File size: 16,777 Bytes
6fe569d d25ed22 6fe569d 6901ce4 6fe569d af44c43 6901ce4 052edd8 6fe569d 6901ce4 6fe569d af44c43 6fe569d af44c43 6fe569d af44c43 6fe569d af44c43 6fe569d af44c43 6901ce4 af44c43 6fe569d af44c43 6fe569d af44c43 6fe569d af44c43 6fe569d af44c43 6fe569d af44c43 6fe569d 6901ce4 6fe569d 6901ce4 af44c43 e828745 6901ce4 e828745 6fe569d af44c43 6901ce4 af44c43 621da38 af44c43 6901ce4 af44c43 6901ce4 af44c43 6fe569d af44c43 6fe569d af44c43 6fe569d af44c43 6fe569d d124ecd 6fe569d 6901ce4 d124ecd 6fe569d 6901ce4 6fe569d af44c43 6fe569d af44c43 6901ce4 6fe569d b8f16a6 d124ecd 6901ce4 d124ecd 6901ce4 d124ecd af44c43 6fe569d af44c43 6fe569d b8f16a6 d124ecd 6901ce4 d124ecd 6fe569d 6901ce4 6fe569d d124ecd 6fe569d 948faf9 6901ce4 6fe569d 948faf9 6901ce4 6fe569d af44c43 b323653 af44c43 b323653 af44c43 6fe569d af44c43 6901ce4 6fe569d af44c43 6fe569d 7edcbdb 2d3e634 6901ce4 af44c43 6901ce4 af44c43 7edcbdb a95a714 6fe569d af44c43 7edcbdb 6fe569d 6901ce4 af44c43 6901ce4 af44c43 6901ce4 e38e783 af44c43 6901ce4 af44c43 6901ce4 af44c43 c49d373 af44c43 6901ce4 af44c43 6901ce4 af44c43 6901ce4 af44c43 4bd0367 6fe569d 6901ce4 6fe569d af44c43 6fe569d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 |
import base64
from langchain.chains.summarize import load_summarize_chain
from langchain.docstore.document import Document
#from langchain.document_loaders.pdf import PyMuPDFLoader
from langchain.document_loaders import PyMuPDFLoader
from langchain.text_splitter import RecursiveCharacterTextSplitter
from PyPDF2 import PdfReader
import re
import streamlit as st
from streamlit_tags import st_tags
import sys
import time
import torch
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM, AutoModelForCausalLM
from transformers import pipeline
# Notes
# https://huggingface.co/docs/transformers/pad_truncation
# https://stackoverflow.com/questions/76431655/langchain-pypdfloader
# https://dev.to/eteimz/understanding-langchains-recursivecharactertextsplitter-2846
# file loader and preprocessor
def file_preprocessing(
file, skipfirst, skiplast, chunk_size, chunk_overlap, exclude_words
):
loader = PyMuPDFLoader(file)
pages = loader.load_and_split()
# Skip user-specified page(s)
if (skipfirst == 1) & (skiplast == 0):
del pages[0]
elif (skipfirst == 0) & (skiplast == 1):
del pages[-1]
elif (skipfirst == 1) & (skiplast == 1):
del pages[0]
del pages[-1]
else:
pages = pages
input_text = ""
for page in pages:
input_text = input_text + page.page_content
input_text = re.sub("-\n", "", input_text)
input_text = re.sub(r"\n", " ", input_text)
# Initialize a list to store valid sentences
valid_sentences = []
# Split the input_text into sentences
sentences = re.split(r"(?<=[.!?])\s+", input_text)
# Iterate through each sentence
for sentence in sentences:
# Check if any exclude_word is present in the sentence
if any(word in sentence for word in exclude_words):
continue # Skip sentences with exclude_words
valid_sentences.append(sentence)
final_input_text = " ".join(valid_sentences)
print("\n############## New article ##############\n")
print("Cleaned and formatted input text:\n")
print(final_input_text)
print("\nExcluded words: " + str(exclude_words))
print("\nChunking input text...\n")
text_splitter = RecursiveCharacterTextSplitter(
chunk_size=chunk_size, # Number of characters
chunk_overlap=chunk_overlap,
length_function=len,
separators=["\n\n", "\n", " ", ""], # Default list
)
text_chunks = text_splitter.split_text(final_input_text)
print("Number of chunks: " + str(len(text_chunks)), end="")
chunks = ""
for text in text_chunks:
chunks = chunks + "\n\n" + text
print(chunks)
return final_input_text, text_chunks
# Function to count words in the input
def preprocessing_word_count(
filepath, skipfirst, skiplast, chunk_size, chunk_overlap, exclude_words
):
final_input_text, text_chunks = file_preprocessing(
filepath, skipfirst, skiplast, chunk_size, chunk_overlap, exclude_words
)
text_length = len(re.findall(r"\w+", final_input_text))
print("\nInput word count: " f"{text_length:,}")
print("Chunk size: " f"{chunk_size:,}")
print("Chunk overlap: %s" % chunk_overlap)
return final_input_text, text_chunks, text_length
# LLM pipeline for summarization
def llm_pipeline(
tokenizer, base_model, final_input_text, model_source, minimum_token_number
):
summarizer = pipeline(
task="summarization",
model=base_model,
tokenizer=tokenizer,
truncation=True,
)
print("Model source: %s" % (model_source))
print("Summarizing...\n")
result = summarizer(
final_input_text,
min_length=minimum_token_number,
max_length=tokenizer.model_max_length,
)
summary = result[0]["summary_text"]
print("Summary text:\n")
print(summary)
return summary
# Function to count words in the summary
def postprocessing_word_count(summary):
text_length = len(re.findall(r"\w+", summary))
print("\nSummary word count: " f"{text_length:,}")
return text_length
# Function to clean bart summary text
def clean_summary_text(summary):
# Remove next line
summary_cleaned_1 = re.sub(r"\n\s+", "", summary)
# Remove whitespace
summary_cleaned_2 = summary_cleaned_1.strip()
# Remove any spaces before punctuation (bart)
summary_cleaned_3 = re.sub(r"\s+([.,;:)!?](?:\s|$))", r"\1", summary_cleaned_2)
# Remove any spaces after "("
summary_cleaned_4 = re.sub(r"\(\s", r"(", summary_cleaned_3)
# Remove any spaces betweeen the closing parenthesis and other puncuation
summary_cleaned_5 = re.sub(r"(\))\s+([,.:;?!])", r"\1\2", summary_cleaned_4)
return summary_cleaned_5
# Function to covert bart summary to sentence case
def convert_to_sentence_case(summary):
# Split the paragraph into sentences based on '.', '!', or '?'
sentences = re.split(r"(?<=[.!?])\s+", summary)
# Convert to sentence case and join the sentences back together
formatted_sentences = [sentence.capitalize() for sentence in sentences]
return " ".join(formatted_sentences)
def remove_duplicate_sentences(summary):
# Split the paragraph into sentences
sentences = re.split(r"(?<=[.!?])\s+", summary)
# Initialize a set to store unique sentences
unique_sentences = set()
# Initialize a list to store valid sentences
valid_sentences = []
# Iterate through each sentence
for sentence in sentences:
# Check if the sentence is unique
if sentence not in unique_sentences:
unique_sentences.add(sentence)
valid_sentences.append(sentence)
# Join the remaining valid sentences to create the final_summary
final_summary = " ".join(valid_sentences)
return final_summary
# Function to remove incomplete last sentence from summary
def remove_incomplete_last_sentence(summary):
# Split the paragraph into sentences based on '.', '!', or '?'
sentences = re.split(r"(?<=[.!?])\s+", summary)
# Check if the last sentence lacks punctuation at the end
if (
sentences
and sentences[-1].strip()
and not sentences[-1].strip().endswith((".", "!", "?"))
):
# Remove the last sentence from the paragraph
sentences.pop()
# Join the sentences back together
return " ".join(sentences)
@st.cache_data(ttl=60 * 60)
# Function to display the PDF
def displayPDF(file):
with open(file, "rb") as f:
base64_pdf = base64.b64encode(f.read()).decode("utf-8")
# Embed pdf in html
pdf_display = f'<iframe src="data:application/pdf;base64,{base64_pdf}" width="100%" height="600" type="application/pdf"></iframe>'
# Display file
st.markdown(pdf_display, unsafe_allow_html=True)
# Streamlit code
st.set_page_config(layout="wide")
def main():
st.title("RASA: Research Article Summarization App")
uploaded_file = st.file_uploader("Upload your PDF file", type=["pdf"])
if uploaded_file is not None:
st.subheader("Options")
col1, col2, col3, col4 = st.columns([1, 1, 1, 2])
with col1:
model_source_names = ["Cached model", "Download model"]
model_source = st.radio(
"For development:",
model_source_names,
help="Defaults to a cached model; downloading will take longer",
)
with col2:
model_names = [
"T5-Small",
"BART",
]
selected_model = st.radio(
"Select a model to use:",
model_names,
)
if selected_model == "BART":
chunk_size = 800
chunk_overlap = 80
checkpoint = "ccdv/lsg-bart-base-16384-pubmed"
tokenizer = AutoTokenizer.from_pretrained(
checkpoint,
truncation=True,
model_max_length=512,
trust_remote_code=True,
)
if model_source == "Download model":
base_model = AutoModelForSeq2SeqLM.from_pretrained(
checkpoint,
torch_dtype=torch.float32,
trust_remote_code=True,
)
else:
base_model = "model_cache/models--ccdv--lsg-bart-base-16384-pubmed/snapshots/4072bc1a7a94e2b4fd860a5fdf1b71d0487dcf15"
else:
chunk_size = 1000
chunk_overlap = 100
checkpoint = "MBZUAI/LaMini-Flan-T5-77M"
tokenizer = AutoTokenizer.from_pretrained(
checkpoint,
truncation=True,
legacy=False,
model_max_length=512,
)
if model_source == "Download model":
base_model = AutoModelForSeq2SeqLM.from_pretrained(
checkpoint,
torch_dtype=torch.float32,
)
else:
base_model = "model_cache/models--MBZUAI--LaMini-Flan-T5-77M/snapshots/c5b12d50a2616b9670a57189be20055d1357b474"
with col3:
st.write("Skip any pages?")
skipfirst = st.checkbox(
"Skip first page", help="Select if your PDF has a cover page"
)
skiplast = st.checkbox("Skip last page")
with col4:
st.write("Background information (links open in a new window)")
st.write(
"Model class: [T5-Small](https://huggingface.co/docs/transformers/main/en/model_doc/t5)"
" | Model: [LaMini-Flan-T5-77M](https://huggingface.co/MBZUAI/LaMini-Flan-T5-77M)"
)
st.write(
"Model class: [BART](https://huggingface.co/docs/transformers/main/en/model_doc/bart)"
" | Model: [lsg-bart-base-16384-pubmed](https://huggingface.co/ccdv/lsg-bart-base-16384-pubmed)"
)
exclude_words = st_tags(
label="Enter word(s) to exclude from the summary:",
text="Press enter to add",
)
col1, col2, col3 = st.columns([1, 1, 5])
with col1:
minimum_token_number = st.number_input(
"Minimum number of tokens",
value=200,
step=25,
min_value=0,
max_value=512,
help="Use a larger number of tokens to increase summary length",
)
with col3:
st.subheader("Notes")
st.write(
"To remove content from the summary, try copying and pasting the word(s) to exclude in the box above and summarize again."
)
st.write(
"To lengthen or shorten the summary, increase or decrease the minimum number of tokens to the left and summarize again."
)
if st.button("Summarize"):
col1, col2 = st.columns(2)
filepath = "data/" + uploaded_file.name
with open(filepath, "wb") as temp_file:
temp_file.write(uploaded_file.read())
with col1:
(
final_input_text,
text_chunks,
preprocessing_text_length,
) = preprocessing_word_count(
filepath,
skipfirst,
skiplast,
chunk_size,
chunk_overlap,
exclude_words,
)
st.info(
"Uploaded PDF | Number of words: "
f"{preprocessing_text_length:,}"
)
pdf_viewer = displayPDF(filepath)
with col2:
start = time.time()
with st.spinner("Summarizing..."):
summary = llm_pipeline(
tokenizer,
base_model,
final_input_text,
model_source,
minimum_token_number,
)
# Count summary words
postprocessing_text_length = postprocessing_word_count(summary)
end = time.time()
duration = end - start
print("Duration: " f"{duration:.0f}" + " seconds")
st.info(
"PDF Summary | Number of words: "
f"{postprocessing_text_length:,}"
+ " | Summarization time: "
f"{duration:.0f}" + " seconds"
)
if selected_model == "BART":
# Use regex to clean the unformatted bart summary
summary_cleaned = clean_summary_text(summary)
# Convert to sentence case
summary_cleaned_sentence_case = convert_to_sentence_case(
summary_cleaned
)
# Remove duplicate sentences
summary_cleaned_sentence_case_dedup = remove_duplicate_sentences(
summary_cleaned_sentence_case
)
# Remove incomplete last sentence
summary_cleaned_final = remove_incomplete_last_sentence(
summary_cleaned_sentence_case_dedup
)
st.success(summary_cleaned_final)
with st.expander("Unformatted output"):
st.write(summary)
else: # T5 model
# Remove duplicate sentences
summary_dedup = remove_duplicate_sentences(summary)
# Remove incomplete last sentence
summary_final = remove_incomplete_last_sentence(summary_dedup)
st.success(summary_final)
with st.expander("Unformatted output"):
st.write(summary)
col1 = st.columns(1)
url = "https://dev.to/eteimz/understanding-langchains-recursivecharactertextsplitter-2846"
st.info("Additional information")
input_ids = tokenizer.encode(
final_input_text, add_special_tokens=True, truncation=True
)
st.write(
"Maximum number of tokens generated for inputs into the model: %s"
% f"{len(input_ids):,}"
)
st.write("First 10 tokens:")
first_10_tokens = input_ids[:10]
first_10_tokens_text = tokenizer.convert_ids_to_tokens(first_10_tokens)
st.write(first_10_tokens_text)
st.write("First 500 tokens:")
first_500_tokens = input_ids[:500]
first_500_tokens_text = tokenizer.convert_ids_to_tokens(first_500_tokens)
st.write(first_500_tokens_text)
st.write("[RecursiveCharacterTextSplitter](%s) parameters used:" % url)
st.write(
" chunk_size=%s"
% chunk_size
)
st.write(
" chunk_overlap=%s"
% chunk_overlap
)
st.write(
" length_function=len"
)
st.write("\n")
st.write("Number of input text chunks: " + str(len(text_chunks)))
st.write("")
st.write("First three chunks:")
st.write("\n")
st.write(text_chunks[0])
st.write("")
st.write(text_chunks[1])
st.write("")
st.write(text_chunks[2])
st.write("\n")
st.write(
"Extracted and cleaned text, less sentences containing excluded words:"
)
st.write("")
st.write(final_input_text)
st.markdown(
"""<style>
div[class*="stRadio"] > label > div[data-testid="stMarkdownContainer"] > p {
font-size: 1rem;
font-weight: 400;
}
div[class*="stMarkdown"] > div[data-testid="stMarkdownContainer"] > p {
margin-bottom: -15px;
}
div[class*="stCheckbox"] > label[data-baseweb="checkbox"] {
margin-bottom: -15px;
}
div[class*="stNumberInput"] > label > div[data-testid="stMarkdownContainer"] > p {
font-size: 1rem;
font-weight: 400;
}
body > a {
text-decoration: underline;
}
</style>
""",
unsafe_allow_html=True,
)
if __name__ == "__main__":
main()
|