Spaces:
Runtime error
Runtime error
| import gradio as gr | |
| from transformers import AutoConfig, AutoProcessor, AutoModelForCausalLM | |
| import spaces | |
| from PIL import Image | |
| import subprocess | |
| import matplotlib.pyplot as plt | |
| import matplotlib.patches as patches | |
| import numpy as np | |
| import requests | |
| from io import BytesIO | |
| from unittest.mock import patch | |
| from transformers.dynamic_module_utils import get_imports | |
| import os | |
| subprocess.run('pip install flash-attn --no-build-isolation', env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "TRUE"}, shell=True) | |
| model_dir = "medieval-data/florence2-medieval-bbox-zone-detection" | |
| # Load the configuration | |
| config = AutoConfig.from_pretrained(model_dir, trust_remote_code=True) | |
| model = AutoModelForCausalLM.from_pretrained( | |
| model_dir, | |
| trust_remote_code=True | |
| ) | |
| processor = AutoProcessor.from_pretrained( | |
| model_dir, | |
| trust_remote_code=True | |
| ) | |
| TITLE = "# [Florence-2- Medieval Manuscript Layout Parsing Demo](https://huggingface.co/medieval-data/florence2-medieval-bbox-zone-detection)" | |
| DESCRIPTION = "The demo for Florence-2 fine-tuned on CATMuS Segmentation Dataset. This app has two models: one for line detection and one for zone detection." | |
| # Define a color map for different labels | |
| colormap = plt.cm.get_cmap('tab20') | |
| def process_image(image): | |
| max_size = 1000 | |
| prompt = "<OD>" | |
| # Calculate the scaling factor | |
| original_width, original_height = image.size | |
| scale = min(max_size / original_width, max_size / original_height) | |
| new_width = int(original_width * scale) | |
| new_height = int(original_height * scale) | |
| # Resize the image | |
| image = image.resize((new_width, new_height)) | |
| inputs = processor(text=prompt, images=image, return_tensors="pt") | |
| generated_ids = model.generate( | |
| input_ids=inputs["input_ids"], | |
| pixel_values=inputs["pixel_values"], | |
| max_new_tokens=1024, | |
| do_sample=False, | |
| num_beams=3 | |
| ) | |
| generated_text = processor.batch_decode(generated_ids, skip_special_tokens=False)[0] | |
| result = processor.post_process_generation(generated_text, task="<OD>", image_size=(image.width, image.height)) | |
| return result, image | |
| def visualize_bboxes(result, image): | |
| fig, ax = plt.subplots(1, figsize=(15, 15)) | |
| ax.imshow(image) | |
| # Create a set of unique labels | |
| unique_labels = set(result['<OD>']['labels']) | |
| # Create a dictionary to map labels to colors | |
| color_dict = {label: colormap(i/len(unique_labels)) for i, label in enumerate(unique_labels)} | |
| # Add bounding boxes and labels to the plot | |
| for bbox, label in zip(result['<OD>']['bboxes'], result['<OD>']['labels']): | |
| x, y, width, height = bbox[0], bbox[1], bbox[2] - bbox[0], bbox[3] - bbox[1] | |
| rect = patches.Rectangle((x, y), width, height, linewidth=2, edgecolor=color_dict[label], facecolor='none') | |
| ax.add_patch(rect) | |
| plt.text(x, y, label, fontsize=12, bbox=dict(facecolor=color_dict[label], alpha=0.5)) | |
| plt.axis('off') | |
| return fig | |
| def run_example(image): | |
| if isinstance(image, str): # If image is a URL | |
| response = requests.get(image) | |
| image = Image.open(BytesIO(response.content)) | |
| elif isinstance(image, np.ndarray): # If image is a numpy array | |
| image = Image.fromarray(image) | |
| result, processed_image = process_image(image) | |
| fig = visualize_bboxes(result, processed_image) | |
| # Convert matplotlib figure to image | |
| img_buf = BytesIO() | |
| fig.savefig(img_buf, format='png') | |
| img_buf.seek(0) | |
| output_image = Image.open(img_buf) | |
| return output_image | |
| css = """ | |
| #output { | |
| height: 1000px; | |
| overflow: auto; | |
| border: 1px solid #ccc; | |
| } | |
| """ | |
| with gr.Blocks(css=css) as demo: | |
| gr.Markdown(TITLE) | |
| gr.Markdown(DESCRIPTION) | |
| with gr.Tab(label="Florence-2 Image Processing"): | |
| input_img = gr.Image(label="Input Picture") | |
| submit_btn = gr.Button(value="Submit") | |
| with gr.Row(): | |
| output_img = gr.Image(label="Output Image with Bounding Boxes") | |
| gr.Examples( | |
| examples=[ | |
| ["https://huggingface.co/datasets/CATMuS/medieval-segmentation/resolve/main/data/train/cambridge-corpus-christi-college-ms-111/page-002-of-003.jpg"], | |
| ], | |
| inputs=[input_img], | |
| outputs=[output_img], | |
| fn=run_example, | |
| cache_examples=True, | |
| label='Try the examples below' | |
| ) | |
| submit_btn.click(run_example, [input_img], [output_img]) | |
| demo.launch(debug=True) |