File size: 2,893 Bytes
eb339cb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
import os

import torch
import torch.nn.functional as F
from torch.utils.tensorboard import SummaryWriter


class DNO(object):
    def __init__(
            self,
            optimize: bool,
            max_train_steps: int,
            learning_rate: float,
            lr_scheduler: str,
            lr_warmup_steps: int,
            clip_grad: bool,
            loss_hint_type: str,
            loss_diff_penalty: float,
            loss_correlate_penalty: float,
            visualize_samples: int,
            visualize_ske_steps: list[int],
            output_dir: str
    ) -> None:

        self.optimize = optimize
        self.max_train_steps = max_train_steps
        self.learning_rate = learning_rate
        self.lr_scheduler = lr_scheduler
        self.lr_warmup_steps = lr_warmup_steps
        self.clip_grad = clip_grad
        self.loss_hint_type = loss_hint_type
        self.loss_diff_penalty = loss_diff_penalty
        self.loss_correlate_penalty = loss_correlate_penalty

        if loss_hint_type == 'l1':
            self.loss_hint_func = F.l1_loss
        elif loss_hint_type == 'l1_smooth':
            self.loss_hint_func = F.smooth_l1_loss
        elif loss_hint_type == 'l2':
            self.loss_hint_func = F.mse_loss
        else:
            raise ValueError(f'Invalid loss type: {loss_hint_type}')

        self.visualize_samples = float('inf') if visualize_samples == 'inf' else visualize_samples
        assert self.visualize_samples >= 0
        self.visualize_samples_done = 0
        self.visualize_ske_steps = visualize_ske_steps
        if len(visualize_ske_steps) > 0:
            self.vis_dir = os.path.join(output_dir, 'vis_optimize')
            os.makedirs(self.vis_dir)

        self.writer = None
        self.output_dir = output_dir
        if self.visualize_samples > 0:
            self.writer = SummaryWriter(output_dir)

    @property
    def do_visualize(self):
        return self.visualize_samples_done < self.visualize_samples

    @staticmethod
    def noise_regularize_1d(noise: torch.Tensor, stop_at: int = 2, dim: int = 1) -> torch.Tensor:
        size = noise.shape[dim]
        if size & (size - 1) != 0:
            new_size = 2 ** (size - 1).bit_length()
            pad = new_size - size
            pad_shape = list(noise.shape)
            pad_shape[dim] = pad
            pad_noise = torch.randn(*pad_shape, device=noise.device)
            noise = torch.cat([noise, pad_noise], dim=dim)
            size = noise.shape[dim]

        loss = torch.zeros(noise.shape[0], device=noise.device)
        while size > stop_at:
            rolled_noise = torch.roll(noise, shifts=1, dims=dim)
            loss += (noise * rolled_noise).mean(dim=tuple(range(1, noise.ndim))).pow(2)
            noise = noise.view(*noise.shape[:dim], size // 2, 2, *noise.shape[dim + 1:]).mean(dim=dim + 1)
            size //= 2
        return loss