Spaces:
Running
Running
File size: 14,518 Bytes
58e7ec3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 |
import torch
import pickle
import numpy as np
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
class AttrDict(dict):
def __init__(self, *args, **kwargs):
super(AttrDict, self).__init__(*args, **kwargs)
self.__dict__ = self
##### https://github.com/githubharald/CTCDecoder/blob/master/src/BeamSearch.py
class BeamEntry:
"information about one single beam at specific time-step"
def __init__(self):
self.prTotal = 0 # blank and non-blank
self.prNonBlank = 0 # non-blank
self.prBlank = 0 # blank
self.prText = 1 # LM score
self.lmApplied = False # flag if LM was already applied to this beam
self.labeling = () # beam-labeling
class BeamState:
"information about the beams at specific time-step"
def __init__(self):
self.entries = {}
def norm(self):
"length-normalise LM score"
for (k, _) in self.entries.items():
labelingLen = len(self.entries[k].labeling)
self.entries[k].prText = self.entries[k].prText ** (1.0 / (labelingLen if labelingLen else 1.0))
def sort(self):
"return beam-labelings, sorted by probability"
beams = [v for (_, v) in self.entries.items()]
sortedBeams = sorted(beams, reverse=True, key=lambda x: x.prTotal*x.prText)
return [x.labeling for x in sortedBeams]
def wordsearch(self, classes, ignore_idx, beamWidth, dict_list):
beams = [v for (_, v) in self.entries.items()]
sortedBeams = sorted(beams, reverse=True, key=lambda x: x.prTotal*x.prText)[:beamWidth]
for j, candidate in enumerate(sortedBeams):
idx_list = candidate.labeling
text = ''
for i,l in enumerate(idx_list):
if l not in ignore_idx and (not (i > 0 and idx_list[i - 1] == idx_list[i])): # removing repeated characters and blank.
text += classes[l]
if j == 0: best_text = text
if text in dict_list:
print('found text: ', text)
best_text = text
break
else:
print('not in dict: ', text)
return best_text
def applyLM(parentBeam, childBeam, classes, lm):
"calculate LM score of child beam by taking score from parent beam and bigram probability of last two chars"
if lm and not childBeam.lmApplied:
c1 = classes[parentBeam.labeling[-1] if parentBeam.labeling else classes.index(' ')] # first char
c2 = classes[childBeam.labeling[-1]] # second char
lmFactor = 0.01 # influence of language model
bigramProb = lm.getCharBigram(c1, c2) ** lmFactor # probability of seeing first and second char next to each other
childBeam.prText = parentBeam.prText * bigramProb # probability of char sequence
childBeam.lmApplied = True # only apply LM once per beam entry
def addBeam(beamState, labeling):
"add beam if it does not yet exist"
if labeling not in beamState.entries:
beamState.entries[labeling] = BeamEntry()
def ctcBeamSearch(mat, classes, ignore_idx, lm, beamWidth=25, dict_list = []):
"beam search as described by the paper of Hwang et al. and the paper of Graves et al."
#blankIdx = len(classes)
blankIdx = 0
maxT, maxC = mat.shape
# initialise beam state
last = BeamState()
labeling = ()
last.entries[labeling] = BeamEntry()
last.entries[labeling].prBlank = 1
last.entries[labeling].prTotal = 1
# go over all time-steps
for t in range(maxT):
curr = BeamState()
# get beam-labelings of best beams
bestLabelings = last.sort()[0:beamWidth]
# go over best beams
for labeling in bestLabelings:
# probability of paths ending with a non-blank
prNonBlank = 0
# in case of non-empty beam
if labeling:
# probability of paths with repeated last char at the end
prNonBlank = last.entries[labeling].prNonBlank * mat[t, labeling[-1]]
# probability of paths ending with a blank
prBlank = (last.entries[labeling].prTotal) * mat[t, blankIdx]
# add beam at current time-step if needed
addBeam(curr, labeling)
# fill in data
curr.entries[labeling].labeling = labeling
curr.entries[labeling].prNonBlank += prNonBlank
curr.entries[labeling].prBlank += prBlank
curr.entries[labeling].prTotal += prBlank + prNonBlank
curr.entries[labeling].prText = last.entries[labeling].prText # beam-labeling not changed, therefore also LM score unchanged from
curr.entries[labeling].lmApplied = True # LM already applied at previous time-step for this beam-labeling
# extend current beam-labeling
for c in range(maxC - 1):
# add new char to current beam-labeling
newLabeling = labeling + (c,)
# if new labeling contains duplicate char at the end, only consider paths ending with a blank
if labeling and labeling[-1] == c:
prNonBlank = mat[t, c] * last.entries[labeling].prBlank
else:
prNonBlank = mat[t, c] * last.entries[labeling].prTotal
# add beam at current time-step if needed
addBeam(curr, newLabeling)
# fill in data
curr.entries[newLabeling].labeling = newLabeling
curr.entries[newLabeling].prNonBlank += prNonBlank
curr.entries[newLabeling].prTotal += prNonBlank
# apply LM
#applyLM(curr.entries[labeling], curr.entries[newLabeling], classes, lm)
# set new beam state
last = curr
# normalise LM scores according to beam-labeling-length
last.norm()
# sort by probability
#bestLabeling = last.sort()[0] # get most probable labeling
# map labels to chars
#res = ''
#for idx,l in enumerate(bestLabeling):
# if l not in ignore_idx and (not (idx > 0 and bestLabeling[idx - 1] == bestLabeling[idx])): # removing repeated characters and blank.
# res += classes[l]
if dict_list == []:
bestLabeling = last.sort()[0] # get most probable labeling
res = ''
for i,l in enumerate(bestLabeling):
if l not in ignore_idx and (not (i > 0 and bestLabeling[i - 1] == bestLabeling[i])): # removing repeated characters and blank.
res += classes[l]
else:
res = last.wordsearch(classes, ignore_idx, beamWidth, dict_list)
return res
#####
def consecutive(data, mode ='first', stepsize=1):
group = np.split(data, np.where(np.diff(data) != stepsize)[0]+1)
group = [item for item in group if len(item)>0]
if mode == 'first': result = [l[0] for l in group]
elif mode == 'last': result = [l[-1] for l in group]
return result
def word_segmentation(mat, separator_idx = {'th': [1,2],'en': [3,4]}, separator_idx_list = [1,2,3,4]):
result = []
sep_list = []
start_idx = 0
for sep_idx in separator_idx_list:
if sep_idx % 2 == 0: mode ='first'
else: mode ='last'
a = consecutive( np.argwhere(mat == sep_idx).flatten(), mode)
new_sep = [ [item, sep_idx] for item in a]
sep_list += new_sep
sep_list = sorted(sep_list, key=lambda x: x[0])
for sep in sep_list:
for lang in separator_idx.keys():
if sep[1] == separator_idx[lang][0]: # start lang
sep_lang = lang
sep_start_idx = sep[0]
elif sep[1] == separator_idx[lang][1]: # end lang
if sep_lang == lang: # check if last entry if the same start lang
new_sep_pair = [lang, [sep_start_idx+1, sep[0]-1]]
if sep_start_idx > start_idx:
result.append( ['', [start_idx, sep_start_idx-1] ] )
start_idx = sep[0]+1
result.append(new_sep_pair)
else: # reset
sep_lang = ''
if start_idx <= len(mat)-1:
result.append( ['', [start_idx, len(mat)-1] ] )
return result
class CTCLabelConverter(object):
""" Convert between text-label and text-index """
#def __init__(self, character, separator = []):
def __init__(self, character, separator_list = {}, dict_pathlist = {}):
# character (str): set of the possible characters.
dict_character = list(character)
#special_character = ['\xa2', '\xa3', '\xa4','\xa5']
#self.separator_char = special_character[:len(separator)]
self.dict = {}
#for i, char in enumerate(self.separator_char + dict_character):
for i, char in enumerate(dict_character):
# NOTE: 0 is reserved for 'blank' token required by CTCLoss
self.dict[char] = i + 1
self.character = ['[blank]'] + dict_character # dummy '[blank]' token for CTCLoss (index 0)
#self.character = ['[blank]']+ self.separator_char + dict_character # dummy '[blank]' token for CTCLoss (index 0)
self.separator_list = separator_list
separator_char = []
for lang, sep in separator_list.items():
separator_char += sep
self.ignore_idx = [0] + [i+1 for i,item in enumerate(separator_char)]
dict_list = {}
for lang, dict_path in dict_pathlist.items():
with open(dict_path, "rb") as input_file:
word_count = pickle.load(input_file)
dict_list[lang] = word_count
self.dict_list = dict_list
def encode(self, text, batch_max_length=25):
"""convert text-label into text-index.
input:
text: text labels of each image. [batch_size]
output:
text: concatenated text index for CTCLoss.
[sum(text_lengths)] = [text_index_0 + text_index_1 + ... + text_index_(n - 1)]
length: length of each text. [batch_size]
"""
length = [len(s) for s in text]
text = ''.join(text)
text = [self.dict[char] for char in text]
return (torch.IntTensor(text), torch.IntTensor(length))
def decode_greedy(self, text_index, length):
""" convert text-index into text-label. """
texts = []
index = 0
for l in length:
t = text_index[index:index + l]
char_list = []
for i in range(l):
if t[i] not in self.ignore_idx and (not (i > 0 and t[i - 1] == t[i])): # removing repeated characters and blank (and separator).
#if (t[i] != 0) and (not (i > 0 and t[i - 1] == t[i])): # removing repeated characters and blank (and separator).
char_list.append(self.character[t[i]])
text = ''.join(char_list)
texts.append(text)
index += l
return texts
def decode_beamsearch(self, mat, beamWidth=5):
texts = []
for i in range(mat.shape[0]):
t = ctcBeamSearch(mat[i], self.character, self.ignore_idx, None, beamWidth=beamWidth)
texts.append(t)
return texts
def decode_wordbeamsearch(self, mat, beamWidth=5):
texts = []
argmax = np.argmax(mat, axis = 2)
for i in range(mat.shape[0]):
words = word_segmentation(argmax[i])
string = ''
for word in words:
matrix = mat[i, word[1][0]:word[1][1]+1,:]
if word[0] == '': dict_list = []
else: dict_list = self.dict_list[word[0]]
t = ctcBeamSearch(matrix, self.character, self.ignore_idx, None, beamWidth=beamWidth, dict_list=dict_list)
string += t
texts.append(string)
return texts
class AttnLabelConverter(object):
""" Convert between text-label and text-index """
def __init__(self, character):
# character (str): set of the possible characters.
# [GO] for the start token of the attention decoder. [s] for end-of-sentence token.
list_token = ['[GO]', '[s]'] # ['[s]','[UNK]','[PAD]','[GO]']
list_character = list(character)
self.character = list_token + list_character
self.dict = {}
for i, char in enumerate(self.character):
# print(i, char)
self.dict[char] = i
def encode(self, text, batch_max_length=25):
""" convert text-label into text-index.
input:
text: text labels of each image. [batch_size]
batch_max_length: max length of text label in the batch. 25 by default
output:
text : the input of attention decoder. [batch_size x (max_length+2)] +1 for [GO] token and +1 for [s] token.
text[:, 0] is [GO] token and text is padded with [GO] token after [s] token.
length : the length of output of attention decoder, which count [s] token also. [3, 7, ....] [batch_size]
"""
length = [len(s) + 1 for s in text] # +1 for [s] at end of sentence.
# batch_max_length = max(length) # this is not allowed for multi-gpu setting
batch_max_length += 1
# additional +1 for [GO] at first step. batch_text is padded with [GO] token after [s] token.
batch_text = torch.LongTensor(len(text), batch_max_length + 1).fill_(0)
for i, t in enumerate(text):
text = list(t)
text.append('[s]')
text = [self.dict[char] for char in text]
batch_text[i][1:1 + len(text)] = torch.LongTensor(text) # batch_text[:, 0] = [GO] token
return (batch_text.to(device), torch.IntTensor(length).to(device))
def decode(self, text_index, length):
""" convert text-index into text-label. """
texts = []
for index, l in enumerate(length):
text = ''.join([self.character[i] for i in text_index[index, :]])
texts.append(text)
return texts
class Averager(object):
"""Compute average for torch.Tensor, used for loss average."""
def __init__(self):
self.reset()
def add(self, v):
count = v.data.numel()
v = v.data.sum()
self.n_count += count
self.sum += v
def reset(self):
self.n_count = 0
self.sum = 0
def val(self):
res = 0
if self.n_count != 0:
res = self.sum / float(self.n_count)
return res
|