import gradio as gr import os import lexrank as lr import nltk import metrics def summarize(in_text): if len(in_text)==0: return 'Error: No text provided', None nltk_file = '/home/user/nltk_data/tokenizers/punkt.zip' if os.path.exists(nltk_file): print('nltk punkt file exists in ', nltk_file) else: print("downloading punkt file") nltk.download('punkt') in_longtext = [] # Discard all senteces that have less than 10 words in them in_text_sentenses = in_text.split('.') print(in_text_sentenses) for sen in in_text_sentenses: if len(sen.split()) > 10: in_longtext.append(sen) in_text = '.'.join(in_longtext)+'.' # The size of the summary is limited to 1024 # The Lexrank algorith accepts only sentences as a limit # We start with one sentece and check the token size # Then increase the number of sentences until the tokensize # of the next sentence exceed the limit target_tokens = 1024 in_sents = metrics.num_sentences(in_text) out_text = lr.get_Summary(in_text,1) n_tokens= metrics.num_tokens(out_text) prev_n_tokens=0 for sen in range(2, in_sents): if n_tokens >= target_tokens: n_tokens = prev_n_tokens break else: out_text = lr.get_Summary(in_text,sen) prev_n_tokens = n_tokens n_tokens= metrics.num_tokens(out_text) n_sents = metrics.num_sentences(out_text) n_words = metrics.num_words(out_text) n_chars = metrics.num_chars(out_text) return out_text, n_words, n_sents, n_chars, n_tokens demo = gr.Interface(summarize, inputs=["text"] , outputs=[gr.Textbox(label="Extractive Summary"), gr.Number(label="Number of Words"), gr.Number(label="Number of Sentences"), gr.Number(label="Number of Characters"), gr.Number(label="Number of Tokens")], allow_flagging="never", queue = True) if __name__ == "__main__": demo.launch()