim: Optional[int] = None,
force_post_proj: bool = False,
ff_size: int = 1024,
num_layers: int = 9,
num_heads: int = 4,
dropout: float = 0.1,
normalize_before: bool = False,
norm_eps: float = 1e-5,
activation: str = "gelu",
norm_post: bool = True,
activation_post: Optional[str] = None,
position_embedding: str = "learned") -> None:
super(MldTrajEncoder, self).__init__()
self.latent_size = latent_dim[0]
self.latent_dim = latent_dim[-1] if hidden_dim is None else hidden_dim
add_post_proj = force_post_proj or (hidden_dim is not None and hidden_dim != latent_dim[-1])
self.latent_proj = nn.Linear(self.latent_dim, latent_dim[-1]) if add_post_proj else nn.Identity()
self.skel_embedding = nn.Linear(nfeats * 3, self.latent_dim)
self.query_pos_encoder = build_position_encoding(
self.latent_dim, position_embedding=position_embedding)
encoder_layer = TransformerEncoderLayer(
self.latent_dim,
num_heads,
ff_size,
dropout,
activation,
normalize_before,
norm_eps
)
encoder_norm = nn.LayerNorm(self.latent_dim, eps=norm_eps) if norm_post else None
self.encoder = SkipTransformerEncoder(encoder_layer, num_layers, encoder_norm, activation_post)
self.global_motion_token = nn.Parameter(torch.randn(self.latent_size, self.latent_dim))
def forward(self, features: torch.Tensor, mask: torch.Tensor = None) -> torch.Tensor:
bs, nframes, nfeats = features.shape
x = self.skel_embedding(features)
x = x.permute(1, 0, 2)
dist = torch.tile(self.global_motion_token[:, None, :], (1, bs, 1))
dist_masks = torch.ones((bs, dist.shape[0]), dtype=torch.bool, device=x.device)
aug_mask = torch.cat((dist_masks, mask), 1)
xseq = torch.cat((dist, x), 0)
xseq = self.query_pos_encoder(xseq)
global_token = self.encoder(xseq, src_key_padding_mask=~aug_mask)[0][:dist.shape[0]]
global_token = self.latent_proj(global_token)
global_token = global_token.permute(1, 0, 2)
return global_token