import gradio as gr from huggingface_hub import InferenceClient import PyPDF2 import io """ For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference """ client = InferenceClient("HuggingFaceH4/zephyr-7b-beta") def respond( message, history: list[tuple[str, str]], system_message, max_tokens, temperature, top_p, ): messages = [{"role": "system", "content": system_message}] for val in history: if val[0]: messages.append({"role": "user", "content": val[0]}) if val[1]: messages.append({"role": "assistant", "content": val[1]}) messages.append({"role": "user", "content": message}) response = "" for message in client.chat_completion( messages, max_tokens=max_tokens, stream=True, temperature=temperature, top_p=top_p, ): token = message.choices[0].delta.content response += token yield response def extract_text_from_pdf(pdf_file): if pdf_file is None: return "No file uploaded." try: pdf_reader = PyPDF2.PdfReader(io.BytesIO(pdf_file)) text = "" for page in pdf_reader.pages: text += page.extract_text() + "\n\n" return text.strip() except Exception as e: return f"An error occurred: {str(e)}" """ For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface """ demo = gr.ChatInterface( respond, additional_inputs=[ gr.Textbox(value="You are a friendly Chatbot.", label="System message"), gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), gr.Slider( minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)", ), ], ) pdf_interface = gr.Interface( fn=extract_text_from_pdf, inputs=gr.File(label="Upload PDF", type="binary"), outputs="text", title="PDF Text Extractor", description="Upload a PDF file to extract its text content." ) demo = gr.TabbedInterface( [demo, pdf_interface], ["Chat", "PDF Extractor"] ) if __name__ == "__main__": demo.launch()