"""
Utility functions for the Instagram Caption Generator app.
"""
import os
from pathlib import Path

from dotenv import load_dotenv
import pandas as pd
import streamlit as st
from transformers import AutoProcessor, Blip2ForConditionalGeneration


def get_gemini_api_key():
    """
    The api key is stored in as a private environment variable,
    the purpose of this function is to retrieve the Google API key
    for accessing the Generative AI API.
    :return: str - The Google API key.
    """
    load_dotenv()
    google_api_key = os.getenv("GOOGLE_API_KEY")
    return google_api_key


@st.cache_resource()
def init_model():
    """
    Initializes the BLIP-2 model and processor for image captioning.
    The cache_resource decorator is used to cache the model and processor.
    The streamlit app can call this function to load the model and processor
    without reinitializing it.
    :param init_model_required: bool - Flag to indicate if the model needs to be initialized.
    :returns: AutoProcessor, Blip2ForConditionalGeneration, bool - Model processor, BLIP-2 model, and flag.
    """
    try:
        processor = AutoProcessor.from_pretrained("Salesforce/blip2-opt-2.7b")
        blip2_model = Blip2ForConditionalGeneration.from_pretrained("Salesforce/blip2-opt-2.7b")
        return processor, blip2_model
    except Exception as e:
        st.error(f"Error occurred during model initialization: {e}")


# # Function to store the user data to a CSV file
# def save_user_data(first_name, last_name, email, phone):
#     """
#     Function to store the user data to a CSV file

#     :param first_name: str - First name of the user
#     :param last_name: str - Last name of the user
#     :param email: str - Email of the user
#     :param phone: str - Phone number of the user
#     :return: None
#     """
#     csv_file = Path("./user_data/user_data.csv")
#     # Check if the file exists and create a DataFrame accordingly
#     if csv_file.exists():
#         df = pd.read_csv(csv_file)
#     else:
#         df = pd.DataFrame(columns=["First Name", "Last Name", "Email", "Phone Number"])
#     new_data = {"First Name": first_name, "Last Name": last_name, "Email": email, "Phone Number": phone}
#     df = df.append(new_data, ignore_index=True)
#     df.to_csv(csv_file, index=False)
#     return None

def save_user_data(first_name, last_name, email, phone):
    """
    Function to store the user data to a CSV file

    :param first_name: str - First name of the user
    :param last_name: str - Last name of the user
    :param email: str - Email of the user
    :param phone: str - Phone number of the user
    :return: None
    """
    csv_file = Path("./user_data/user_data.csv")
    # Check if the file exists and create a DataFrame accordingly
    if csv_file.exists():
        df = pd.read_csv(csv_file)
    else:
        df = pd.DataFrame(columns=["First Name", "Last Name",
                                   "Email", "Phone Number"])

    # Add and save new user data.
    new_data = pd.DataFrame({"First Name": [first_name],
                             "Last Name": [last_name],
                             "Email": [email],
                             "Phone Number": [phone]})
    df = pd.concat([df, new_data], ignore_index=True)
    df.to_csv(csv_file, index=False)
    return None


def get_gif(path):
    """
    Function to get the GIF image from the specified path.
    :param path: str - Path to the GIF image
    :return: bytes - The GIF image
    """
    with open(path, "rb") as file:
        gif = file.read()
    return gif


# Blip-2 does most of the standard image processing needed for image captioning.
def process_image():
    """
    Unused function for image processing,
    not needed for the current implementation.
    """
    pass