Spaces:
Sleeping
Sleeping
File size: 30,140 Bytes
a121edc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 |
from typing import List
import json
import os
import random
import numpy as np
import torch
import torch.nn.functional as F
from diffusers import StableDiffusionXLPipeline, DDIMScheduler
from mm_story_agent.modality_agents.llm import QwenAgent
from mm_story_agent.prompts_en import role_extract_system, role_review_system, \
story_to_image_reviser_system, story_to_image_review_system
def setup_seed(seed):
torch.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
np.random.seed(seed)
random.seed(seed)
torch.backends.cudnn.deterministic = True
class AttnProcessor(torch.nn.Module):
r"""
Processor for implementing scaled dot-product attention (enabled by default if you're using PyTorch 2.0).
"""
def __init__(
self,
hidden_size=None,
cross_attention_dim=None,
):
super().__init__()
if not hasattr(F, "scaled_dot_product_attention"):
raise ImportError("AttnProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0.")
def __call__(
self,
attn,
hidden_states,
encoder_hidden_states=None,
attention_mask=None,
temb=None,
):
residual = hidden_states
if attn.spatial_norm is not None:
hidden_states = attn.spatial_norm(hidden_states, temb)
input_ndim = hidden_states.ndim
if input_ndim == 4:
batch_size, channel, height, width = hidden_states.shape
hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2)
batch_size, sequence_length, _ = (
hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape
)
if attention_mask is not None:
attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)
# scaled_dot_product_attention expects attention_mask shape to be
# (batch, heads, source_length, target_length)
attention_mask = attention_mask.view(batch_size, attn.heads, -1, attention_mask.shape[-1])
if attn.group_norm is not None:
hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2)
query = attn.to_q(hidden_states)
if encoder_hidden_states is None:
encoder_hidden_states = hidden_states
elif attn.norm_cross:
encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states)
key = attn.to_k(encoder_hidden_states)
value = attn.to_v(encoder_hidden_states)
inner_dim = key.shape[-1]
head_dim = inner_dim // attn.heads
query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
# the output of sdp = (batch, num_heads, seq_len, head_dim)
# TODO: add support for attn.scale when we move to Torch 2.1
hidden_states = F.scaled_dot_product_attention(
query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False
)
hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim)
hidden_states = hidden_states.to(query.dtype)
# linear proj
hidden_states = attn.to_out[0](hidden_states)
# dropout
hidden_states = attn.to_out[1](hidden_states)
if input_ndim == 4:
hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width)
if attn.residual_connection:
hidden_states = hidden_states + residual
hidden_states = hidden_states / attn.rescale_output_factor
return hidden_states
def cal_attn_mask_xl(total_length,
id_length,
sa32,
sa64,
height,
width,
device="cuda",
dtype=torch.float16):
nums_1024 = (height // 32) * (width // 32)
nums_4096 = (height // 16) * (width // 16)
bool_matrix1024 = torch.rand((1, total_length * nums_1024),device = device,dtype = dtype) < sa32
bool_matrix4096 = torch.rand((1, total_length * nums_4096),device = device,dtype = dtype) < sa64
bool_matrix1024 = bool_matrix1024.repeat(total_length,1)
bool_matrix4096 = bool_matrix4096.repeat(total_length,1)
for i in range(total_length):
bool_matrix1024[i:i+1,id_length*nums_1024:] = False
bool_matrix4096[i:i+1,id_length*nums_4096:] = False
bool_matrix1024[i:i+1,i*nums_1024:(i+1)*nums_1024] = True
bool_matrix4096[i:i+1,i*nums_4096:(i+1)*nums_4096] = True
mask1024 = bool_matrix1024.unsqueeze(1).repeat(1,nums_1024,1).reshape(-1,total_length * nums_1024)
mask4096 = bool_matrix4096.unsqueeze(1).repeat(1,nums_4096,1).reshape(-1,total_length * nums_4096)
return mask1024, mask4096
class SpatialAttnProcessor2_0(torch.nn.Module):
r"""
Attention processor for IP-Adapater for PyTorch 2.0.
Args:
hidden_size (`int`):
The hidden size of the attention layer.
cross_attention_dim (`int`):
The number of channels in the `encoder_hidden_states`.
text_context_len (`int`, defaults to 77):
The context length of the text features.
scale (`float`, defaults to 1.0):
the weight scale of image prompt.
"""
def __init__(self,
global_attn_args,
hidden_size=None,
cross_attention_dim=None,
id_length=4,
device="cuda",
dtype=torch.float16,
height=1280,
width=720,
sa32=0.5,
sa64=0.5,
):
super().__init__()
if not hasattr(F, "scaled_dot_product_attention"):
raise ImportError("AttnProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0.")
self.device = device
self.dtype = dtype
self.hidden_size = hidden_size
self.cross_attention_dim = cross_attention_dim
self.total_length = id_length + 1
self.id_length = id_length
self.id_bank = {}
self.height = height
self.width = width
self.sa32 = sa32
self.sa64 = sa64
self.write = True
self.global_attn_args = global_attn_args
def __call__(
self,
attn,
hidden_states,
encoder_hidden_states=None,
attention_mask=None,
temb=None
):
total_count = self.global_attn_args["total_count"]
attn_count = self.global_attn_args["attn_count"]
cur_step = self.global_attn_args["cur_step"]
mask1024 = self.global_attn_args["mask1024"]
mask4096 = self.global_attn_args["mask4096"]
if self.write:
self.id_bank[cur_step] = [hidden_states[:self.id_length], hidden_states[self.id_length:]]
else:
encoder_hidden_states = torch.cat((self.id_bank[cur_step][0].to(self.device),
hidden_states[:1],
self.id_bank[cur_step][1].to(self.device), hidden_states[1:]))
# skip in early step
if cur_step < 5:
hidden_states = self.__call2__(attn, hidden_states, encoder_hidden_states, attention_mask, temb)
else: # 256 1024 4096
random_number = random.random()
if cur_step < 20:
rand_num = 0.3
else:
rand_num = 0.1
if random_number > rand_num:
if not self.write:
if hidden_states.shape[1] == (self.height // 32) * (self.width // 32):
attention_mask = mask1024[mask1024.shape[0] // self.total_length * self.id_length:]
else:
attention_mask = mask4096[mask4096.shape[0] // self.total_length * self.id_length:]
else:
if hidden_states.shape[1] == (self.height // 32) * (self.width // 32):
attention_mask = mask1024[:mask1024.shape[0] // self.total_length * self.id_length,
:mask1024.shape[0] // self.total_length * self.id_length]
else:
attention_mask = mask4096[:mask4096.shape[0] // self.total_length * self.id_length,
:mask4096.shape[0] // self.total_length * self.id_length]
hidden_states = self.__call1__(attn, hidden_states, encoder_hidden_states, attention_mask, temb)
else:
hidden_states = self.__call2__(attn, hidden_states, None, attention_mask, temb)
attn_count += 1
if attn_count == total_count:
attn_count = 0
cur_step += 1
mask1024, mask4096 = cal_attn_mask_xl(self.total_length,
self.id_length,
self.sa32,
self.sa64,
self.height,
self.width,
device=self.device,
dtype=self.dtype)
self.global_attn_args["mask1024"] = mask1024
self.global_attn_args["mask4096"] = mask4096
self.global_attn_args["attn_count"] = attn_count
self.global_attn_args["cur_step"] = cur_step
return hidden_states
def __call1__(
self,
attn,
hidden_states,
encoder_hidden_states=None,
attention_mask=None,
temb=None,
):
residual = hidden_states
if attn.spatial_norm is not None:
hidden_states = attn.spatial_norm(hidden_states, temb)
input_ndim = hidden_states.ndim
if input_ndim == 4:
total_batch_size, channel, height, width = hidden_states.shape
hidden_states = hidden_states.view(total_batch_size, channel, height * width).transpose(1, 2)
total_batch_size, nums_token, channel = hidden_states.shape
img_nums = total_batch_size // 2
hidden_states = hidden_states.view(-1, img_nums, nums_token, channel).reshape(-1, img_nums * nums_token, channel)
batch_size, sequence_length, _ = hidden_states.shape
if attn.group_norm is not None:
hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2)
query = attn.to_q(hidden_states)
if encoder_hidden_states is None:
encoder_hidden_states = hidden_states # B, N, C
else:
encoder_hidden_states = encoder_hidden_states.view(-1, self.id_length + 1, nums_token, channel).reshape(
-1, (self.id_length + 1) * nums_token, channel)
key = attn.to_k(encoder_hidden_states)
value = attn.to_v(encoder_hidden_states)
inner_dim = key.shape[-1]
head_dim = inner_dim // attn.heads
query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
hidden_states = F.scaled_dot_product_attention(
query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False
)
hidden_states = hidden_states.transpose(1, 2).reshape(total_batch_size, -1, attn.heads * head_dim)
hidden_states = hidden_states.to(query.dtype)
# linear proj
hidden_states = attn.to_out[0](hidden_states)
# dropout
hidden_states = attn.to_out[1](hidden_states)
if input_ndim == 4:
hidden_states = hidden_states.transpose(-1, -2).reshape(total_batch_size, channel, height, width)
if attn.residual_connection:
hidden_states = hidden_states + residual
hidden_states = hidden_states / attn.rescale_output_factor
# print(hidden_states.shape)
return hidden_states
def __call2__(
self,
attn,
hidden_states,
encoder_hidden_states=None,
attention_mask=None,
temb=None):
residual = hidden_states
if attn.spatial_norm is not None:
hidden_states = attn.spatial_norm(hidden_states, temb)
input_ndim = hidden_states.ndim
if input_ndim == 4:
batch_size, channel, height, width = hidden_states.shape
hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2)
batch_size, sequence_length, channel = (
hidden_states.shape
)
# print(hidden_states.shape)
if attention_mask is not None:
attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)
# scaled_dot_product_attention expects attention_mask shape to be
# (batch, heads, source_length, target_length)
attention_mask = attention_mask.view(batch_size, attn.heads, -1, attention_mask.shape[-1])
if attn.group_norm is not None:
hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2)
query = attn.to_q(hidden_states)
if encoder_hidden_states is None:
encoder_hidden_states = hidden_states # B, N, C
else:
encoder_hidden_states = encoder_hidden_states.view(-1, self.id_length + 1, sequence_length, channel).reshape(
-1, (self.id_length + 1) * sequence_length, channel)
key = attn.to_k(encoder_hidden_states)
value = attn.to_v(encoder_hidden_states)
inner_dim = key.shape[-1]
head_dim = inner_dim // attn.heads
query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
hidden_states = F.scaled_dot_product_attention(
query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False
)
hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim)
hidden_states = hidden_states.to(query.dtype)
# linear proj
hidden_states = attn.to_out[0](hidden_states)
# dropout
hidden_states = attn.to_out[1](hidden_states)
if input_ndim == 4:
hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width)
if attn.residual_connection:
hidden_states = hidden_states + residual
hidden_states = hidden_states / attn.rescale_output_factor
return hidden_states
class StoryDiffusionSynthesizer:
def __init__(self,
num_pages: int,
height: int,
width: int,
model_name: str = "stabilityai/stable-diffusion-xl-base-1.0",
model_path: str = None,
id_length: int = 4,
num_steps: int = 50):
self.attn_args = {
"attn_count": 0,
"cur_step": 0,
"total_count": 0,
}
self.sa32 = 0.5
self.sa64 = 0.5
self.id_length = id_length
self.total_length = num_pages
self.height = height
self.width = width
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
self.dtype = torch.float16
self.num_steps = num_steps
self.styles = {
'(No style)': (
'{prompt}',
''),
'Japanese Anime': (
'anime artwork illustrating {prompt}. created by japanese anime studio. highly emotional. best quality, high resolution, (Anime Style, Manga Style:1.3), Low detail, sketch, concept art, line art, webtoon, manhua, hand drawn, defined lines, simple shades, minimalistic, High contrast, Linear compositions, Scalable artwork, Digital art, High Contrast Shadows',
'lowres, bad anatomy, bad hands, text, error, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality, normal quality, jpeg artifacts, signature, watermark, username, blurry'),
'Digital/Oil Painting': (
'{prompt} . (Extremely Detailed Oil Painting:1.2), glow effects, godrays, Hand drawn, render, 8k, octane render, cinema 4d, blender, dark, atmospheric 4k ultra detailed, cinematic sensual, Sharp focus, humorous illustration, big depth of field',
'anime, cartoon, graphic, text, painting, crayon, graphite, abstract, glitch, deformed, mutated, ugly, disfigured, lowres, bad anatomy, bad hands, text, error, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality, normal quality, jpeg artifacts, signature, watermark, username, blurry'),
'Pixar/Disney Character': (
'Create a Disney Pixar 3D style illustration on {prompt} . The scene is vibrant, motivational, filled with vivid colors and a sense of wonder.',
'lowres, bad anatomy, bad hands, text, bad eyes, bad arms, bad legs, error, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality, normal quality, jpeg artifacts, signature, watermark, blurry, grayscale, noisy, sloppy, messy, grainy, highly detailed, ultra textured, photo'),
'Photographic': (
'cinematic photo {prompt} . Hyperrealistic, Hyperdetailed, detailed skin, matte skin, soft lighting, realistic, best quality, ultra realistic, 8k, golden ratio, Intricate, High Detail, film photography, soft focus',
'drawing, painting, crayon, sketch, graphite, impressionist, noisy, blurry, soft, deformed, ugly, lowres, bad anatomy, bad hands, text, error, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality, normal quality, jpeg artifacts, signature, watermark, username, blurry'),
'Comic book': (
'comic {prompt} . graphic illustration, comic art, graphic novel art, vibrant, highly detailed',
'photograph, deformed, glitch, noisy, realistic, stock photo, lowres, bad anatomy, bad hands, text, error, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality, normal quality, jpeg artifacts, signature, watermark, username, blurry'),
'Line art': (
'line art drawing {prompt} . professional, sleek, modern, minimalist, graphic, line art, vector graphics',
'anime, photorealistic, 35mm film, deformed, glitch, blurry, noisy, off-center, deformed, cross-eyed, closed eyes, bad anatomy, ugly, disfigured, mutated, realism, realistic, impressionism, expressionism, oil, acrylic, lowres, bad anatomy, bad hands, text, error, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality, normal quality, jpeg artifacts, signature, watermark, username, blurry'),
'Black and White Film Noir': (
'{prompt} . (b&w, Monochromatic, Film Photography:1.3), film noir, analog style, soft lighting, subsurface scattering, realistic, heavy shadow, masterpiece, best quality, ultra realistic, 8k',
'anime, photorealistic, 35mm film, deformed, glitch, blurry, noisy, off-center, deformed, cross-eyed, closed eyes, bad anatomy, ugly, disfigured, mutated, realism, realistic, impressionism, expressionism, oil, acrylic, lowres, bad anatomy, bad hands, text, error, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality, normal quality, jpeg artifacts, signature, watermark, username, blurry'),
'Isometric Rooms': (
'Tiny cute isometric {prompt} . in a cutaway box, soft smooth lighting, soft colors, 100mm lens, 3d blender render',
'anime, photorealistic, 35mm film, deformed, glitch, blurry, noisy, off-center, deformed, cross-eyed, closed eyes, bad anatomy, ugly, disfigured, mutated, realism, realistic, impressionism, expressionism, oil, acrylic, lowres, bad anatomy, bad hands, text, error, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality, normal quality, jpeg artifacts, signature, watermark, username, blurry'),
'Storybook': (
"Cartoon style, cute illustration of {prompt}.",
'realism, photo, realistic, lowres, bad hands, bad eyes, bad arms, bad legs, error, missing fingers, cropped, worst quality, low quality, normal quality, jpeg artifacts, signature, grayscale, noisy, sloppy, messy, grainy, ultra textured'
)
}
pipe = StableDiffusionXLPipeline.from_pretrained(
model_path if model_path is not None else model_name,
torch_dtype=torch.float16,
use_safetensors=True
)
pipe = pipe.to(self.device)
# pipe.id_encoder.to(self.device)
pipe.enable_freeu(s1=0.6, s2=0.4, b1=1.1, b2=1.2)
pipe.scheduler = DDIMScheduler.from_config(pipe.scheduler.config)
pipe.scheduler.set_timesteps(num_steps)
unet = pipe.unet
attn_procs = {}
### Insert PairedAttention
for name in unet.attn_processors.keys():
cross_attention_dim = None if name.endswith("attn1.processor") else unet.config.cross_attention_dim
if name.startswith("mid_block"):
hidden_size = unet.config.block_out_channels[-1]
elif name.startswith("up_blocks"):
block_id = int(name[len("up_blocks.")])
hidden_size = list(reversed(unet.config.block_out_channels))[block_id]
elif name.startswith("down_blocks"):
block_id = int(name[len("down_blocks.")])
hidden_size = unet.config.block_out_channels[block_id]
if cross_attention_dim is None and (name.startswith("up_blocks") ) :
attn_procs[name] = SpatialAttnProcessor2_0(
id_length=self.id_length,
device=self.device,
height=self.height,
width=self.width,
sa32=self.sa32,
sa64=self.sa64,
global_attn_args=self.attn_args
)
self.attn_args["total_count"] += 1
else:
attn_procs[name] = AttnProcessor()
print("successsfully load consistent self-attention")
print(f"number of the processor : {self.attn_args['total_count']}")
# unet.set_attn_processor(copy.deepcopy(attn_procs))
unet.set_attn_processor(attn_procs)
mask1024, mask4096 = cal_attn_mask_xl(
self.total_length,
self.id_length,
self.sa32,
self.sa64,
self.height,
self.width,
device=self.device,
dtype=torch.float16,
)
self.attn_args.update({
"mask1024": mask1024,
"mask4096": mask4096
})
self.pipe = pipe
self.negative_prompt = "naked, deformed, bad anatomy, disfigured, poorly drawn face, mutation," \
"extra limb, ugly, disgusting, poorly drawn hands, missing limb, floating" \
"limbs, disconnected limbs, blurry, watermarks, oversaturated, distorted hands, amputation"
def set_attn_write(self,
value: bool):
unet = self.pipe.unet
for name, processor in unet.attn_processors.items():
cross_attention_dim = None if name.endswith("attn1.processor") else unet.config.cross_attention_dim
if cross_attention_dim is None:
if name.startswith("up_blocks") :
assert isinstance(processor, SpatialAttnProcessor2_0)
processor.write = value
def apply_style(self, style_name: str, positives: list, negative: str = ""):
p, n = self.styles.get(style_name, self.styles["(No style)"])
return [p.replace("{prompt}", positive) for positive in positives], n + ' ' + negative
def apply_style_positive(self, style_name: str, positive: str):
p, n = self.styles.get(style_name, self.styles["(No style)"])
return p.replace("{prompt}", positive)
def call(self,
prompts: List[str],
input_id_images = None,
start_merge_step = None,
style_name: str = "Pixar/Disney Character",
guidance_scale: float = 5.0,
seed: int = 2047):
assert len(prompts) == self.total_length, "The number of prompts should be equal to the number of pages."
setup_seed(seed)
generator = torch.Generator(device=self.device).manual_seed(seed)
torch.cuda.empty_cache()
id_prompts = prompts[:self.id_length]
real_prompts = prompts[self.id_length:]
self.set_attn_write(True)
self.attn_args.update({
"cur_step": 0,
"attn_count": 0
})
id_prompts, negative_prompt = self.apply_style(style_name, id_prompts, self.negative_prompt)
id_images = self.pipe(
id_prompts,
input_id_images=input_id_images,
start_merge_step=start_merge_step,
num_inference_steps=self.num_steps,
guidance_scale=guidance_scale,
height=self.height,
width=self.width,
negative_prompt=negative_prompt,
generator=generator).images
self.set_attn_write(False)
real_images = []
for real_prompt in real_prompts:
self.attn_args["cur_step"] = 0
real_prompt = self.apply_style_positive(style_name, real_prompt)
real_images.append(self.pipe(
real_prompt,
num_inference_steps=self.num_steps,
guidance_scale=guidance_scale,
height=self.height,
width=self.width,
negative_prompt=negative_prompt,
generator=generator).images[0]
)
images = id_images + real_images
return images
class StoryDiffusionAgent:
def __init__(self, config, llm_type="qwen2") -> None:
self.config = config
if llm_type == "qwen2":
self.LLM = QwenAgent
def call(self, pages: List, save_path: str):
role_dict = self.extract_role_from_story(pages, **self.config["revise_cfg"])
image_prompts = self.generate_image_prompt_from_story(pages, **self.config["revise_cfg"])
image_prompts_with_role_desc = []
for image_prompt in image_prompts:
for role, role_desc in role_dict.items():
if role in image_prompt:
image_prompt = image_prompt.replace(role, role_desc)
image_prompts_with_role_desc.append(image_prompt)
generation_agent = StoryDiffusionSynthesizer(
num_pages=len(pages),
**self.config["obj_cfg"]
)
images = generation_agent.call(
image_prompts_with_role_desc,
**self.config["call_cfg"]
)
for idx, image in enumerate(images):
image.save(save_path / f"p{idx + 1}.png")
return {
"prompts": image_prompts_with_role_desc,
"modality": "image",
"generation_results": images,
}
def extract_role_from_story(
self,
pages: List,
num_turns: int = 3
):
role_extractor = self.LLM(role_extract_system, track_history=False)
role_reviewer = self.LLM(role_review_system, track_history=False)
roles = {}
review = ""
for turn in range(num_turns):
roles, success = role_extractor.run(json.dumps({
"story_content": pages,
"previous_result": roles,
"improvement_suggestions": review,
}, ensure_ascii=False
))
roles = json.loads(roles.strip("```json").strip("```"))
review, success = role_reviewer.run(json.dumps({
"story_content": pages,
"role_descriptions": roles
}, ensure_ascii=False))
if review == "Check passed.":
break
return roles
def generate_image_prompt_from_story(
self,
pages: List,
num_turns: int = 3
):
image_prompt_rewriter = self.LLM(story_to_image_reviser_system, track_history=False)
image_prompt_reviewer = self.LLM(story_to_image_review_system, track_history=False)
image_prompts = []
for page in pages:
review = ""
image_prompt = ""
for turn in range(num_turns):
image_prompt, success = image_prompt_rewriter.run(json.dumps({
"all_pages": pages,
"current_page": page,
"previous_result": image_prompt,
"improvement_suggestions": review,
}, ensure_ascii=False))
if image_prompt.startswith("Image description:"):
image_prompt = image_prompt[len("Image description:"):]
review, success = image_prompt_reviewer.run(json.dumps({
"all_pages": pages,
"current_page": page,
"image_description": image_prompt
}, ensure_ascii=False))
if review == "Check passed.":
break
image_prompts.append(image_prompt)
return image_prompts
|