|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import os |
|
import cv2 |
|
import torch |
|
import numpy as np |
|
from torch.nn.parallel import DataParallel |
|
from einops import rearrange |
|
from condition.utils import annotator_ckpts_path |
|
import torch.nn.functional as F |
|
|
|
class DoubleConvBlock(torch.nn.Module): |
|
def __init__(self, input_channel, output_channel, layer_number): |
|
super().__init__() |
|
self.convs = torch.nn.Sequential() |
|
self.convs.append(torch.nn.Conv2d(in_channels=input_channel, out_channels=output_channel, kernel_size=(3, 3), stride=(1, 1), padding=1)) |
|
for i in range(1, layer_number): |
|
self.convs.append(torch.nn.Conv2d(in_channels=output_channel, out_channels=output_channel, kernel_size=(3, 3), stride=(1, 1), padding=1)) |
|
self.projection = torch.nn.Conv2d(in_channels=output_channel, out_channels=1, kernel_size=(1, 1), stride=(1, 1), padding=0) |
|
|
|
def __call__(self, x, down_sampling=False): |
|
h = x |
|
if down_sampling: |
|
h = torch.nn.functional.max_pool2d(h, kernel_size=(2, 2), stride=(2, 2)) |
|
for conv in self.convs: |
|
h = conv(h) |
|
h = torch.nn.functional.relu(h) |
|
return h, self.projection(h) |
|
|
|
|
|
class ControlNetHED_Apache2(torch.nn.Module): |
|
def __init__(self): |
|
super().__init__() |
|
self.norm = torch.nn.Parameter(torch.zeros(size=(1, 3, 1, 1))) |
|
self.block1 = DoubleConvBlock(input_channel=3, output_channel=64, layer_number=2) |
|
self.block2 = DoubleConvBlock(input_channel=64, output_channel=128, layer_number=2) |
|
self.block3 = DoubleConvBlock(input_channel=128, output_channel=256, layer_number=3) |
|
self.block4 = DoubleConvBlock(input_channel=256, output_channel=512, layer_number=3) |
|
self.block5 = DoubleConvBlock(input_channel=512, output_channel=512, layer_number=3) |
|
|
|
def __call__(self, x): |
|
h = x - self.norm |
|
h, projection1 = self.block1(h) |
|
h, projection2 = self.block2(h, down_sampling=True) |
|
h, projection3 = self.block3(h, down_sampling=True) |
|
h, projection4 = self.block4(h, down_sampling=True) |
|
h, projection5 = self.block5(h, down_sampling=True) |
|
return projection1, projection2, projection3, projection4, projection5 |
|
|
|
|
|
class HEDdetector(torch.nn.Module): |
|
def __init__(self): |
|
super().__init__() |
|
remote_model_path = "https://huggingface.co/lllyasviel/Annotators/resolve/main/ControlNetHED.pth" |
|
modelpath = os.path.join(annotator_ckpts_path, "ControlNetHED.pth") |
|
if not os.path.exists(modelpath): |
|
from basicsr.utils.download_util import load_file_from_url |
|
load_file_from_url(remote_model_path, model_dir=annotator_ckpts_path) |
|
self.netNetwork = ControlNetHED_Apache2().float() |
|
self.netNetwork.load_state_dict(torch.load(modelpath)) |
|
|
|
def __call__(self, input_image): |
|
""" |
|
input: tensor (B,C,H,W) |
|
output: tensor (B,H,W) |
|
""" |
|
B, C, H, W = input_image.shape |
|
image_hed = input_image |
|
|
|
edges = self.netNetwork(image_hed) |
|
edges = [F.interpolate(e, size=(H, W), mode='bilinear', align_corners=False).squeeze(1) for e in edges] |
|
edges = torch.stack(edges, dim=1) |
|
edge = 1 / (1 + torch.exp(-torch.mean(edges, dim=1))) |
|
edge = (edge * 255.0).clamp(0, 255) |
|
|
|
return edge |
|
|
|
|
|
def nms(x, t, s): |
|
x = cv2.GaussianBlur(x.astype(np.float32), (0, 0), s) |
|
|
|
f1 = np.array([[0, 0, 0], [1, 1, 1], [0, 0, 0]], dtype=np.uint8) |
|
f2 = np.array([[0, 1, 0], [0, 1, 0], [0, 1, 0]], dtype=np.uint8) |
|
f3 = np.array([[1, 0, 0], [0, 1, 0], [0, 0, 1]], dtype=np.uint8) |
|
f4 = np.array([[0, 0, 1], [0, 1, 0], [1, 0, 0]], dtype=np.uint8) |
|
|
|
y = np.zeros_like(x) |
|
|
|
for f in [f1, f2, f3, f4]: |
|
np.putmask(y, cv2.dilate(x, kernel=f) == x, x) |
|
|
|
z = np.zeros_like(y, dtype=np.uint8) |
|
z[y > t] = 255 |
|
return z |
|
|
|
if __name__ == '__main__': |
|
import matplotlib.pyplot as plt |
|
from tqdm import tqdm |
|
import torch.nn.functional as F |
|
device = torch.device('cuda') |
|
apply_hed = HEDdetector().to(device).eval() |
|
img = cv2.imread('condition/dragon_1024_512.jpg') |
|
H,W = img.shape[:2] |
|
resize_img = cv2.resize(img,(512,1024)) |
|
detected_map = apply_hed(torch.from_numpy(img).permute(2,0,1).unsqueeze(0).cuda()) |
|
resize_detected_map = apply_hed(torch.from_numpy(resize_img).permute(2,0,1).unsqueeze(0).cuda()) |
|
cv2.imwrite('condition/example_hed_resize.jpg', resize_detected_map[0].cpu().detach().numpy()) |
|
resize_detected_map = F.interpolate(resize_detected_map.unsqueeze(0).to(torch.float32), size=(H,W), mode='bilinear', align_corners=False, antialias=True) |
|
print(abs(detected_map - resize_detected_map).sum()) |
|
print(img.shape, img.max(),img.min(),detected_map.shape, detected_map.max(),detected_map.min()) |
|
cv2.imwrite('condition/example_hed.jpg', detected_map[0].cpu().detach().numpy()) |
|
cv2.imwrite('condition/example_hed_resized.jpg', resize_detected_map[0,0].cpu().detach().numpy()) |