File size: 30,140 Bytes
a121edc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
from typing import List
import json
import os
import random

import numpy as np
import torch
import torch.nn.functional as F
from diffusers import StableDiffusionXLPipeline, DDIMScheduler

from mm_story_agent.modality_agents.llm import QwenAgent
from mm_story_agent.prompts_en import role_extract_system, role_review_system, \
    story_to_image_reviser_system, story_to_image_review_system


def setup_seed(seed):
    torch.manual_seed(seed)
    torch.cuda.manual_seed_all(seed)
    np.random.seed(seed)
    random.seed(seed)
    torch.backends.cudnn.deterministic = True


class AttnProcessor(torch.nn.Module):
    r"""
    Processor for implementing scaled dot-product attention (enabled by default if you're using PyTorch 2.0).
    """
    def __init__(
        self,
        hidden_size=None,
        cross_attention_dim=None,
    ):
        super().__init__()
        if not hasattr(F, "scaled_dot_product_attention"):
            raise ImportError("AttnProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0.")

    def __call__(
        self,
        attn,
        hidden_states,
        encoder_hidden_states=None,
        attention_mask=None,
        temb=None,
    ):
        residual = hidden_states

        if attn.spatial_norm is not None:
            hidden_states = attn.spatial_norm(hidden_states, temb)

        input_ndim = hidden_states.ndim

        if input_ndim == 4:
            batch_size, channel, height, width = hidden_states.shape
            hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2)

        batch_size, sequence_length, _ = (
            hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape
        )

        if attention_mask is not None:
            attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)
            # scaled_dot_product_attention expects attention_mask shape to be
            # (batch, heads, source_length, target_length)
            attention_mask = attention_mask.view(batch_size, attn.heads, -1, attention_mask.shape[-1])

        if attn.group_norm is not None:
            hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2)

        query = attn.to_q(hidden_states)

        if encoder_hidden_states is None:
            encoder_hidden_states = hidden_states
        elif attn.norm_cross:
            encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states)

        key = attn.to_k(encoder_hidden_states)
        value = attn.to_v(encoder_hidden_states)

        inner_dim = key.shape[-1]
        head_dim = inner_dim // attn.heads

        query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)

        key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
        value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)

        # the output of sdp = (batch, num_heads, seq_len, head_dim)
        # TODO: add support for attn.scale when we move to Torch 2.1
        hidden_states = F.scaled_dot_product_attention(
            query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False
        )

        hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim)
        hidden_states = hidden_states.to(query.dtype)

        # linear proj
        hidden_states = attn.to_out[0](hidden_states)
        # dropout
        hidden_states = attn.to_out[1](hidden_states)

        if input_ndim == 4:
            hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width)

        if attn.residual_connection:
            hidden_states = hidden_states + residual

        hidden_states = hidden_states / attn.rescale_output_factor

        return hidden_states


def cal_attn_mask_xl(total_length,
                     id_length,
                     sa32,
                     sa64,
                     height,
                     width,
                     device="cuda",
                     dtype=torch.float16):
    nums_1024 = (height // 32) * (width // 32)
    nums_4096 = (height // 16) * (width // 16)
    bool_matrix1024 = torch.rand((1, total_length * nums_1024),device = device,dtype = dtype) < sa32
    bool_matrix4096 = torch.rand((1, total_length * nums_4096),device = device,dtype = dtype) < sa64
    bool_matrix1024 = bool_matrix1024.repeat(total_length,1)
    bool_matrix4096 = bool_matrix4096.repeat(total_length,1)
    for i in range(total_length):
        bool_matrix1024[i:i+1,id_length*nums_1024:] = False
        bool_matrix4096[i:i+1,id_length*nums_4096:] = False
        bool_matrix1024[i:i+1,i*nums_1024:(i+1)*nums_1024] = True
        bool_matrix4096[i:i+1,i*nums_4096:(i+1)*nums_4096] = True
    mask1024 = bool_matrix1024.unsqueeze(1).repeat(1,nums_1024,1).reshape(-1,total_length * nums_1024)
    mask4096 = bool_matrix4096.unsqueeze(1).repeat(1,nums_4096,1).reshape(-1,total_length * nums_4096)
    return mask1024, mask4096


class SpatialAttnProcessor2_0(torch.nn.Module):
    r"""
    Attention processor for IP-Adapater for PyTorch 2.0.
    Args:
        hidden_size (`int`):
            The hidden size of the attention layer.
        cross_attention_dim (`int`):
            The number of channels in the `encoder_hidden_states`.
        text_context_len (`int`, defaults to 77):
            The context length of the text features.
        scale (`float`, defaults to 1.0):
            the weight scale of image prompt.
    """

    def __init__(self,
                 global_attn_args,
                 hidden_size=None,
                 cross_attention_dim=None,
                 id_length=4,
                 device="cuda",
                 dtype=torch.float16,
                 height=1280,
                 width=720,
                 sa32=0.5,
                 sa64=0.5,
                 ):
        super().__init__()
        if not hasattr(F, "scaled_dot_product_attention"):
            raise ImportError("AttnProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0.")
        self.device = device
        self.dtype = dtype
        self.hidden_size = hidden_size
        self.cross_attention_dim = cross_attention_dim
        self.total_length = id_length + 1
        self.id_length = id_length
        self.id_bank = {}
        self.height = height
        self.width = width
        self.sa32 = sa32
        self.sa64 = sa64
        self.write = True

        self.global_attn_args = global_attn_args


    def __call__(
        self,
        attn,
        hidden_states,
        encoder_hidden_states=None,
        attention_mask=None,
        temb=None
    ):
        total_count = self.global_attn_args["total_count"]
        attn_count = self.global_attn_args["attn_count"]
        cur_step = self.global_attn_args["cur_step"]
        mask1024 = self.global_attn_args["mask1024"]
        mask4096 = self.global_attn_args["mask4096"]

        if self.write:
            self.id_bank[cur_step] = [hidden_states[:self.id_length], hidden_states[self.id_length:]]
        else:
            encoder_hidden_states = torch.cat((self.id_bank[cur_step][0].to(self.device),
                                               hidden_states[:1],
                                               self.id_bank[cur_step][1].to(self.device), hidden_states[1:]))
        # skip in early step
        if cur_step < 5:
            hidden_states = self.__call2__(attn, hidden_states, encoder_hidden_states, attention_mask, temb)
        else:   # 256 1024 4096
            random_number = random.random()
            if cur_step < 20:
                rand_num = 0.3
            else:
                rand_num = 0.1
            if random_number > rand_num:
                if not self.write:
                    if hidden_states.shape[1] == (self.height // 32) * (self.width // 32):
                        attention_mask = mask1024[mask1024.shape[0] // self.total_length * self.id_length:]
                    else:
                        attention_mask = mask4096[mask4096.shape[0] // self.total_length * self.id_length:]
                else:
                    if hidden_states.shape[1] == (self.height // 32) * (self.width // 32):
                        attention_mask = mask1024[:mask1024.shape[0] // self.total_length * self.id_length,
                                                  :mask1024.shape[0] // self.total_length * self.id_length]
                    else:
                        attention_mask = mask4096[:mask4096.shape[0] // self.total_length * self.id_length, 
                                                  :mask4096.shape[0] // self.total_length * self.id_length]
                hidden_states = self.__call1__(attn, hidden_states, encoder_hidden_states, attention_mask, temb)
            else:
                hidden_states = self.__call2__(attn, hidden_states, None, attention_mask, temb)
        attn_count += 1
        if attn_count == total_count:
            attn_count = 0
            cur_step += 1
            mask1024, mask4096 = cal_attn_mask_xl(self.total_length,
                                                  self.id_length,
                                                  self.sa32,
                                                  self.sa64,
                                                  self.height,
                                                  self.width,
                                                  device=self.device, 
                                                  dtype=self.dtype)
            self.global_attn_args["mask1024"] = mask1024
            self.global_attn_args["mask4096"] = mask4096

        self.global_attn_args["attn_count"] = attn_count
        self.global_attn_args["cur_step"] = cur_step

        return hidden_states
    
    def __call1__(
        self,
        attn,
        hidden_states,
        encoder_hidden_states=None,
        attention_mask=None,
        temb=None,
    ):
        residual = hidden_states
        if attn.spatial_norm is not None:
            hidden_states = attn.spatial_norm(hidden_states, temb)
        input_ndim = hidden_states.ndim

        if input_ndim == 4:
            total_batch_size, channel, height, width = hidden_states.shape
            hidden_states = hidden_states.view(total_batch_size, channel, height * width).transpose(1, 2)
        total_batch_size, nums_token, channel = hidden_states.shape
        img_nums = total_batch_size // 2
        hidden_states = hidden_states.view(-1, img_nums, nums_token, channel).reshape(-1, img_nums * nums_token, channel)

        batch_size, sequence_length, _ = hidden_states.shape

        if attn.group_norm is not None:
            hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2)

        query = attn.to_q(hidden_states)

        if encoder_hidden_states is None:
            encoder_hidden_states = hidden_states  # B, N, C
        else:
            encoder_hidden_states = encoder_hidden_states.view(-1, self.id_length + 1, nums_token, channel).reshape(
                -1, (self.id_length + 1) * nums_token, channel)

        key = attn.to_k(encoder_hidden_states)
        value = attn.to_v(encoder_hidden_states)


        inner_dim = key.shape[-1]
        head_dim = inner_dim // attn.heads

        query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)

        key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
        value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
        hidden_states = F.scaled_dot_product_attention(
            query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False
        )

        hidden_states = hidden_states.transpose(1, 2).reshape(total_batch_size, -1, attn.heads * head_dim)
        hidden_states = hidden_states.to(query.dtype)



        # linear proj
        hidden_states = attn.to_out[0](hidden_states)
        # dropout
        hidden_states = attn.to_out[1](hidden_states)


        if input_ndim == 4:
            hidden_states = hidden_states.transpose(-1, -2).reshape(total_batch_size, channel, height, width)
        if attn.residual_connection:
            hidden_states = hidden_states + residual
        hidden_states = hidden_states / attn.rescale_output_factor
        # print(hidden_states.shape)
        return hidden_states
    
    def __call2__(
        self,
        attn,
        hidden_states,
        encoder_hidden_states=None,
        attention_mask=None,
        temb=None):
        residual = hidden_states

        if attn.spatial_norm is not None:
            hidden_states = attn.spatial_norm(hidden_states, temb)

        input_ndim = hidden_states.ndim

        if input_ndim == 4:
            batch_size, channel, height, width = hidden_states.shape
            hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2)

        batch_size, sequence_length, channel = (
            hidden_states.shape
        )
        # print(hidden_states.shape)
        if attention_mask is not None:
            attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)
            # scaled_dot_product_attention expects attention_mask shape to be
            # (batch, heads, source_length, target_length)
            attention_mask = attention_mask.view(batch_size, attn.heads, -1, attention_mask.shape[-1])

        if attn.group_norm is not None:
            hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2)

        query = attn.to_q(hidden_states)

        if encoder_hidden_states is None:
            encoder_hidden_states = hidden_states  # B, N, C
        else:
            encoder_hidden_states = encoder_hidden_states.view(-1, self.id_length + 1, sequence_length, channel).reshape(
                -1, (self.id_length + 1) * sequence_length, channel)

        key = attn.to_k(encoder_hidden_states)
        value = attn.to_v(encoder_hidden_states)

        inner_dim = key.shape[-1]
        head_dim = inner_dim // attn.heads

        query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)

        key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
        value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)

        hidden_states = F.scaled_dot_product_attention(
            query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False
        )

        hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim)
        hidden_states = hidden_states.to(query.dtype)

        # linear proj
        hidden_states = attn.to_out[0](hidden_states)
        # dropout
        hidden_states = attn.to_out[1](hidden_states)

        if input_ndim == 4:
            hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width)

        if attn.residual_connection:
            hidden_states = hidden_states + residual

        hidden_states = hidden_states / attn.rescale_output_factor

        return hidden_states


class StoryDiffusionSynthesizer:

    def __init__(self,
                 num_pages: int,
                 height: int,
                 width: int,
                 model_name: str = "stabilityai/stable-diffusion-xl-base-1.0",
                 model_path: str = None,
                 id_length: int = 4,
                 num_steps: int = 50):
        self.attn_args = {
            "attn_count": 0,
            "cur_step": 0,
            "total_count": 0,
        }
        self.sa32 = 0.5
        self.sa64 = 0.5
        self.id_length = id_length
        self.total_length = num_pages
        self.height = height
        self.width = width
        self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
        self.dtype = torch.float16
        self.num_steps = num_steps
        self.styles = {
            '(No style)': (
                '{prompt}',
                ''),
            'Japanese Anime': (
                'anime artwork illustrating {prompt}. created by japanese anime studio. highly emotional. best quality, high resolution, (Anime Style, Manga Style:1.3), Low detail, sketch, concept art, line art, webtoon, manhua, hand drawn, defined lines, simple shades, minimalistic, High contrast, Linear compositions, Scalable artwork, Digital art, High Contrast Shadows',
                'lowres, bad anatomy, bad hands, text, error, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality, normal quality, jpeg artifacts, signature, watermark, username, blurry'),
            'Digital/Oil Painting': (
                '{prompt} . (Extremely Detailed Oil Painting:1.2), glow effects, godrays, Hand drawn, render, 8k, octane render, cinema 4d, blender, dark, atmospheric 4k ultra detailed, cinematic sensual, Sharp focus, humorous illustration, big depth of field',
                'anime, cartoon, graphic, text, painting, crayon, graphite, abstract, glitch, deformed, mutated, ugly, disfigured, lowres, bad anatomy, bad hands, text, error, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality, normal quality, jpeg artifacts, signature, watermark, username, blurry'),
            'Pixar/Disney Character': (
                'Create a Disney Pixar 3D style illustration on {prompt} . The scene is vibrant, motivational, filled with vivid colors and a sense of wonder.',
                'lowres, bad anatomy, bad hands, text, bad eyes, bad arms, bad legs, error, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality, normal quality, jpeg artifacts, signature, watermark, blurry, grayscale, noisy, sloppy, messy, grainy, highly detailed, ultra textured, photo'),
            'Photographic': (
                'cinematic photo {prompt} . Hyperrealistic, Hyperdetailed, detailed skin, matte skin, soft lighting, realistic, best quality, ultra realistic, 8k, golden ratio, Intricate, High Detail, film photography, soft focus',
                'drawing, painting, crayon, sketch, graphite, impressionist, noisy, blurry, soft, deformed, ugly, lowres, bad anatomy, bad hands, text, error, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality, normal quality, jpeg artifacts, signature, watermark, username, blurry'),
            'Comic book': (
                'comic {prompt} . graphic illustration, comic art, graphic novel art, vibrant, highly detailed',
                'photograph, deformed, glitch, noisy, realistic, stock photo, lowres, bad anatomy, bad hands, text, error, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality, normal quality, jpeg artifacts, signature, watermark, username, blurry'),
            'Line art': (
                'line art drawing {prompt} . professional, sleek, modern, minimalist, graphic, line art, vector graphics',
                'anime, photorealistic, 35mm film, deformed, glitch, blurry, noisy, off-center, deformed, cross-eyed, closed eyes, bad anatomy, ugly, disfigured, mutated, realism, realistic, impressionism, expressionism, oil, acrylic, lowres, bad anatomy, bad hands, text, error, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality, normal quality, jpeg artifacts, signature, watermark, username, blurry'),
            'Black and White Film Noir': (
                '{prompt} . (b&w, Monochromatic, Film Photography:1.3), film noir, analog style, soft lighting, subsurface scattering, realistic, heavy shadow, masterpiece, best quality, ultra realistic, 8k',
                'anime, photorealistic, 35mm film, deformed, glitch, blurry, noisy, off-center, deformed, cross-eyed, closed eyes, bad anatomy, ugly, disfigured, mutated, realism, realistic, impressionism, expressionism, oil, acrylic, lowres, bad anatomy, bad hands, text, error, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality, normal quality, jpeg artifacts, signature, watermark, username, blurry'),
            'Isometric Rooms': (
                'Tiny cute isometric {prompt} . in a cutaway box, soft smooth lighting, soft colors, 100mm lens, 3d blender render',
                'anime, photorealistic, 35mm film, deformed, glitch, blurry, noisy, off-center, deformed, cross-eyed, closed eyes, bad anatomy, ugly, disfigured, mutated, realism, realistic, impressionism, expressionism, oil, acrylic, lowres, bad anatomy, bad hands, text, error, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality, normal quality, jpeg artifacts, signature, watermark, username, blurry'),
            'Storybook': (
                "Cartoon style, cute illustration of {prompt}.",
                'realism, photo, realistic, lowres, bad hands, bad eyes, bad arms, bad legs, error, missing fingers, cropped, worst quality, low quality, normal quality, jpeg artifacts, signature, grayscale, noisy, sloppy, messy, grainy, ultra textured'
            )
        }

        pipe = StableDiffusionXLPipeline.from_pretrained(
            model_path if model_path is not None else model_name,
            torch_dtype=torch.float16,
            use_safetensors=True
        )

        pipe = pipe.to(self.device)
        
        # pipe.id_encoder.to(self.device)

        pipe.enable_freeu(s1=0.6, s2=0.4, b1=1.1, b2=1.2)
        pipe.scheduler = DDIMScheduler.from_config(pipe.scheduler.config)
        pipe.scheduler.set_timesteps(num_steps)
        unet = pipe.unet

        attn_procs = {}
        ### Insert PairedAttention
        for name in unet.attn_processors.keys():
            cross_attention_dim = None if name.endswith("attn1.processor") else unet.config.cross_attention_dim
            if name.startswith("mid_block"):
                hidden_size = unet.config.block_out_channels[-1]
            elif name.startswith("up_blocks"):
                block_id = int(name[len("up_blocks.")])
                hidden_size = list(reversed(unet.config.block_out_channels))[block_id]
            elif name.startswith("down_blocks"):
                block_id = int(name[len("down_blocks.")])
                hidden_size = unet.config.block_out_channels[block_id]
            if cross_attention_dim is None and (name.startswith("up_blocks") ) :
                attn_procs[name] = SpatialAttnProcessor2_0(
                    id_length=self.id_length,
                    device=self.device,
                    height=self.height,
                    width=self.width,
                    sa32=self.sa32,
                    sa64=self.sa64,
                    global_attn_args=self.attn_args
                )
                self.attn_args["total_count"] += 1
            else:
                attn_procs[name] = AttnProcessor()
        print("successsfully load consistent self-attention")
        print(f"number of the processor : {self.attn_args['total_count']}")
        # unet.set_attn_processor(copy.deepcopy(attn_procs))
        unet.set_attn_processor(attn_procs)
        mask1024, mask4096 = cal_attn_mask_xl(
            self.total_length,
            self.id_length,
            self.sa32,
            self.sa64,
            self.height,
            self.width,
            device=self.device,
            dtype=torch.float16,
        )

        self.attn_args.update({
            "mask1024": mask1024,
            "mask4096": mask4096
        })

        self.pipe = pipe
        self.negative_prompt = "naked, deformed, bad anatomy, disfigured, poorly drawn face, mutation," \
                               "extra limb, ugly, disgusting, poorly drawn hands, missing limb, floating" \
                               "limbs, disconnected limbs, blurry, watermarks, oversaturated, distorted hands, amputation"

    def set_attn_write(self,
                       value: bool):
        unet = self.pipe.unet
        for name, processor in unet.attn_processors.items():
            cross_attention_dim = None if name.endswith("attn1.processor") else unet.config.cross_attention_dim
            if cross_attention_dim is None:
                if name.startswith("up_blocks") :
                    assert isinstance(processor, SpatialAttnProcessor2_0)
                    processor.write = value

    def apply_style(self, style_name: str, positives: list, negative: str = ""):
        p, n = self.styles.get(style_name, self.styles["(No style)"])
        return [p.replace("{prompt}", positive) for positive in positives], n + ' ' + negative
    
    def apply_style_positive(self, style_name: str, positive: str):
        p, n = self.styles.get(style_name, self.styles["(No style)"])
        return p.replace("{prompt}", positive) 
    
    def call(self,
             prompts: List[str],        
             input_id_images = None,
             start_merge_step = None,
             style_name: str = "Pixar/Disney Character",
             guidance_scale: float = 5.0,
             seed: int = 2047):
        assert len(prompts) == self.total_length, "The number of prompts should be equal to the number of pages."
        setup_seed(seed)
        generator = torch.Generator(device=self.device).manual_seed(seed)
        torch.cuda.empty_cache()

        id_prompts = prompts[:self.id_length]
        real_prompts = prompts[self.id_length:]
        self.set_attn_write(True)
        self.attn_args.update({
            "cur_step": 0,
            "attn_count": 0
        })
        id_prompts, negative_prompt = self.apply_style(style_name, id_prompts, self.negative_prompt)
        id_images = self.pipe(
            id_prompts,
            input_id_images=input_id_images,
            start_merge_step=start_merge_step,
            num_inference_steps=self.num_steps,
            guidance_scale=guidance_scale,
            height=self.height, 
            width=self.width,
            negative_prompt=negative_prompt,
            generator=generator).images
    
        self.set_attn_write(False)
        real_images = []
        for real_prompt in real_prompts:
            self.attn_args["cur_step"] = 0
            real_prompt = self.apply_style_positive(style_name, real_prompt)
            real_images.append(self.pipe(
                real_prompt,
                num_inference_steps=self.num_steps,
                guidance_scale=guidance_scale, 
                height=self.height, 
                width=self.width,
                negative_prompt=negative_prompt,
                generator=generator).images[0]
            )

        images = id_images + real_images             
        return images


class StoryDiffusionAgent:

    def __init__(self, config, llm_type="qwen2") -> None:
        self.config = config
        if llm_type == "qwen2":
            self.LLM = QwenAgent
        
    def call(self, pages: List, save_path: str):
        role_dict = self.extract_role_from_story(pages, **self.config["revise_cfg"])
        image_prompts = self.generate_image_prompt_from_story(pages, **self.config["revise_cfg"])
        image_prompts_with_role_desc = []
        for image_prompt in image_prompts:
            for role, role_desc in role_dict.items():
                if role in image_prompt:
                    image_prompt = image_prompt.replace(role, role_desc)
            image_prompts_with_role_desc.append(image_prompt)
        generation_agent = StoryDiffusionSynthesizer(
            num_pages=len(pages),
            **self.config["obj_cfg"]
        )
        images = generation_agent.call(
            image_prompts_with_role_desc,
            **self.config["call_cfg"]
        )
        for idx, image in enumerate(images):
            image.save(save_path / f"p{idx + 1}.png")
        return {
            "prompts": image_prompts_with_role_desc,
            "modality": "image",
            "generation_results": images,
        }
        
    def extract_role_from_story(
            self,
            pages: List,
            num_turns: int = 3
        ):
        role_extractor = self.LLM(role_extract_system, track_history=False)
        role_reviewer = self.LLM(role_review_system, track_history=False)
        roles = {}
        review = ""
        for turn in range(num_turns):
            roles, success = role_extractor.run(json.dumps({
                    "story_content": pages,
                    "previous_result": roles,
                    "improvement_suggestions": review,
                }, ensure_ascii=False
            ))
            roles = json.loads(roles.strip("```json").strip("```"))
            review, success = role_reviewer.run(json.dumps({
                "story_content": pages,
                "role_descriptions": roles
            }, ensure_ascii=False))
            if review == "Check passed.":
                break
        return roles

    def generate_image_prompt_from_story(
            self,
            pages: List,
            num_turns: int = 3
        ):
        image_prompt_rewriter = self.LLM(story_to_image_reviser_system, track_history=False)
        image_prompt_reviewer = self.LLM(story_to_image_review_system, track_history=False)
        image_prompts = []

        for page in pages:
            review = ""
            image_prompt = ""
            for turn in range(num_turns):
                image_prompt, success = image_prompt_rewriter.run(json.dumps({
                    "all_pages": pages,
                    "current_page": page,
                    "previous_result": image_prompt,
                    "improvement_suggestions": review,
                }, ensure_ascii=False))
                if image_prompt.startswith("Image description:"):
                    image_prompt = image_prompt[len("Image description:"):]
                review, success = image_prompt_reviewer.run(json.dumps({
                    "all_pages": pages,
                    "current_page": page,
                    "image_description": image_prompt
                }, ensure_ascii=False))
                if review == "Check passed.":
                    break
            image_prompts.append(image_prompt)
        return image_prompts