Spaces:
Running
on
Zero
Running
on
Zero
| import glob | |
| import os | |
| import random | |
| import cv2 | |
| import numpy as np | |
| import torch | |
| import torch.nn.functional as F | |
| from pycocotools import mask | |
| from model.segment_anything.utils.transforms import ResizeLongestSide | |
| from .data_processing import get_mask_from_json | |
| from .refer import REFER | |
| from .refer_seg_dataset import ReferSegDataset | |
| from .sem_seg_dataset import SemSegDataset | |
| from torchvision import transforms | |
| import json | |
| from PIL import Image | |
| def collate_fn( | |
| batch, tokenizer=None, local_rank=-1 | |
| ): | |
| image_path_list = [] | |
| images_list = [] | |
| images_evf_list = [] | |
| masks_list = [] | |
| label_list = [] | |
| resize_list = [] | |
| sampled_classes_list = [] | |
| offset_list = [0] | |
| cnt = 0 | |
| inferences = [] | |
| for ( | |
| image_path, | |
| images, | |
| images_evf, | |
| masks, | |
| label, | |
| resize, | |
| sampled_classes, | |
| inference, | |
| ) in batch: | |
| image_path_list.append(image_path) | |
| images_list.append(images) | |
| images_evf_list.append(images_evf) | |
| label_list.append(label) | |
| masks_list.append(masks.float()) | |
| resize_list.append(resize) | |
| sampled_classes_list.extend(sampled_classes) | |
| cnt += len(sampled_classes) | |
| offset_list.append(cnt) | |
| inferences.append(inference) | |
| input_ids = [ | |
| tokenizer(prompt, return_tensors="pt").input_ids[0] | |
| for prompt in sampled_classes_list | |
| ] | |
| input_ids = torch.nn.utils.rnn.pad_sequence( | |
| input_ids, batch_first=True, padding_value=tokenizer.pad_token_id | |
| ) | |
| attention_masks = input_ids.ne(tokenizer.pad_token_id) | |
| if inferences[0] == False: | |
| truncate_len = tokenizer.model_max_length | |
| if input_ids.shape[1] > truncate_len: | |
| input_ids = input_ids[:, :truncate_len] | |
| targets = targets[:, :truncate_len] | |
| attention_masks = attention_masks[:, :truncate_len] | |
| return { | |
| "image_paths": image_path_list, | |
| "images": torch.stack(images_list, dim=0), | |
| "images_evf": torch.stack(images_evf_list, dim=0), | |
| "input_ids": input_ids, | |
| "attention_masks": attention_masks, | |
| "masks_list": masks_list, | |
| "label_list": label_list, | |
| "resize_list": resize_list, | |
| "offset": torch.LongTensor(offset_list), | |
| "sampled_classes_list": sampled_classes_list, | |
| "inference": inferences[0], | |
| } | |
| class HybridDataset(torch.utils.data.Dataset): | |
| pixel_mean = torch.Tensor([123.675, 116.28, 103.53]).view(-1, 1, 1) | |
| pixel_std = torch.Tensor([58.395, 57.12, 57.375]).view(-1, 1, 1) | |
| img_size = 1024 | |
| ignore_label = 255 | |
| def __init__( | |
| self, | |
| base_image_dir, | |
| tokenizer, | |
| samples_per_epoch=500 * 8 * 2 * 10, | |
| precision: str = "fp32", | |
| image_size: int = 224, | |
| num_classes_per_sample: int = 3, | |
| exclude_val=False, | |
| dataset="sem_seg||refer_seg", | |
| sample_rate=[9, 3, 3, 1], | |
| sem_seg_data="ade20k||cocostuff||pascal_part||mapillary", | |
| refer_seg_data="refclef||refcoco||refcoco+||refcocog", | |
| explanatory=-1, | |
| model_type="ori", | |
| transform=ResizeLongestSide(1024), | |
| ): | |
| self.transform=transform | |
| self.model_type = model_type | |
| self.exclude_val = exclude_val | |
| self.dataset = dataset | |
| self.samples_per_epoch = samples_per_epoch | |
| self.explanatory = explanatory | |
| self.num_classes_per_sample = num_classes_per_sample | |
| sample_rate = np.array(sample_rate) | |
| self.sample_rate = sample_rate / sample_rate.sum() | |
| self.base_image_dir = base_image_dir | |
| self.image_size = image_size | |
| self.tokenizer = tokenizer | |
| self.precision = precision | |
| self.datasets = dataset.split("||") | |
| self.all_datasets = [] | |
| for dataset in self.datasets: | |
| if dataset == "sem_seg": | |
| self.all_datasets.append( | |
| SemSegDataset( | |
| base_image_dir, | |
| tokenizer, | |
| samples_per_epoch, | |
| precision, | |
| image_size, | |
| num_classes_per_sample, | |
| exclude_val, | |
| sem_seg_data, | |
| self.model_type, | |
| self.transform | |
| ) | |
| ) | |
| elif dataset == "refer_seg": | |
| self.all_datasets.append( | |
| ReferSegDataset( | |
| base_image_dir, | |
| tokenizer, | |
| samples_per_epoch, | |
| precision, | |
| image_size, | |
| num_classes_per_sample, | |
| exclude_val, | |
| refer_seg_data, | |
| self.model_type, | |
| self.transform | |
| ) | |
| ) | |
| def __len__(self): | |
| return self.samples_per_epoch | |
| def __getitem__(self, idx): | |
| ind = np.random.choice(list(range(len(self.datasets))), p=self.sample_rate) | |
| data = self.all_datasets[ind] | |
| inference = False | |
| return *data[0], inference | |
| def init_ade20k(base_image_dir): | |
| with open("utils/ade20k_classes.json", "r") as f: | |
| ade20k_classes = json.load(f) | |
| ade20k_classes = np.array(ade20k_classes) | |
| image_ids = sorted( | |
| os.listdir(os.path.join(base_image_dir, "ade20k/images", "validation")) | |
| ) | |
| ade20k_image_ids = [] | |
| for x in image_ids: | |
| if x.endswith(".jpg"): | |
| ade20k_image_ids.append(x[:-4]) | |
| ade20k_images = [] | |
| for image_id in ade20k_image_ids: # self.descriptions: | |
| ade20k_images.append( | |
| os.path.join( | |
| base_image_dir, | |
| "ade20k", | |
| "images", | |
| "validation", | |
| "{}.jpg".format(image_id), | |
| ) | |
| ) | |
| ade20k_labels = [ | |
| x.replace(".jpg", ".png").replace("images", "annotations") | |
| for x in ade20k_images | |
| ] | |
| print("ade20k: ", len(ade20k_images)) | |
| return ade20k_classes, ade20k_images, ade20k_labels | |
| class ValDataset(torch.utils.data.Dataset): | |
| pixel_mean = torch.Tensor([123.675, 116.28, 103.53]).view(-1, 1, 1) | |
| pixel_std = torch.Tensor([58.395, 57.12, 57.375]).view(-1, 1, 1) | |
| img_size = 1024 | |
| ignore_label = 255 | |
| def __init__( | |
| self, | |
| base_image_dir, | |
| tokenizer, | |
| val_dataset, | |
| image_size=224, | |
| model_type="ori" | |
| ): | |
| self.model_type = model_type | |
| self.base_image_dir = base_image_dir | |
| splits = val_dataset.split("|") | |
| if len(splits) == 3: | |
| ds, splitBy, split = splits | |
| base_image_dir = os.path.join(base_image_dir, "refer_seg") | |
| refer_api = REFER(base_image_dir, ds, splitBy) | |
| ref_ids_val = refer_api.getRefIds(split=split) | |
| images_ids_val = refer_api.getImgIds(ref_ids=ref_ids_val) | |
| refs_val = refer_api.loadRefs(ref_ids=ref_ids_val) | |
| refer_seg_ds = {} | |
| refer_seg_ds["images"] = [] | |
| loaded_images = refer_api.loadImgs(image_ids=images_ids_val) | |
| for item in loaded_images: | |
| item = item.copy() | |
| if ds == "refclef": | |
| item["file_name"] = os.path.join( | |
| base_image_dir, "images/saiapr_tc-12", item["file_name"] | |
| ) | |
| elif ds in ["refcoco", "refcoco+", "refcocog", "grefcoco"]: | |
| item["file_name"] = os.path.join( | |
| base_image_dir, | |
| "images/mscoco/images/train2014", | |
| item["file_name"], | |
| ) | |
| refer_seg_ds["images"].append(item) | |
| refer_seg_ds["annotations"] = refer_api.Anns # anns_val | |
| img2refs = {} | |
| for ref in refs_val: | |
| image_id = ref["image_id"] | |
| img2refs[image_id] = img2refs.get(image_id, []) + [ | |
| ref, | |
| ] | |
| refer_seg_ds["img2refs"] = img2refs | |
| self.refer_seg_ds = refer_seg_ds | |
| self.data_type = "refer_seg" | |
| elif val_dataset=="ade": | |
| ds = "ade" | |
| self.classes, self.images, self.labels = init_ade20k(base_image_dir) | |
| self.data_type = "sem_seg" | |
| self.ds = ds | |
| self.tokenizer = tokenizer | |
| self.transform = ResizeLongestSide(1024) | |
| self.image_preprocessor = transforms.Compose([ | |
| transforms.ToTensor(), | |
| transforms.Resize((image_size, image_size), interpolation=3), | |
| transforms.Normalize(mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5)) | |
| ]) | |
| def __len__(self): | |
| if self.data_type == "refer_seg": | |
| return len(self.refer_seg_ds["images"]) | |
| else: | |
| return len(self.images) | |
| def preprocess(self, x: torch.Tensor) -> torch.Tensor: | |
| """Normalize pixel values and pad to a square input.""" | |
| # Normalize colors | |
| x = (x - self.pixel_mean) / self.pixel_std | |
| if self.model_type=="effi": | |
| x = F.interpolate(x.unsqueeze(0), (self.img_size, self.img_size), mode="bilinear").squeeze(0) | |
| else: | |
| # Pad | |
| h, w = x.shape[-2:] | |
| padh = self.img_size - h | |
| padw = self.img_size - w | |
| x = F.pad(x, (0, padw, 0, padh)) | |
| return x | |
| def __getitem__(self, idx): | |
| if self.data_type == "refer_seg": | |
| refer_seg_ds = self.refer_seg_ds | |
| images = refer_seg_ds["images"] | |
| annotations = refer_seg_ds["annotations"] | |
| img2refs = refer_seg_ds["img2refs"] | |
| image_info = images[idx] | |
| image_path = image_info["file_name"] | |
| image_id = image_info["id"] | |
| refs = img2refs[image_id] | |
| if len(refs) == 0: | |
| raise ValueError("image {} has no refs".format(image_id)) | |
| sents = [] | |
| ann_ids = [] | |
| for ref in refs: | |
| for sent in ref["sentences"]: | |
| sents.append(sent["sent"].strip().lower()) | |
| ann_ids.append(ref["ann_id"]) | |
| sampled_sents = sents | |
| sampled_ann_ids = ann_ids | |
| image = cv2.imread(image_path) | |
| image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) | |
| is_sentence = False | |
| elif self.data_type == "sem_seg": | |
| image_path = self.images[idx] | |
| label_path = self.labels[idx] | |
| label = Image.open(label_path) | |
| label = np.array(label) | |
| label[label == 0] = 255 | |
| label -= 1 | |
| label[label == 254] = 255 | |
| unique_label = np.unique(label).tolist() | |
| if 255 in unique_label: | |
| unique_label.remove(255) | |
| sampled_sents = [self.classes[class_id] for class_id in unique_label] | |
| img = cv2.imread(image_path) | |
| image = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) | |
| class_ids = unique_label | |
| label = torch.from_numpy(label).long() | |
| masks = [] | |
| for class_id in class_ids: | |
| masks.append(label == class_id) | |
| masks = torch.stack(masks, dim=0) | |
| # preprocess image for evf | |
| image_evf = self.image_preprocessor(image) | |
| # preprocess image for sam | |
| image = self.transform.apply_image(image) | |
| resize = image.shape[:2] | |
| image = self.preprocess(torch.from_numpy(image).permute(2, 0, 1).contiguous()) | |
| if self.data_type == "refer_seg": | |
| masks = [] | |
| for i, ann_id in enumerate(sampled_ann_ids): | |
| ann = annotations[ann_id] | |
| if len(ann["segmentation"]) == 0 and sampled_sents[i] != "": | |
| m = np.zeros((image_info["height"], image_info["width"], 1)) | |
| else: | |
| if type(ann["segmentation"][0]) == list: # polygon | |
| rle = mask.frPyObjects( | |
| ann["segmentation"], | |
| image_info["height"], | |
| image_info["width"], | |
| ) | |
| else: | |
| rle = ann["segmentation"] | |
| for i in range(len(rle)): | |
| if not isinstance(rle[i]["counts"], bytes): | |
| rle[i]["counts"] = rle[i]["counts"].encode() | |
| m = mask.decode(rle) | |
| m = np.sum( | |
| m, axis=2 | |
| ) # sometimes there are multiple binary map (corresponding to multiple segs) | |
| m = m.astype(np.uint8) # convert to np.uint8 | |
| masks.append(m) | |
| if not isinstance(masks, torch.Tensor): | |
| masks = np.stack(masks, axis=0) | |
| masks = torch.from_numpy(masks) | |
| labels = torch.ones(masks.shape[1], masks.shape[2]) * self.ignore_label | |
| inference = True | |
| return ( | |
| image_path, | |
| image, | |
| image_evf, | |
| masks, | |
| labels, | |
| resize, | |
| sampled_sents, | |
| inference, | |
| ) | |