File size: 10,131 Bytes
eb339cb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 |
import numpy as np
import scipy.linalg
from scipy.ndimage import uniform_filter1d
import torch
from torch import linalg
# Motion Reconstruction
def calculate_mpjpe(gt_joints: torch.Tensor, pred_joints: torch.Tensor, align_root: bool = True) -> torch.Tensor:
"""
gt_joints: num_poses x num_joints x 3
pred_joints: num_poses x num_joints x 3
(obtained from recover_from_ric())
"""
assert gt_joints.shape == pred_joints.shape, \
f"GT shape: {gt_joints.shape}, pred shape: {pred_joints.shape}"
# Align by root (pelvis)
if align_root:
gt_joints = gt_joints - gt_joints[:, [0]]
pred_joints = pred_joints - pred_joints[:, [0]]
# Compute MPJPE
mpjpe = torch.linalg.norm(pred_joints - gt_joints, dim=-1) # num_poses x num_joints
mpjpe = mpjpe.mean(-1) # num_poses
return mpjpe
# Text-to-Motion
# (X - X_train)*(X - X_train) = -2X*X_train + X*X + X_train*X_train
def euclidean_distance_matrix(matrix1: torch.Tensor, matrix2: torch.Tensor) -> torch.Tensor:
"""
Params:
-- matrix1: N1 x D
-- matrix2: N2 x D
Returns:
-- dists: N1 x N2
dists[i, j] == distance(matrix1[i], matrix2[j])
"""
assert matrix1.shape[1] == matrix2.shape[1]
d1 = -2 * torch.mm(matrix1, matrix2.T) # shape (num_test, num_train)
d2 = torch.sum(torch.square(matrix1), axis=1, keepdims=True) # shape (num_test, 1)
d3 = torch.sum(torch.square(matrix2), axis=1) # shape (num_train, )
dists = torch.sqrt(d1 + d2 + d3) # broadcasting
return dists
def euclidean_distance_matrix_np(matrix1: np.ndarray, matrix2: np.ndarray) -> np.ndarray:
"""
Params:
-- matrix1: N1 x D
-- matrix2: N2 x D
Returns:
-- dists: N1 x N2
dists[i, j] == distance(matrix1[i], matrix2[j])
"""
assert matrix1.shape[1] == matrix2.shape[1]
d1 = -2 * np.dot(matrix1, matrix2.T) # shape (num_test, num_train)
d2 = np.sum(np.square(matrix1), axis=1, keepdims=True) # shape (num_test, 1)
d3 = np.sum(np.square(matrix2), axis=1) # shape (num_train, )
dists = np.sqrt(d1 + d2 + d3) # broadcasting
return dists
def calculate_top_k(mat: torch.Tensor, top_k: int) -> torch.Tensor:
size = mat.shape[0]
gt_mat = (torch.unsqueeze(torch.arange(size), 1).to(mat.device).repeat_interleave(size, 1))
bool_mat = mat == gt_mat
correct_vec = False
top_k_list = []
for i in range(top_k):
correct_vec = correct_vec | bool_mat[:, i]
top_k_list.append(correct_vec[:, None])
top_k_mat = torch.cat(top_k_list, dim=1)
return top_k_mat
def calculate_activation_statistics(activations: torch.Tensor) -> tuple:
"""
Params:
-- activation: num_samples x dim_feat
Returns:
-- mu: dim_feat
-- sigma: dim_feat x dim_feat
"""
activations = activations.cpu().numpy()
mu = np.mean(activations, axis=0)
sigma = np.cov(activations, rowvar=False)
return mu, sigma
def calculate_activation_statistics_np(activations: np.ndarray) -> tuple:
"""
Params:
-- activation: num_samples x dim_feat
Returns:
-- mu: dim_feat
-- sigma: dim_feat x dim_feat
"""
mu = np.mean(activations, axis=0)
cov = np.cov(activations, rowvar=False)
return mu, cov
def calculate_frechet_distance_np(
mu1: np.ndarray,
sigma1: np.ndarray,
mu2: np.ndarray,
sigma2: np.ndarray,
eps: float = 1e-6) -> float:
"""Numpy implementation of the Frechet Distance.
The Frechet distance between two multivariate Gaussians X_1 ~ N(mu_1, C_1)
and X_2 ~ N(mu_2, C_2) is
d^2 = ||mu_1 - mu_2||^2 + Tr(C_1 + C_2 - 2*sqrt(C_1*C_2)).
Stable version by Dougal J. Sutherland.
Params:
-- mu1 : Numpy array containing the activations of a layer of the
inception net (like returned by the function 'get_predictions')
for generated samples.
-- mu2 : The sample mean over activations, precalculated on an
representative data set.
-- sigma1: The covariance matrix over activations for generated samples.
-- sigma2: The covariance matrix over activations, precalculated on an
representative data set.
Returns:
-- : The Frechet Distance.
"""
mu1 = np.atleast_1d(mu1)
mu2 = np.atleast_1d(mu2)
sigma1 = np.atleast_2d(sigma1)
sigma2 = np.atleast_2d(sigma2)
assert (mu1.shape == mu2.shape
), "Training and test mean vectors have different lengths"
assert (sigma1.shape == sigma2.shape
), "Training and test covariances have different dimensions"
diff = mu1 - mu2
# Product might be almost singular
covmean, _ = scipy.linalg.sqrtm(sigma1.dot(sigma2), disp=False)
if not np.isfinite(covmean).all():
msg = ("fid calculation produces singular product; "
"adding %s to diagonal of cov estimates") % eps
print(msg)
offset = np.eye(sigma1.shape[0]) * eps
covmean = scipy.linalg.sqrtm((sigma1 + offset).dot(sigma2 + offset))
# Numerical error might give slight imaginary component
if np.iscomplexobj(covmean):
if not np.allclose(np.diagonal(covmean).imag, 0, atol=1e-3):
m = np.max(np.abs(covmean.imag))
raise ValueError("Imaginary component {}".format(m))
covmean = covmean.real
tr_covmean = np.trace(covmean)
return diff.dot(diff) + np.trace(sigma1) + np.trace(sigma2) - 2 * tr_covmean
def calculate_diversity(activation: torch.Tensor, diversity_times: int) -> float:
assert len(activation.shape) == 2
assert activation.shape[0] > diversity_times
num_samples = activation.shape[0]
first_indices = np.random.choice(num_samples,
diversity_times,
replace=False)
second_indices = np.random.choice(num_samples,
diversity_times,
replace=False)
dist = linalg.norm(activation[first_indices] - activation[second_indices],
axis=1)
return dist.mean()
def calculate_diversity_np(activation: np.ndarray, diversity_times: int) -> float:
assert len(activation.shape) == 2
assert activation.shape[0] >= diversity_times
num_samples = activation.shape[0]
first_indices = np.random.choice(num_samples,
diversity_times,
replace=False)
second_indices = np.random.choice(num_samples,
diversity_times,
replace=False)
dist = scipy.linalg.norm(activation[first_indices] -
activation[second_indices],
axis=1)
return dist.mean()
def calculate_multimodality_np(activation: np.ndarray, multimodality_times: int) -> float:
assert len(activation.shape) == 3
assert activation.shape[1] > multimodality_times
num_per_sent = activation.shape[1]
first_dices = np.random.choice(num_per_sent,
multimodality_times,
replace=False)
second_dices = np.random.choice(num_per_sent,
multimodality_times,
replace=False)
dist = scipy.linalg.norm(activation[:, first_dices] -
activation[:, second_dices],
axis=2)
return dist.mean()
# Motion Control
def calculate_skating_ratio(motions: torch.Tensor, dataset_name: str) -> tuple:
thresh_height = 0.05
fps = 20.0
thresh_vel = 0.50
avg_window = 5 # frames
# XZ plane, y up
# 10 left, 11 right foot. (HumanML3D)
# 15 left, 20 right foot. (KIT)
# motions [bsz, fs, 22 or 21, 3]
if dataset_name == 'humanml3d':
foot_idx = [10, 11]
elif dataset_name == 'kit':
foot_idx = [15, 20]
else:
raise ValueError(f'Invalid Dataset: {dataset_name}')
verts_feet = motions[:, :, foot_idx, :].detach().cpu().numpy() # [bsz, fs, 2, 3]
verts_feet_plane_vel = np.linalg.norm(verts_feet[:, 1:, :, [0, 2]] -
verts_feet[:, :-1, :, [0, 2]], axis=-1) * fps # [bsz, fs-1, 2]
vel_avg = uniform_filter1d(verts_feet_plane_vel, axis=1, size=avg_window, mode='constant', origin=0)
verts_feet_height = verts_feet[:, :, :, 1] # [bsz, fs, 2]
# If feet touch ground in adjacent frames
feet_contact = np.logical_and((verts_feet_height[:, :-1, :] < thresh_height),
(verts_feet_height[:, 1:, :] < thresh_height)) # [bs, fs-1, 2]
# skate velocity
skate_vel = feet_contact * vel_avg
skating = np.logical_and(feet_contact, (verts_feet_plane_vel > thresh_vel))
skating = np.logical_and(skating, (vel_avg > thresh_vel))
# Both feet slide
skating = np.logical_or(skating[:, :, 0], skating[:, :, 1]) # [bs, fs-1]
skating_ratio = np.sum(skating, axis=1) / skating.shape[1]
return skating_ratio, skate_vel
def calculate_trajectory_error(dist_error: torch.Tensor, mean_err_traj: torch.Tensor,
mask: torch.Tensor, strict: bool = True) -> torch.Tensor:
if strict:
# Traj fails if any of the key frame fails
traj_fail_02 = 1.0 - int((dist_error <= 0.2).all().item())
traj_fail_05 = 1.0 - int((dist_error <= 0.5).all().item())
else:
# Traj fails if the mean error of all keyframes more than the threshold
traj_fail_02 = int((mean_err_traj > 0.2).item())
traj_fail_05 = int((mean_err_traj > 0.5).item())
all_fail_02 = (dist_error > 0.2).sum() / mask.sum()
all_fail_05 = (dist_error > 0.5).sum() / mask.sum()
return torch.tensor([traj_fail_02, traj_fail_05, all_fail_02, all_fail_05, dist_error.sum() / mask.sum()])
def control_l2(motion: torch.Tensor, hint: torch.Tensor, hint_mask: torch.Tensor) -> torch.Tensor:
loss = torch.norm((motion - hint) * hint_mask, p=2, dim=-1)
return loss
|