Update app.py
Browse files
app.py
CHANGED
|
@@ -1,22 +1,65 @@
|
|
| 1 |
import gradio as gr
|
| 2 |
import spaces
|
| 3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 4 |
|
| 5 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 6 |
|
| 7 |
-
|
| 8 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 9 |
"""
|
| 10 |
-
|
| 11 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 12 |
"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 13 |
config = AutoConfig.from_pretrained(
|
| 14 |
-
"wuhp/myr1",
|
| 15 |
subfolder="myr1",
|
| 16 |
trust_remote_code=True
|
| 17 |
)
|
| 18 |
tokenizer = AutoTokenizer.from_pretrained(
|
| 19 |
-
"wuhp/myr1",
|
| 20 |
subfolder="myr1",
|
| 21 |
trust_remote_code=True
|
| 22 |
)
|
|
@@ -24,41 +67,146 @@ def load_model():
|
|
| 24 |
"wuhp/myr1",
|
| 25 |
subfolder="myr1",
|
| 26 |
config=config,
|
| 27 |
-
torch_dtype=
|
| 28 |
-
device_map="auto",
|
| 29 |
trust_remote_code=True
|
| 30 |
)
|
| 31 |
-
|
| 32 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 33 |
|
| 34 |
def ensure_pipeline():
|
| 35 |
"""
|
| 36 |
-
If
|
| 37 |
-
|
|
|
|
| 38 |
"""
|
| 39 |
-
global
|
| 40 |
-
if
|
| 41 |
-
|
| 42 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 43 |
|
| 44 |
-
@spaces.GPU(duration=
|
| 45 |
-
def predict(prompt, max_new_tokens=
|
| 46 |
"""
|
| 47 |
-
|
| 48 |
-
|
|
|
|
| 49 |
"""
|
| 50 |
-
pipe = ensure_pipeline()
|
| 51 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 52 |
return outputs[0]["generated_text"]
|
| 53 |
|
| 54 |
-
|
|
|
|
|
|
|
| 55 |
with gr.Blocks() as demo:
|
| 56 |
-
gr.Markdown("
|
| 57 |
-
prompt = gr.Textbox(label="Prompt")
|
| 58 |
-
max_tok = gr.Slider(1, 256, value=64, step=1, label="Max New Tokens")
|
| 59 |
-
output = gr.Textbox(label="Generated Text")
|
| 60 |
|
| 61 |
-
|
| 62 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 63 |
|
| 64 |
demo.launch()
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
import spaces
|
| 3 |
+
import torch
|
| 4 |
+
from datasets import load_dataset
|
| 5 |
+
from transformers import (
|
| 6 |
+
AutoConfig,
|
| 7 |
+
AutoTokenizer,
|
| 8 |
+
AutoModelForCausalLM,
|
| 9 |
+
DataCollatorForLanguageModeling,
|
| 10 |
+
Trainer,
|
| 11 |
+
TrainingArguments,
|
| 12 |
+
pipeline
|
| 13 |
+
)
|
| 14 |
|
| 15 |
+
#############################################################
|
| 16 |
+
# ZeroGPU REQUIREMENT:
|
| 17 |
+
# - No CUDA references at global scope.
|
| 18 |
+
# - All GPU usage within @spaces.GPU(...) functions.
|
| 19 |
+
#############################################################
|
| 20 |
|
| 21 |
+
# We'll do a small subset of WikiText-2 for demonstration.
|
| 22 |
+
# Real finetuning on the entire dataset likely exceeds typical ZeroGPU time.
|
| 23 |
+
NUM_EXAMPLES = 1000 # or fewer to keep it quick
|
| 24 |
+
|
| 25 |
+
# We'll store the "inference pipeline" after training
|
| 26 |
+
TEXT_PIPELINE = None
|
| 27 |
+
|
| 28 |
+
@spaces.GPU(duration=300) # up to 5 minutes for a mini-finetraining
|
| 29 |
+
def finetune_small_subset():
|
| 30 |
"""
|
| 31 |
+
1) Loads the model & tokenizer from 'wuhp/myr1'.
|
| 32 |
+
2) Loads a small subset of WikiText-2 for language modeling.
|
| 33 |
+
3) Runs a quick 1-epoch finetune.
|
| 34 |
+
4) Saves model + tokenizer to 'finetuned_myr1'.
|
| 35 |
+
5) Loads the newly trained model back into a text-generation pipeline.
|
| 36 |
+
Returns a success message.
|
| 37 |
"""
|
| 38 |
+
|
| 39 |
+
# -------------------------------
|
| 40 |
+
# A) Load a small dataset
|
| 41 |
+
# -------------------------------
|
| 42 |
+
ds = load_dataset("wikitext", "wikitext-2-raw-v1", split="train")
|
| 43 |
+
# Keep only a subset so we don't exceed time.
|
| 44 |
+
ds = ds.select(range(min(NUM_EXAMPLES, len(ds))))
|
| 45 |
+
|
| 46 |
+
def format_and_tokenize(ex):
|
| 47 |
+
# For standard LM, we just treat each line as text
|
| 48 |
+
return tokenizer(ex["text"], truncation=True, max_length=512)
|
| 49 |
+
|
| 50 |
+
# We'll define them once we have the tokenizer below.
|
| 51 |
+
|
| 52 |
+
# -------------------------------
|
| 53 |
+
# B) Load config, tokenizer, model from HF
|
| 54 |
+
# (trust_remote_code = True for custom modeling_deepseek)
|
| 55 |
+
# -------------------------------
|
| 56 |
config = AutoConfig.from_pretrained(
|
| 57 |
+
"wuhp/myr1",
|
| 58 |
subfolder="myr1",
|
| 59 |
trust_remote_code=True
|
| 60 |
)
|
| 61 |
tokenizer = AutoTokenizer.from_pretrained(
|
| 62 |
+
"wuhp/myr1",
|
| 63 |
subfolder="myr1",
|
| 64 |
trust_remote_code=True
|
| 65 |
)
|
|
|
|
| 67 |
"wuhp/myr1",
|
| 68 |
subfolder="myr1",
|
| 69 |
config=config,
|
| 70 |
+
torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32,
|
| 71 |
+
device_map="auto",
|
| 72 |
trust_remote_code=True
|
| 73 |
)
|
| 74 |
+
|
| 75 |
+
# -------------------------------
|
| 76 |
+
# C) Process dataset
|
| 77 |
+
# -------------------------------
|
| 78 |
+
ds = ds.map(format_and_tokenize, batched=True, remove_columns=["text"])
|
| 79 |
+
ds.set_format("torch")
|
| 80 |
+
|
| 81 |
+
# -------------------------------
|
| 82 |
+
# D) Data Collator
|
| 83 |
+
# -------------------------------
|
| 84 |
+
collator = DataCollatorForLanguageModeling(
|
| 85 |
+
tokenizer=tokenizer,
|
| 86 |
+
mlm=False
|
| 87 |
+
)
|
| 88 |
+
|
| 89 |
+
# -------------------------------
|
| 90 |
+
# E) Training Arguments + Trainer
|
| 91 |
+
# -------------------------------
|
| 92 |
+
training_args = TrainingArguments(
|
| 93 |
+
output_dir="finetuned_myr1",
|
| 94 |
+
num_train_epochs=1, # 1 epoch for demonstration
|
| 95 |
+
per_device_train_batch_size=1,
|
| 96 |
+
gradient_accumulation_steps=2,
|
| 97 |
+
logging_steps=10,
|
| 98 |
+
save_steps=999999, # effectively "don't save mid-training"
|
| 99 |
+
save_total_limit=1,
|
| 100 |
+
fp16=torch.cuda.is_available(),
|
| 101 |
+
# ZeroGPU ephemeral environment => no real advantage to push_to_hub
|
| 102 |
+
)
|
| 103 |
+
|
| 104 |
+
trainer = Trainer(
|
| 105 |
+
model=model,
|
| 106 |
+
args=training_args,
|
| 107 |
+
train_dataset=ds,
|
| 108 |
+
data_collator=collator,
|
| 109 |
+
)
|
| 110 |
+
|
| 111 |
+
# -------------------------------
|
| 112 |
+
# F) Train
|
| 113 |
+
# -------------------------------
|
| 114 |
+
trainer.train()
|
| 115 |
+
|
| 116 |
+
# -------------------------------
|
| 117 |
+
# G) Save local checkpoint
|
| 118 |
+
# -------------------------------
|
| 119 |
+
trainer.save_model("finetuned_myr1")
|
| 120 |
+
tokenizer.save_pretrained("finetuned_myr1")
|
| 121 |
+
|
| 122 |
+
# -------------------------------
|
| 123 |
+
# H) Reload the newly finetuned model as a pipeline
|
| 124 |
+
# -------------------------------
|
| 125 |
+
# (We do this so we can do inference in the same GPU session)
|
| 126 |
+
# However, if the pipeline is used *after* this function returns,
|
| 127 |
+
# we might need to re-load in a separate function call.
|
| 128 |
+
finetuned_model = AutoModelForCausalLM.from_pretrained(
|
| 129 |
+
"finetuned_myr1",
|
| 130 |
+
torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32,
|
| 131 |
+
device_map="auto",
|
| 132 |
+
trust_remote_code=True
|
| 133 |
+
)
|
| 134 |
+
global TEXT_PIPELINE
|
| 135 |
+
TEXT_PIPELINE = pipeline(
|
| 136 |
+
"text-generation",
|
| 137 |
+
model=finetuned_model,
|
| 138 |
+
tokenizer=tokenizer
|
| 139 |
+
)
|
| 140 |
+
return "Finetuning complete. Model reloaded for inference!"
|
| 141 |
|
| 142 |
def ensure_pipeline():
|
| 143 |
"""
|
| 144 |
+
If TEXT_PIPELINE is None (e.g., we didn't finetune yet),
|
| 145 |
+
let's just load the *original* model from wuhp/myr1
|
| 146 |
+
so that 'predict' can still run.
|
| 147 |
"""
|
| 148 |
+
global TEXT_PIPELINE
|
| 149 |
+
if TEXT_PIPELINE is None:
|
| 150 |
+
# Load the original model for inference
|
| 151 |
+
TEXT_PIPELINE = pipeline(
|
| 152 |
+
"text-generation",
|
| 153 |
+
model="wuhp/myr1/myr1", # subfolder syntax
|
| 154 |
+
trust_remote_code=True
|
| 155 |
+
)
|
| 156 |
+
return TEXT_PIPELINE
|
| 157 |
|
| 158 |
+
@spaces.GPU(duration=120) # up to 2 minutes to generate text
|
| 159 |
+
def predict(prompt, min_new_tokens=260, max_new_tokens=2600):
|
| 160 |
"""
|
| 161 |
+
Generate text from the (possibly finetuned) model.
|
| 162 |
+
We default max_new_tokens to 2,600, but allow up to 5,000 in the UI slider.
|
| 163 |
+
We'll also ensure a minimum of 260 tokens.
|
| 164 |
"""
|
| 165 |
+
pipe = ensure_pipeline() # load model if not already
|
| 166 |
+
# Use pipeline generate params.
|
| 167 |
+
# The pipeline will handle do_sample by default.
|
| 168 |
+
# We set a large max_new_tokens, but be careful about timeouts.
|
| 169 |
+
outputs = pipe(
|
| 170 |
+
prompt,
|
| 171 |
+
min_new_tokens=int(min_new_tokens),
|
| 172 |
+
max_new_tokens=int(max_new_tokens),
|
| 173 |
+
temperature=0.7,
|
| 174 |
+
top_p=0.9
|
| 175 |
+
)
|
| 176 |
return outputs[0]["generated_text"]
|
| 177 |
|
| 178 |
+
#############################################################
|
| 179 |
+
# Build a Gradio UI
|
| 180 |
+
#############################################################
|
| 181 |
with gr.Blocks() as demo:
|
| 182 |
+
gr.Markdown("## ZeroGPU Finetuning & Long-Text Generation Demo")
|
|
|
|
|
|
|
|
|
|
| 183 |
|
| 184 |
+
finetune_btn = gr.Button("Finetune on a small WikiText-2 subset (5 min limit)")
|
| 185 |
+
finetune_status = gr.Textbox(label="Status")
|
| 186 |
+
# When user clicks, we run 'finetune_small_subset'
|
| 187 |
+
finetune_btn.click(fn=finetune_small_subset, outputs=finetune_status)
|
| 188 |
+
|
| 189 |
+
gr.Markdown(
|
| 190 |
+
"Once finetuning completes, or if you skip it, you can still do inference "
|
| 191 |
+
"with either the new or original model."
|
| 192 |
+
)
|
| 193 |
+
|
| 194 |
+
prompt_in = gr.Textbox(label="Prompt", lines=3)
|
| 195 |
+
min_tok_slider = gr.Slider(
|
| 196 |
+
minimum=260, maximum=5000, value=260, step=10,
|
| 197 |
+
label="Minimum New Tokens"
|
| 198 |
+
)
|
| 199 |
+
max_tok_slider = gr.Slider(
|
| 200 |
+
minimum=260, maximum=5000, value=2600, step=50,
|
| 201 |
+
label="Maximum New Tokens"
|
| 202 |
+
)
|
| 203 |
+
gen_btn = gr.Button("Generate")
|
| 204 |
+
output_box = gr.Textbox(label="Generated Text", lines=12)
|
| 205 |
+
|
| 206 |
+
gen_btn.click(
|
| 207 |
+
fn=predict,
|
| 208 |
+
inputs=[prompt_in, min_tok_slider, max_tok_slider],
|
| 209 |
+
outputs=output_box
|
| 210 |
+
)
|
| 211 |
|
| 212 |
demo.launch()
|