Spaces:
				
			
			
	
			
			
		Running
		
			on 
			
			Zero
	
	
	
			
			
	
	
	
	
		
		
		Running
		
			on 
			
			Zero
	| # Copyright (c) Meta Platforms, Inc. and affiliates. | |
| # All rights reserved. | |
| # This source code is licensed under the license found in the | |
| # LICENSE file in the root directory of this source tree. | |
| from typing import List, Tuple, Type | |
| import numpy as np | |
| import torch | |
| import torch.nn as nn | |
| import torch.nn.functional as F | |
| from .mlp import MLPBlock | |
| class PromptEncoder(nn.Module): | |
| def __init__( | |
| self, | |
| embed_dim: int, | |
| image_embedding_size: Tuple[int, int], | |
| input_image_size: Tuple[int, int], | |
| ) -> None: | |
| """ | |
| Encodes prompts for input to SAM's mask decoder. | |
| Arguments: | |
| embed_dim (int): The prompts' embedding dimension | |
| image_embedding_size (tuple(int, int)): The spatial size of the | |
| image embedding, as (H, W). | |
| input_image_size (int): The padded size of the image as input | |
| to the image encoder, as (H, W). | |
| """ | |
| super().__init__() | |
| self.embed_dim = embed_dim | |
| self.input_image_size = input_image_size | |
| self.image_embedding_size = image_embedding_size | |
| self.pe_layer = PositionEmbeddingRandom(embed_dim // 2) | |
| self.invalid_points = nn.Embedding(1, embed_dim) | |
| self.point_embeddings = nn.Embedding(1, embed_dim) | |
| self.bbox_top_left_embeddings = nn.Embedding(1, embed_dim) | |
| self.bbox_bottom_right_embeddings = nn.Embedding(1, embed_dim) | |
| def get_dense_pe(self) -> torch.Tensor: | |
| """ | |
| Returns the positional encoding used to encode point prompts, | |
| applied to a dense set of points the shape of the image encoding. | |
| Returns: | |
| torch.Tensor: Positional encoding with shape | |
| 1x(embed_dim)x(embedding_h)x(embedding_w) | |
| """ | |
| return self.pe_layer(self.image_embedding_size).unsqueeze(0) | |
| def _embed_points( | |
| self, | |
| points: torch.Tensor, | |
| labels: torch.Tensor, | |
| ) -> torch.Tensor: | |
| """Embeds point prompts.""" | |
| points = points + 0.5 # Shift to center of pixel | |
| point_embedding = self.pe_layer.forward_with_coords( | |
| points, self.input_image_size | |
| ) | |
| invalid_label_ids = torch.eq(labels, -1)[:,:,None] | |
| point_label_ids = torch.eq(labels, 1)[:,:,None] | |
| topleft_label_ids = torch.eq(labels, 2)[:,:,None] | |
| bottomright_label_ids = torch.eq(labels, 3)[:,:,None] | |
| point_embedding = point_embedding + self.invalid_points.weight[:,None,:] * invalid_label_ids | |
| point_embedding = point_embedding + self.point_embeddings.weight[:,None,:] * point_label_ids | |
| point_embedding = point_embedding + self.bbox_top_left_embeddings.weight[:,None,:] * topleft_label_ids | |
| point_embedding = point_embedding + self.bbox_bottom_right_embeddings.weight[:,None,:] * bottomright_label_ids | |
| return point_embedding | |
| def forward( | |
| self, | |
| coords, | |
| labels, | |
| ) -> torch.Tensor: | |
| """ | |
| Embeds different types of prompts, returning both sparse and dense | |
| embeddings. | |
| Arguments: | |
| points: A tensor of shape [B, 2] | |
| labels: An integer tensor of shape [B] where each element is 1,2 or 3. | |
| Returns: | |
| torch.Tensor: sparse embeddings for the points and boxes, with shape | |
| BxNx(embed_dim), where N is determined by the number of input points | |
| and boxes. | |
| """ | |
| return self._embed_points(coords, labels) | |
| class PositionEmbeddingRandom(nn.Module): | |
| """ | |
| Positional encoding using random spatial frequencies. | |
| """ | |
| def __init__(self, num_pos_feats: int) -> None: | |
| super().__init__() | |
| self.register_buffer( | |
| "positional_encoding_gaussian_matrix", torch.randn((2, num_pos_feats)) | |
| ) | |
| def _pe_encoding(self, coords: torch.Tensor) -> torch.Tensor: | |
| """Positionally encode points that are normalized to [0,1].""" | |
| # assuming coords are in [0, 1]^2 square and have d_1 x ... x d_n x 2 shape | |
| coords = 2 * coords - 1 | |
| coords = coords @ self.positional_encoding_gaussian_matrix | |
| coords = 2 * np.pi * coords | |
| # outputs d_1 x ... x d_n x C shape | |
| return torch.cat([torch.sin(coords), torch.cos(coords)], dim=-1) | |
| def forward(self, size: Tuple[int, int]) -> torch.Tensor: | |
| """Generate positional encoding for a grid of the specified size.""" | |
| h, w = size | |
| device = self.positional_encoding_gaussian_matrix.device | |
| grid = torch.ones([h, w], device=device, dtype=self.positional_encoding_gaussian_matrix.dtype) | |
| y_embed = grid.cumsum(dim=0) - 0.5 | |
| x_embed = grid.cumsum(dim=1) - 0.5 | |
| y_embed = y_embed / h | |
| x_embed = x_embed / w | |
| pe = self._pe_encoding(torch.stack([x_embed, y_embed], dim=-1)) | |
| return pe.permute(2, 0, 1) # C x H x W | |
| def forward_with_coords( | |
| self, coords_input: torch.Tensor, image_size: Tuple[int, int] | |
| ) -> torch.Tensor: | |
| """Positionally encode points that are not normalized to [0,1].""" | |
| coords = coords_input.clone() | |
| coords[:, :, 0] = coords[:, :, 0] / image_size[1] | |
| coords[:, :, 1] = coords[:, :, 1] / image_size[0] | |
| # remove to(float) here, don't know why original implementation add this | |
| return self._pe_encoding(coords) # B x N x C | |
| class MaskDecoder(nn.Module): | |
| def __init__( | |
| self, | |
| *, | |
| transformer_dim: int, | |
| transformer: nn.Module, | |
| num_multimask_outputs: int, | |
| activation: Type[nn.Module], | |
| normalization_type: str, | |
| normalize_before_activation: bool, | |
| iou_head_depth: int, | |
| iou_head_hidden_dim: int, | |
| upscaling_layer_dims: List[int], | |
| ) -> None: | |
| """ | |
| Predicts masks given an image and prompt embeddings, using a | |
| transformer architecture. | |
| Arguments: | |
| transformer_dim (int): the channel dimension of the transformer | |
| transformer (nn.Module): the transformer used to predict masks | |
| num_multimask_outputs (int): the number of masks to predict | |
| when disambiguating masks | |
| activation (nn.Module): the type of activation to use when | |
| upscaling masks | |
| iou_head_depth (int): the depth of the MLP used to predict | |
| mask quality | |
| iou_head_hidden_dim (int): the hidden dimension of the MLP | |
| used to predict mask quality | |
| """ | |
| super().__init__() | |
| self.transformer_dim = transformer_dim | |
| self.transformer = transformer | |
| self.num_multimask_outputs = num_multimask_outputs | |
| self.iou_token = nn.Embedding(1, transformer_dim) | |
| if num_multimask_outputs > 1: | |
| self.num_mask_tokens = num_multimask_outputs + 1 | |
| else: | |
| self.num_mask_tokens = 1 | |
| self.mask_tokens = nn.Embedding(self.num_mask_tokens, transformer_dim) | |
| output_dim_after_upscaling = transformer_dim | |
| self.final_output_upscaling_layers = nn.ModuleList([]) | |
| for idx, layer_dims in enumerate(upscaling_layer_dims): | |
| self.final_output_upscaling_layers.append( | |
| nn.Sequential( | |
| nn.ConvTranspose2d( | |
| output_dim_after_upscaling, | |
| layer_dims, | |
| kernel_size=2, | |
| stride=2, | |
| ), | |
| nn.GroupNorm(1, layer_dims) | |
| if idx < len(upscaling_layer_dims) - 1 | |
| else nn.Identity(), | |
| activation(), | |
| ) | |
| ) | |
| output_dim_after_upscaling = layer_dims | |
| self.output_hypernetworks_mlps = nn.ModuleList( | |
| [ | |
| MLPBlock( | |
| input_dim=transformer_dim, | |
| hidden_dim=transformer_dim, | |
| output_dim=output_dim_after_upscaling, | |
| num_layers=2, | |
| act=activation, | |
| ) | |
| for i in range(self.num_mask_tokens) | |
| ] | |
| ) | |
| self.iou_prediction_head = MLPBlock( | |
| input_dim=transformer_dim, | |
| hidden_dim=iou_head_hidden_dim, | |
| output_dim=self.num_mask_tokens, | |
| num_layers=iou_head_depth, | |
| act=activation, | |
| ) | |
| def forward( | |
| self, | |
| image_embeddings: torch.Tensor, | |
| image_pe: torch.Tensor, | |
| sparse_prompt_embeddings: torch.Tensor, | |
| multimask_output: bool, | |
| ) -> Tuple[torch.Tensor, torch.Tensor]: | |
| """ | |
| Predict masks given image and prompt embeddings. | |
| Arguments: | |
| image_embeddings: A tensor of shape [B, C, H, W] or [B*max_num_queries, C, H, W] | |
| image_pe (torch.Tensor): positional encoding with the shape of image_embeddings (the batch dimension is broadcastable). | |
| sparse_prompt_embeddings (torch.Tensor): the embeddings of the points and boxes | |
| multimask_output (bool): Whether to return multiple masks or a single | |
| mask. | |
| Returns: | |
| torch.Tensor: batched predicted masks | |
| torch.Tensor: batched predictions of mask quality | |
| """ | |
| ( | |
| batch_size, | |
| max_num_queries, | |
| sparse_embed_dim_1, | |
| sparse_embed_dim_2, | |
| ) = sparse_prompt_embeddings.shape | |
| ( | |
| _, | |
| image_embed_dim_c, | |
| image_embed_dim_h, | |
| image_embed_dim_w, | |
| ) = image_embeddings.shape | |
| # Tile the image embedding for all queries. | |
| image_embeddings_tiled = torch.tile( | |
| image_embeddings[:, None, :, :, :], [1, max_num_queries, 1, 1, 1] | |
| ).view( | |
| batch_size * max_num_queries, | |
| image_embed_dim_c, | |
| image_embed_dim_h, | |
| image_embed_dim_w, | |
| ) | |
| sparse_prompt_embeddings = sparse_prompt_embeddings.reshape( | |
| batch_size * max_num_queries, sparse_embed_dim_1, sparse_embed_dim_2 | |
| ) | |
| masks, iou_pred = self.predict_masks( | |
| image_embeddings=image_embeddings_tiled, | |
| image_pe=image_pe, | |
| sparse_prompt_embeddings=sparse_prompt_embeddings, | |
| ) | |
| if multimask_output and self.num_multimask_outputs > 1: | |
| return masks[:, 1:, :], iou_pred[:, 1:] | |
| else: | |
| return masks[:, :1, :], iou_pred[:, :1] | |
| def predict_masks( | |
| self, | |
| image_embeddings: torch.Tensor, | |
| image_pe: torch.Tensor, | |
| sparse_prompt_embeddings: torch.Tensor, | |
| ) -> Tuple[torch.Tensor, torch.Tensor]: | |
| """Predicts masks. See 'forward' for more details.""" | |
| # Concatenate output tokens | |
| output_tokens = torch.cat( | |
| [self.iou_token.weight, self.mask_tokens.weight], dim=0 | |
| ) | |
| output_tokens = output_tokens.unsqueeze(0).expand( | |
| sparse_prompt_embeddings.size(0), -1, -1 | |
| ) | |
| tokens = torch.cat((output_tokens, sparse_prompt_embeddings), dim=1) | |
| # Expand per-image data in batch direction to be per-mask | |
| pos_src = torch.repeat_interleave(image_pe, tokens.shape[0], dim=0) | |
| b, c, h, w = image_embeddings.shape | |
| hs, src = self.transformer(image_embeddings, pos_src, tokens) | |
| iou_token_out = hs[:, 0, :] | |
| mask_tokens_out = hs[:, 1 : (1 + self.num_mask_tokens), :] | |
| # Upscale mask embeddings and predict masks using the mask tokens | |
| upscaled_embedding = src.transpose(1, 2).view(b, c, h, w) | |
| for upscaling_layer in self.final_output_upscaling_layers: | |
| upscaled_embedding = upscaling_layer(upscaled_embedding) | |
| hyper_in_list: List[torch.Tensor] = [] | |
| for i, output_hypernetworks_mlp in enumerate(self.output_hypernetworks_mlps): | |
| hyper_in_list.append(output_hypernetworks_mlp(mask_tokens_out[:, i, :])) | |
| hyper_in = torch.stack(hyper_in_list, dim=1) | |
| b, c, h, w = upscaled_embedding.shape | |
| masks = (hyper_in @ upscaled_embedding.view(b, c, h * w)).view(b, -1, h, w) | |
| # Generate mask quality predictions | |
| iou_pred = self.iou_prediction_head(iou_token_out) | |
| return masks, iou_pred | |
