Spaces:
				
			
			
	
			
			
		Running
		
			on 
			
			Zero
	
	
	
			
			
	
	
	
	
		
		
		Running
		
			on 
			
			Zero
	| # Copyright (c) Meta Platforms, Inc. and affiliates. | |
| # All rights reserved. | |
| # This source code is licensed under the license found in the | |
| # LICENSE file in the root directory of this source tree. | |
| import math | |
| from typing import List, Optional, Tuple, Type | |
| import torch | |
| import torch.nn as nn | |
| import torch.nn.functional as F | |
| class LayerNorm2d(nn.Module): | |
| def __init__(self, num_channels: int, eps: float = 1e-6) -> None: | |
| super().__init__() | |
| self.weight = nn.Parameter(torch.ones(num_channels)) | |
| self.bias = nn.Parameter(torch.zeros(num_channels)) | |
| self.eps = eps | |
| def forward(self, x: torch.Tensor) -> torch.Tensor: | |
| u = x.mean(1, keepdim=True) | |
| s = (x - u).pow(2).mean(1, keepdim=True) | |
| x = (x - u) / torch.sqrt(s + self.eps) | |
| x = self.weight[:, None, None] * x + self.bias[:, None, None] | |
| return x | |
| class PatchEmbed(nn.Module): | |
| """2D Image to Patch Embedding""" | |
| def __init__( | |
| self, | |
| img_size, | |
| patch_size, | |
| in_chans, | |
| embed_dim, | |
| ): | |
| super().__init__() | |
| self.proj = nn.Conv2d( | |
| in_chans, | |
| embed_dim, | |
| kernel_size=(patch_size, patch_size), | |
| stride=(patch_size, patch_size), | |
| bias=True, | |
| ) | |
| def forward(self, x): | |
| B, C, H, W = x.shape | |
| x = self.proj(x) | |
| return x | |
| class Attention(nn.Module): | |
| def __init__( | |
| self, | |
| dim, | |
| num_heads, | |
| qkv_bias, | |
| qk_scale=None, | |
| ): | |
| super().__init__() | |
| self.num_heads = num_heads | |
| head_dim = dim // num_heads | |
| self.scale = qk_scale or head_dim**-0.5 | |
| self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias) | |
| self.proj = nn.Linear(dim, dim) | |
| def forward(self, x): | |
| B, N, C = x.shape | |
| qkv = ( | |
| self.qkv(x) | |
| .reshape(B, N, 3, self.num_heads, C // self.num_heads) | |
| .permute(2, 0, 3, 1, 4) | |
| ) | |
| q, k, v = ( | |
| qkv[0], | |
| qkv[1], | |
| qkv[2], | |
| ) | |
| attn = (q @ k.transpose(-2, -1)) * self.scale | |
| attn = attn.softmax(dim=-1) | |
| x = (attn @ v).transpose(1, 2).reshape(B, N, C) | |
| x = self.proj(x) | |
| return x | |
| class Mlp(nn.Module): | |
| def __init__( | |
| self, | |
| in_features, | |
| hidden_features=None, | |
| out_features=None, | |
| act_layer=nn.GELU, | |
| ): | |
| super().__init__() | |
| out_features = out_features or in_features | |
| hidden_features = hidden_features or in_features | |
| self.fc1 = nn.Linear(in_features, hidden_features) | |
| self.act = act_layer() | |
| self.fc2 = nn.Linear(hidden_features, out_features) | |
| def forward(self, x): | |
| x = self.fc1(x) | |
| x = self.act(x) | |
| x = self.fc2(x) | |
| return x | |
| class Block(nn.Module): | |
| def __init__( | |
| self, | |
| dim, | |
| num_heads, | |
| mlp_ratio=4.0, | |
| qkv_bias=False, | |
| qk_scale=None, | |
| act_layer=nn.GELU, | |
| ): | |
| super().__init__() | |
| self.norm1 = nn.LayerNorm(dim, eps=1e-6) | |
| self.attn = Attention( | |
| dim, | |
| num_heads=num_heads, | |
| qkv_bias=qkv_bias, | |
| qk_scale=qk_scale, | |
| ) | |
| self.norm2 = nn.LayerNorm(dim, eps=1e-6) | |
| mlp_hidden_dim = int(dim * mlp_ratio) | |
| self.mlp = Mlp( | |
| in_features=dim, | |
| hidden_features=mlp_hidden_dim, | |
| act_layer=act_layer, | |
| ) | |
| def forward(self, x): | |
| x = x + self.attn(self.norm1(x)) | |
| x = x + self.mlp(self.norm2(x)) | |
| return x | |
| def get_abs_pos( | |
| abs_pos: torch.Tensor, has_cls_token: bool, hw: List[int] | |
| ) -> torch.Tensor: | |
| """ | |
| Calculate absolute positional embeddings. If needed, resize embeddings and remove cls_token | |
| dimension for the original embeddings. | |
| Args: | |
| abs_pos (Tensor): absolute positional embeddings with (1, num_position, C). | |
| has_cls_token (bool): If true, has 1 embedding in abs_pos for cls token. | |
| hw (Tuple): size of input image tokens. | |
| Returns: | |
| Absolute positional embeddings after processing with shape (1, H, W, C) | |
| """ | |
| h = hw[0] | |
| w = hw[1] | |
| if has_cls_token: | |
| abs_pos = abs_pos[:, 1:] | |
| xy_num = abs_pos.shape[1] | |
| size = int(math.sqrt(xy_num)) | |
| assert size * size == xy_num | |
| if size != h or size != w: | |
| new_abs_pos = F.interpolate( | |
| abs_pos.reshape(1, size, size, -1).permute(0, 3, 1, 2), | |
| size=(h, w), | |
| mode="bicubic", | |
| align_corners=False, | |
| ) | |
| return new_abs_pos.permute(0, 2, 3, 1) | |
| else: | |
| return abs_pos.reshape(1, h, w, -1) | |
| # Image encoder for efficient SAM. | |
| class ImageEncoderViT(nn.Module): | |
| def __init__( | |
| self, | |
| img_size: int, | |
| patch_size: int, | |
| in_chans: int, | |
| patch_embed_dim: int, | |
| normalization_type: str, | |
| depth: int, | |
| num_heads: int, | |
| mlp_ratio: float, | |
| neck_dims: List[int], | |
| act_layer: Type[nn.Module], | |
| ) -> None: | |
| """ | |
| Args: | |
| img_size (int): Input image size. | |
| patch_size (int): Patch size. | |
| in_chans (int): Number of input image channels. | |
| patch_embed_dim (int): Patch embedding dimension. | |
| depth (int): Depth of ViT. | |
| num_heads (int): Number of attention heads in each ViT block. | |
| mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. | |
| act_layer (nn.Module): Activation layer. | |
| """ | |
| super().__init__() | |
| self.img_size = img_size | |
| self.image_embedding_size = img_size // ((patch_size if patch_size > 0 else 1)) | |
| self.transformer_output_dim = ([patch_embed_dim] + neck_dims)[-1] | |
| self.pretrain_use_cls_token = True | |
| pretrain_img_size = 224 | |
| self.patch_embed = PatchEmbed(img_size, patch_size, in_chans, patch_embed_dim) | |
| # Initialize absolute positional embedding with pretrain image size. | |
| num_patches = (pretrain_img_size // patch_size) * ( | |
| pretrain_img_size // patch_size | |
| ) | |
| num_positions = num_patches + 1 | |
| self.pos_embed = nn.Parameter(torch.zeros(1, num_positions, patch_embed_dim)) | |
| self.blocks = nn.ModuleList() | |
| for i in range(depth): | |
| vit_block = Block(patch_embed_dim, num_heads, mlp_ratio, True) | |
| self.blocks.append(vit_block) | |
| self.neck = nn.Sequential( | |
| nn.Conv2d( | |
| patch_embed_dim, | |
| neck_dims[0], | |
| kernel_size=1, | |
| bias=False, | |
| ), | |
| LayerNorm2d(neck_dims[0]), | |
| nn.Conv2d( | |
| neck_dims[0], | |
| neck_dims[0], | |
| kernel_size=3, | |
| padding=1, | |
| bias=False, | |
| ), | |
| LayerNorm2d(neck_dims[0]), | |
| ) | |
| def forward(self, x: torch.Tensor) -> torch.Tensor: | |
| assert ( | |
| x.shape[2] == self.img_size and x.shape[3] == self.img_size | |
| ), "input image size must match self.img_size" | |
| x = self.patch_embed(x) | |
| # B C H W -> B H W C | |
| x = x.permute(0, 2, 3, 1) | |
| x = x + get_abs_pos( | |
| self.pos_embed, self.pretrain_use_cls_token, [x.shape[1], x.shape[2]] | |
| ) | |
| num_patches = x.shape[1] | |
| assert x.shape[2] == num_patches | |
| x = x.reshape(x.shape[0], num_patches * num_patches, x.shape[3]) | |
| for blk in self.blocks: | |
| x = blk(x) | |
| x = x.reshape(x.shape[0], num_patches, num_patches, x.shape[2]) | |
| x = self.neck(x.permute(0, 3, 1, 2)) | |
| return x | |
