Spaces:
Sleeping
Sleeping
import gradio as gr | |
from huggingface_hub import InferenceClient | |
import PyPDF2 | |
import io | |
""" | |
For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference | |
""" | |
client = InferenceClient("HuggingFaceH4/zephyr-7b-beta") | |
def respond( | |
message, | |
history: list[tuple[str, str]], | |
system_message, | |
max_tokens, | |
temperature, | |
top_p, | |
): | |
messages = [{"role": "system", "content": system_message}] | |
for val in history: | |
if val[0]: | |
messages.append({"role": "user", "content": val[0]}) | |
if val[1]: | |
messages.append({"role": "assistant", "content": val[1]}) | |
messages.append({"role": "user", "content": message}) | |
response = "" | |
for message in client.chat_completion( | |
messages, | |
max_tokens=max_tokens, | |
stream=True, | |
temperature=temperature, | |
top_p=top_p, | |
): | |
token = message.choices[0].delta.content | |
response += token | |
yield response | |
def extract_text_from_pdf(pdf_file): | |
if pdf_file is None: | |
return "No file uploaded." | |
try: | |
pdf_reader = PyPDF2.PdfReader(io.BytesIO(pdf_file)) | |
text = "" | |
for page in pdf_reader.pages: | |
text += page.extract_text() + "\n\n" | |
return text.strip() | |
except Exception as e: | |
return f"An error occurred: {str(e)}" | |
""" | |
For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface | |
""" | |
demo = gr.ChatInterface( | |
respond, | |
additional_inputs=[ | |
gr.Textbox(value="You are a friendly Chatbot.", label="System message"), | |
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), | |
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), | |
gr.Slider( | |
minimum=0.1, | |
maximum=1.0, | |
value=0.95, | |
step=0.05, | |
label="Top-p (nucleus sampling)", | |
), | |
], | |
) | |
pdf_interface = gr.Interface( | |
fn=extract_text_from_pdf, | |
inputs=gr.File(label="Upload PDF", type="binary"), | |
outputs="text", | |
title="PDF Text Extractor", | |
description="Upload a PDF file to extract its text content." | |
) | |
demo = gr.TabbedInterface( | |
[demo, pdf_interface], | |
["Chat", "PDF Extractor"] | |
) | |
if __name__ == "__main__": | |
demo.launch() | |