File size: 10,131 Bytes
eb339cb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
import numpy as np

import scipy.linalg
from scipy.ndimage import uniform_filter1d

import torch
from torch import linalg


# Motion Reconstruction

def calculate_mpjpe(gt_joints: torch.Tensor, pred_joints: torch.Tensor, align_root: bool = True) -> torch.Tensor:
    """
    gt_joints: num_poses x num_joints x 3
    pred_joints: num_poses x num_joints x 3
    (obtained from recover_from_ric())
    """
    assert gt_joints.shape == pred_joints.shape, \
        f"GT shape: {gt_joints.shape}, pred shape: {pred_joints.shape}"

    # Align by root (pelvis)
    if align_root:
        gt_joints = gt_joints - gt_joints[:, [0]]
        pred_joints = pred_joints - pred_joints[:, [0]]

    # Compute MPJPE
    mpjpe = torch.linalg.norm(pred_joints - gt_joints, dim=-1)  # num_poses x num_joints
    mpjpe = mpjpe.mean(-1)  # num_poses

    return mpjpe


# Text-to-Motion

# (X - X_train)*(X - X_train) = -2X*X_train + X*X + X_train*X_train
def euclidean_distance_matrix(matrix1: torch.Tensor, matrix2: torch.Tensor) -> torch.Tensor:
    """
    Params:
    -- matrix1: N1 x D
    -- matrix2: N2 x D
    Returns:
    -- dists: N1 x N2
    dists[i, j] == distance(matrix1[i], matrix2[j])
    """
    assert matrix1.shape[1] == matrix2.shape[1]
    d1 = -2 * torch.mm(matrix1, matrix2.T)  # shape (num_test, num_train)
    d2 = torch.sum(torch.square(matrix1), axis=1, keepdims=True)  # shape (num_test, 1)
    d3 = torch.sum(torch.square(matrix2), axis=1)  # shape (num_train, )
    dists = torch.sqrt(d1 + d2 + d3)  # broadcasting
    return dists


def euclidean_distance_matrix_np(matrix1: np.ndarray, matrix2: np.ndarray) -> np.ndarray:
    """
    Params:
    -- matrix1: N1 x D
    -- matrix2: N2 x D
    Returns:
    -- dists: N1 x N2
    dists[i, j] == distance(matrix1[i], matrix2[j])
    """
    assert matrix1.shape[1] == matrix2.shape[1]
    d1 = -2 * np.dot(matrix1, matrix2.T)  # shape (num_test, num_train)
    d2 = np.sum(np.square(matrix1), axis=1, keepdims=True)  # shape (num_test, 1)
    d3 = np.sum(np.square(matrix2), axis=1)  # shape (num_train, )
    dists = np.sqrt(d1 + d2 + d3)  # broadcasting
    return dists


def calculate_top_k(mat: torch.Tensor, top_k: int) -> torch.Tensor:
    size = mat.shape[0]
    gt_mat = (torch.unsqueeze(torch.arange(size), 1).to(mat.device).repeat_interleave(size, 1))
    bool_mat = mat == gt_mat
    correct_vec = False
    top_k_list = []
    for i in range(top_k):
        correct_vec = correct_vec | bool_mat[:, i]
        top_k_list.append(correct_vec[:, None])
    top_k_mat = torch.cat(top_k_list, dim=1)
    return top_k_mat


def calculate_activation_statistics(activations: torch.Tensor) -> tuple:
    """
    Params:
    -- activation: num_samples x dim_feat
    Returns:
    -- mu: dim_feat
    -- sigma: dim_feat x dim_feat
    """
    activations = activations.cpu().numpy()
    mu = np.mean(activations, axis=0)
    sigma = np.cov(activations, rowvar=False)
    return mu, sigma


def calculate_activation_statistics_np(activations: np.ndarray) -> tuple:
    """
    Params:
    -- activation: num_samples x dim_feat
    Returns:
    -- mu: dim_feat
    -- sigma: dim_feat x dim_feat
    """
    mu = np.mean(activations, axis=0)
    cov = np.cov(activations, rowvar=False)
    return mu, cov


def calculate_frechet_distance_np(
        mu1: np.ndarray,
        sigma1: np.ndarray,
        mu2: np.ndarray,
        sigma2: np.ndarray,
        eps: float = 1e-6) -> float:
    """Numpy implementation of the Frechet Distance.
    The Frechet distance between two multivariate Gaussians X_1 ~ N(mu_1, C_1)
    and X_2 ~ N(mu_2, C_2) is
            d^2 = ||mu_1 - mu_2||^2 + Tr(C_1 + C_2 - 2*sqrt(C_1*C_2)).
    Stable version by Dougal J. Sutherland.
    Params:
    -- mu1   : Numpy array containing the activations of a layer of the
               inception net (like returned by the function 'get_predictions')
               for generated samples.
    -- mu2   : The sample mean over activations, precalculated on an
               representative data set.
    -- sigma1: The covariance matrix over activations for generated samples.
    -- sigma2: The covariance matrix over activations, precalculated on an
               representative data set.
    Returns:
    --   : The Frechet Distance.
    """

    mu1 = np.atleast_1d(mu1)
    mu2 = np.atleast_1d(mu2)

    sigma1 = np.atleast_2d(sigma1)
    sigma2 = np.atleast_2d(sigma2)

    assert (mu1.shape == mu2.shape
            ), "Training and test mean vectors have different lengths"
    assert (sigma1.shape == sigma2.shape
            ), "Training and test covariances have different dimensions"

    diff = mu1 - mu2
    # Product might be almost singular
    covmean, _ = scipy.linalg.sqrtm(sigma1.dot(sigma2), disp=False)
    if not np.isfinite(covmean).all():
        msg = ("fid calculation produces singular product; "
               "adding %s to diagonal of cov estimates") % eps
        print(msg)
        offset = np.eye(sigma1.shape[0]) * eps
        covmean = scipy.linalg.sqrtm((sigma1 + offset).dot(sigma2 + offset))

    # Numerical error might give slight imaginary component
    if np.iscomplexobj(covmean):
        if not np.allclose(np.diagonal(covmean).imag, 0, atol=1e-3):
            m = np.max(np.abs(covmean.imag))
            raise ValueError("Imaginary component {}".format(m))
        covmean = covmean.real
    tr_covmean = np.trace(covmean)

    return diff.dot(diff) + np.trace(sigma1) + np.trace(sigma2) - 2 * tr_covmean


def calculate_diversity(activation: torch.Tensor, diversity_times: int) -> float:
    assert len(activation.shape) == 2
    assert activation.shape[0] > diversity_times
    num_samples = activation.shape[0]

    first_indices = np.random.choice(num_samples,
                                     diversity_times,
                                     replace=False)
    second_indices = np.random.choice(num_samples,
                                      diversity_times,
                                      replace=False)
    dist = linalg.norm(activation[first_indices] - activation[second_indices],
                       axis=1)
    return dist.mean()


def calculate_diversity_np(activation: np.ndarray, diversity_times: int) -> float:
    assert len(activation.shape) == 2
    assert activation.shape[0] >= diversity_times
    num_samples = activation.shape[0]

    first_indices = np.random.choice(num_samples,
                                     diversity_times,
                                     replace=False)
    second_indices = np.random.choice(num_samples,
                                      diversity_times,
                                      replace=False)
    dist = scipy.linalg.norm(activation[first_indices] -
                             activation[second_indices],
                             axis=1)
    return dist.mean()


def calculate_multimodality_np(activation: np.ndarray, multimodality_times: int) -> float:
    assert len(activation.shape) == 3
    assert activation.shape[1] > multimodality_times
    num_per_sent = activation.shape[1]

    first_dices = np.random.choice(num_per_sent,
                                   multimodality_times,
                                   replace=False)
    second_dices = np.random.choice(num_per_sent,
                                    multimodality_times,
                                    replace=False)
    dist = scipy.linalg.norm(activation[:, first_dices] -
                             activation[:, second_dices],
                             axis=2)
    return dist.mean()


# Motion Control

def calculate_skating_ratio(motions: torch.Tensor, dataset_name: str) -> tuple:
    thresh_height = 0.05
    fps = 20.0
    thresh_vel = 0.50
    avg_window = 5  # frames

    # XZ plane, y up
    # 10 left, 11 right foot. (HumanML3D)
    # 15 left, 20 right foot. (KIT)
    # motions [bsz, fs, 22 or 21, 3]

    if dataset_name == 'humanml3d':
        foot_idx = [10, 11]
    elif dataset_name == 'kit':
        foot_idx = [15, 20]
    else:
        raise ValueError(f'Invalid Dataset: {dataset_name}')

    verts_feet = motions[:, :, foot_idx, :].detach().cpu().numpy()  # [bsz, fs, 2, 3]
    verts_feet_plane_vel = np.linalg.norm(verts_feet[:, 1:, :, [0, 2]] -
                                          verts_feet[:, :-1, :, [0, 2]], axis=-1) * fps  # [bsz, fs-1, 2]
    vel_avg = uniform_filter1d(verts_feet_plane_vel, axis=1, size=avg_window, mode='constant', origin=0)

    verts_feet_height = verts_feet[:, :, :, 1]  # [bsz, fs, 2]
    # If feet touch ground in adjacent frames
    feet_contact = np.logical_and((verts_feet_height[:, :-1, :] < thresh_height),
                                  (verts_feet_height[:, 1:, :] < thresh_height))  # [bs, fs-1, 2]
    # skate velocity
    skate_vel = feet_contact * vel_avg

    skating = np.logical_and(feet_contact, (verts_feet_plane_vel > thresh_vel))
    skating = np.logical_and(skating, (vel_avg > thresh_vel))

    # Both feet slide
    skating = np.logical_or(skating[:, :, 0], skating[:, :, 1])  # [bs, fs-1]
    skating_ratio = np.sum(skating, axis=1) / skating.shape[1]

    return skating_ratio, skate_vel


def calculate_trajectory_error(dist_error: torch.Tensor, mean_err_traj: torch.Tensor,
                               mask: torch.Tensor, strict: bool = True) -> torch.Tensor:
    if strict:
        # Traj fails if any of the key frame fails
        traj_fail_02 = 1.0 - int((dist_error <= 0.2).all().item())
        traj_fail_05 = 1.0 - int((dist_error <= 0.5).all().item())
    else:
        # Traj fails if the mean error of all keyframes more than the threshold
        traj_fail_02 = int((mean_err_traj > 0.2).item())
        traj_fail_05 = int((mean_err_traj > 0.5).item())
    all_fail_02 = (dist_error > 0.2).sum() / mask.sum()
    all_fail_05 = (dist_error > 0.5).sum() / mask.sum()

    return torch.tensor([traj_fail_02, traj_fail_05, all_fail_02, all_fail_05, dist_error.sum() / mask.sum()])


def control_l2(motion: torch.Tensor, hint: torch.Tensor, hint_mask: torch.Tensor) -> torch.Tensor:
    loss = torch.norm((motion - hint) * hint_mask, p=2, dim=-1)
    return loss