Spaces:
Running
on
Zero
Running
on
Zero
| from typing import List | |
| import os | |
| import torch | |
| import torch.nn as nn | |
| import torch.nn.functional as F | |
| from transformers import PreTrainedModel, AutoConfig, AutoModelForCausalLM | |
| from .segment_anything_2.sam2.build_sam import build_sam2, build_sam2_video_predictor | |
| from .unilm.beit3.modeling_utils import BEiT3Wrapper, _get_base_config, _get_large_config | |
| from .configuration_evf import EvfConfig | |
| from .segment_anything_2.sam2.utils.misc import load_video_frames | |
| from collections import OrderedDict | |
| def dice_loss( | |
| inputs: torch.Tensor, | |
| targets: torch.Tensor, | |
| num_masks: float, | |
| scale=1000, # 100000.0, | |
| eps=1e-6, | |
| ): | |
| """ | |
| Compute the DICE loss, similar to generalized IOU for masks | |
| Args: | |
| inputs: A float tensor of arbitrary shape. | |
| The predictions for each example. | |
| targets: A float tensor with the same shape as inputs. Stores the binary | |
| classification label for each element in inputs | |
| (0 for the negative class and 1 for the positive class). | |
| """ | |
| inputs = inputs.sigmoid() | |
| inputs = inputs.flatten(1, 2) | |
| targets = targets.flatten(1, 2) | |
| numerator = 2 * (inputs / scale * targets).sum(-1) | |
| denominator = (inputs / scale).sum(-1) + (targets / scale).sum(-1) | |
| loss = 1 - (numerator + eps) / (denominator + eps) | |
| loss = loss.sum() / (num_masks + 1e-8) | |
| return loss | |
| def sigmoid_ce_loss( | |
| inputs: torch.Tensor, | |
| targets: torch.Tensor, | |
| num_masks: float, | |
| ): | |
| """ | |
| Args: | |
| inputs: A float tensor of arbitrary shape. | |
| The predictions for each example. | |
| targets: A float tensor with the same shape as inputs. Stores the binary | |
| classification label for each element in inputs | |
| (0 for the negative class and 1 for the positive class). | |
| Returns: | |
| Loss tensor | |
| """ | |
| loss = F.binary_cross_entropy_with_logits(inputs, | |
| targets, | |
| reduction="none") | |
| loss = loss.flatten(1, 2).mean(1).sum() / (num_masks + 1e-8) | |
| return loss | |
| class EvfSam2Model(PreTrainedModel): | |
| config_class = EvfConfig | |
| def __init__(self, config, **kwargs): | |
| super(EvfSam2Model, self).__init__(config) | |
| self.config = config | |
| self.vision_pretrained = kwargs.get("vision_pretrained", None) | |
| self.encoder_pretrained = kwargs.get("encoder_pretrained", None) | |
| self.dice_loss_weight = kwargs.get("dice_loss_weight", None) | |
| self.bce_loss_weight = kwargs.get("bce_loss_weight", None) | |
| self.train_mask_decoder = kwargs.get("train_mask_decoder", False) | |
| self.train_prompt_encoder = kwargs.get("train_prompt_encoder", False) | |
| self.initialize_evf_modules(config) | |
| self._bb_feat_sizes = [ | |
| (256, 256), | |
| (128, 128), | |
| (64, 64), | |
| ] | |
| def initialize_evf_modules(self, config): | |
| # SAM | |
| if config.sam_scale == "large": | |
| self.visual_model = build_sam2_video_predictor( | |
| "sam2_hiera_l.yaml", self.vision_pretrained, device=None) | |
| elif config.sam_scale == "tiny": | |
| self.visual_model = build_sam2_video_predictor( | |
| "sam2_hiera_t.yaml", self.vision_pretrained, device=None) | |
| else: | |
| raise NotImplementedError | |
| for param in self.visual_model.parameters(): | |
| param.requires_grad = False | |
| if self.train_mask_decoder: | |
| self.visual_model.sam_mask_decoder.train() | |
| for param in self.visual_model.sam_mask_decoder.parameters(): | |
| param.requires_grad = True | |
| if self.train_prompt_encoder: | |
| self.visual_model.sam_prompt_encoder.no_mask_embed.requires_grad_( | |
| True) | |
| # beit-3 | |
| if self.config.mm_extractor_scale == "base": | |
| beit_config = _get_base_config() | |
| elif self.config.mm_extractor_scale == "large": | |
| beit_config = _get_large_config() | |
| else: | |
| raise AttributeError( | |
| f"model config should contain key 'mm_extractor_scale', with value 'base' or 'large'." | |
| ) | |
| self.mm_extractor = BEiT3Wrapper(beit_config) | |
| if self.encoder_pretrained is not None: | |
| beit_state_dict = torch.load(self.encoder_pretrained)["model"] | |
| self.mm_extractor.load_state_dict(beit_state_dict, strict=False) | |
| for param in self.mm_extractor.parameters(): | |
| param.requires_grad = True | |
| # Projection layer | |
| in_dim = config.hidden_size | |
| assert in_dim==beit_config.encoder_embed_dim, \ | |
| f"projection layer dim {in_dim} mismatch with mm_extractor dim {beit_config.encoder_embed_dim}" | |
| out_dim = config.out_dim | |
| text_fc = [ | |
| nn.Linear(in_dim, in_dim), | |
| nn.ReLU(), | |
| nn.Linear(in_dim, out_dim) | |
| ] | |
| self.text_hidden_fcs = nn.ModuleList([nn.Sequential(*text_fc)]) | |
| self.text_hidden_fcs.train() | |
| for param in self.text_hidden_fcs.parameters(): | |
| param.requires_grad = True | |
| def postprocess_masks(self, masks: torch.Tensor, orig_hw) -> torch.Tensor: | |
| """ | |
| Perform PostProcessing on output masks. | |
| """ | |
| masks = masks.float() | |
| masks = F.interpolate(masks, | |
| orig_hw, | |
| mode="bilinear", | |
| align_corners=False) | |
| return masks | |
| # def forward( | |
| # self, | |
| # images: torch.FloatTensor, | |
| # images_evf: torch.FloatTensor, | |
| # input_ids: torch.LongTensor, | |
| # attention_masks: torch.LongTensor, | |
| # offset: torch.LongTensor, | |
| # masks_list: List[torch.FloatTensor], | |
| # label_list: List[torch.Tensor], | |
| # resize_list: List[tuple], | |
| # inference: bool = False, | |
| # **kwargs, | |
| # ): | |
| # # image_embeddings = self.get_visual_embs(images) | |
| # backbone_out = self.visual_model.forward_image(images) | |
| # # dict_keys(['vision_features', 'vision_pos_enc', 'backbone_fpn']) | |
| # _, image_embeddings, _, _ = self.visual_model._prepare_backbone_features(backbone_out) | |
| # image_embeddings = [_.to(images.dtype) for _ in image_embeddings] | |
| # batch_size = images.shape[0] | |
| # if self.visual_model.directly_add_no_mem_embed: | |
| # image_embeddings[-1] = image_embeddings[-1] + self.visual_model.no_mem_embed | |
| # feats = [ | |
| # feat.permute(1, 2, 0).view(batch_size, -1, *feat_size) | |
| # for feat, feat_size in zip(image_embeddings[::-1], self._bb_feat_sizes[::-1]) | |
| # ][::-1] | |
| # _features = {"image_embed": feats[-1], "high_res_feats": feats[:-1]} | |
| # assert batch_size == len(offset) - 1 | |
| # images_evf_list = [] | |
| # for i in range(len(offset) - 1): | |
| # start_i, end_i = offset[i], offset[i + 1] | |
| # images_evf_i = ( | |
| # images_evf[i] | |
| # .unsqueeze(0) | |
| # .expand(end_i - start_i, -1, -1, -1) | |
| # .contiguous() | |
| # ) | |
| # images_evf_list.append(images_evf_i) | |
| # images_evf = torch.cat(images_evf_list, dim=0) | |
| # multimask_output = False | |
| # output = self.mm_extractor.beit3( | |
| # visual_tokens=images_evf, | |
| # textual_tokens=input_ids, | |
| # text_padding_position=~attention_masks | |
| # ) | |
| # feat = output["encoder_out"][:, :1, ...] | |
| # feat = self.text_hidden_fcs[0](feat) | |
| # feat = torch.split(feat, [offset[i+1] - offset[i] for i in range(len(offset)-1)]) | |
| # pred_masks = [] | |
| # for i in range(len(feat)): | |
| # ( | |
| # sparse_embeddings, | |
| # dense_embeddings, | |
| # ) = self.visual_model.sam_prompt_encoder( | |
| # points=None, | |
| # boxes=None, | |
| # masks=None, | |
| # text_embeds=feat[i], | |
| # ) | |
| # sparse_embeddings = sparse_embeddings.to(feat[i].dtype) | |
| # high_res_features = [ | |
| # feat_level[i].unsqueeze(0) | |
| # for feat_level in _features["high_res_feats"] | |
| # ] | |
| # low_res_masks, iou_predictions, _, _ = self.visual_model.sam_mask_decoder( | |
| # image_embeddings=_features["image_embed"][i].unsqueeze(0), | |
| # image_pe=self.visual_model.sam_prompt_encoder.get_dense_pe(), | |
| # sparse_prompt_embeddings=sparse_embeddings, | |
| # dense_prompt_embeddings=dense_embeddings, | |
| # multimask_output=multimask_output, | |
| # repeat_image = True, | |
| # high_res_features=high_res_features, | |
| # ) | |
| # if multimask_output: | |
| # sorted_ids = torch.argsort(iou_predictions, dim=-1, descending=True) | |
| # low_res_masks = torch.take_along_dim(low_res_masks, sorted_ids[..., None, None], dim=1)[:, :1] | |
| # pred_mask = self.postprocess_masks( | |
| # low_res_masks, | |
| # orig_hw=label_list[i].shape, | |
| # ) | |
| # pred_masks.append(pred_mask[:, 0]) | |
| # gt_masks = masks_list | |
| # if inference: | |
| # return { | |
| # "pred_masks": pred_masks, | |
| # "gt_masks": gt_masks, | |
| # } | |
| # mask_bce_loss = 0 | |
| # mask_dice_loss = 0 | |
| # num_masks = 0 | |
| # for batch_idx in range(len(pred_masks)): | |
| # gt_mask = gt_masks[batch_idx] | |
| # pred_mask = pred_masks[batch_idx] | |
| # assert ( | |
| # gt_mask.shape[0] == pred_mask.shape[0] | |
| # ), "gt_mask.shape: {}, pred_mask.shape: {}".format( | |
| # gt_mask.shape, pred_mask.shape | |
| # ) | |
| # mask_bce_loss += ( | |
| # sigmoid_ce_loss(pred_mask, gt_mask, num_masks=gt_mask.shape[0]) | |
| # * gt_mask.shape[0] | |
| # ) | |
| # mask_dice_loss += ( | |
| # dice_loss(pred_mask, gt_mask, num_masks=gt_mask.shape[0]) | |
| # * gt_mask.shape[0] | |
| # ) | |
| # num_masks += gt_mask.shape[0] | |
| # mask_bce_loss = self.bce_loss_weight * mask_bce_loss / (num_masks + 1e-8) | |
| # mask_dice_loss = self.dice_loss_weight * mask_dice_loss / (num_masks + 1e-8) | |
| # mask_loss = mask_bce_loss + mask_dice_loss | |
| # loss = mask_loss | |
| # return { | |
| # "loss": loss, | |
| # "mask_bce_loss": mask_bce_loss, | |
| # "mask_dice_loss": mask_dice_loss, | |
| # "mask_loss": mask_loss, | |
| # } | |
| def inference( | |
| self, | |
| video_path, | |
| images_evf, | |
| input_ids, | |
| # original_size_list, | |
| multimask_output=False, | |
| ): | |
| predictor = self.visual_model | |
| inference_state = predictor.init_state(video_path=video_path) | |
| predictor.reset_state(inference_state) | |
| multimask_output = multimask_output | |
| output = self.mm_extractor.beit3( | |
| visual_tokens=images_evf, | |
| textual_tokens=input_ids, | |
| text_padding_position=torch.zeros_like(input_ids)) | |
| feat = output["encoder_out"][:, :1, ...] | |
| feat = self.text_hidden_fcs[0](feat) | |
| ann_frame_idx = 0 # the frame index we interact with | |
| ann_obj_id = 1 # give a unique id to each object we interact with (it can be any integers) | |
| _, out_obj_ids, out_mask_logits = predictor.add_new_text( | |
| inference_state=inference_state, | |
| frame_idx=ann_frame_idx, | |
| obj_id=ann_obj_id, | |
| text=feat) | |
| # run propagation throughout the video and collect the results in a dict | |
| video_segments = { | |
| } # video_segments contains the per-frame segmentation results | |
| for out_frame_idx, out_obj_ids, out_mask_logits in predictor.propagate_in_video( | |
| inference_state): | |
| video_segments[out_frame_idx] = { | |
| out_obj_id: (out_mask_logits[i] > 0.0).cpu().numpy() | |
| for i, out_obj_id in enumerate(out_obj_ids) | |
| } | |
| return video_segments | |
| AutoConfig.register("evf", EvfConfig) | |
| AutoModelForCausalLM.register(EvfConfig, EvfSam2Model) | |