pdf-extractor / app.py
witcher23's picture
add pdf ext code
48e425e verified
raw
history blame
2.44 kB
import gradio as gr
from huggingface_hub import InferenceClient
import PyPDF2
import io
"""
For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
"""
client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
def respond(
message,
history: list[tuple[str, str]],
system_message,
max_tokens,
temperature,
top_p,
):
messages = [{"role": "system", "content": system_message}]
for val in history:
if val[0]:
messages.append({"role": "user", "content": val[0]})
if val[1]:
messages.append({"role": "assistant", "content": val[1]})
messages.append({"role": "user", "content": message})
response = ""
for message in client.chat_completion(
messages,
max_tokens=max_tokens,
stream=True,
temperature=temperature,
top_p=top_p,
):
token = message.choices[0].delta.content
response += token
yield response
def extract_text_from_pdf(pdf_file):
if pdf_file is None:
return "No file uploaded."
try:
pdf_reader = PyPDF2.PdfReader(io.BytesIO(pdf_file))
text = ""
for page in pdf_reader.pages:
text += page.extract_text() + "\n\n"
return text.strip()
except Exception as e:
return f"An error occurred: {str(e)}"
"""
For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
"""
demo = gr.ChatInterface(
respond,
additional_inputs=[
gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
gr.Slider(
minimum=0.1,
maximum=1.0,
value=0.95,
step=0.05,
label="Top-p (nucleus sampling)",
),
],
)
pdf_interface = gr.Interface(
fn=extract_text_from_pdf,
inputs=gr.File(label="Upload PDF", type="binary"),
outputs="text",
title="PDF Text Extractor",
description="Upload a PDF file to extract its text content."
)
demo = gr.TabbedInterface(
[demo, pdf_interface],
["Chat", "PDF Extractor"]
)
if __name__ == "__main__":
demo.launch()