Spaces:
Running
Running
| """ | |
| THis is the main file for the gradio web demo. It uses the CogVideoX-5B model to generate videos gradio web demo. | |
| set environment variable OPENAI_API_KEY to use the OpenAI API to enhance the prompt. | |
| Usage: | |
| OpenAI_API_KEY=your_openai_api_key OPENAI_BASE_URL=https://api.openai.com/v1 python inference/gradio_web_demo.py | |
| """ | |
| import math | |
| import os | |
| import random | |
| import threading | |
| import time | |
| import spaces | |
| import cv2 | |
| import tempfile | |
| import imageio_ffmpeg | |
| import gradio as gr | |
| import torch | |
| from PIL import Image | |
| # from diffusers import ( | |
| # CogVideoXPipeline, | |
| # CogVideoXDPMScheduler, | |
| # CogVideoXVideoToVideoPipeline, | |
| # CogVideoXImageToVideoPipeline, | |
| # CogVideoXTransformer3DModel, | |
| # ) | |
| from typing import Union, List | |
| from CogVideoX.pipeline_rgba import CogVideoXPipeline | |
| from CogVideoX.rgba_utils import * | |
| from diffusers import CogVideoXDPMScheduler | |
| from diffusers.utils import load_video, load_image, export_to_video | |
| from datetime import datetime, timedelta | |
| from diffusers.image_processor import VaeImageProcessor | |
| import moviepy.editor as mp | |
| import numpy as np | |
| from huggingface_hub import hf_hub_download, snapshot_download | |
| import gc | |
| device = "cuda" if torch.cuda.is_available() else "cpu" | |
| # hf_hub_download(repo_id="ai-forever/Real-ESRGAN", filename="RealESRGAN_x4.pth", local_dir="model_real_esran") | |
| hf_hub_download(repo_id="wileewang/TransPixar", filename="cogvideox_rgba_lora.safetensors", local_dir="model_cogvideox_rgba_lora") | |
| # snapshot_download(repo_id="AlexWortega/RIFE", local_dir="model_rife") | |
| pipe = CogVideoXPipeline.from_pretrained("THUDM/CogVideoX-5B", torch_dtype=torch.bfloat16) | |
| pipe.enable_sequential_cpu_offload() | |
| pipe.vae.enable_slicing() | |
| pipe.vae.enable_tiling() | |
| pipe.scheduler = CogVideoXDPMScheduler.from_config(pipe.scheduler.config, timestep_spacing="trailing") | |
| seq_length = 2 * ( | |
| (480 // pipe.vae_scale_factor_spatial // 2) | |
| * (720 // pipe.vae_scale_factor_spatial // 2) | |
| * ((13 - 1) // pipe.vae_scale_factor_temporal + 1) | |
| ) | |
| prepare_for_rgba_inference( | |
| pipe.transformer, | |
| rgba_weights_path="model_cogvideox_rgba_lora/cogvideox_rgba_lora.safetensors", | |
| device=device, | |
| dtype=torch.bfloat16, | |
| text_length=226, | |
| seq_length=seq_length, # this is for the creation of attention mask. | |
| ) | |
| # pipe.transformer.to(memory_format=torch.channels_last) | |
| # pipe.transformer = torch.compile(pipe.transformer, mode="max-autotune", fullgraph=True) | |
| # pipe_image.transformer.to(memory_format=torch.channels_last) | |
| # pipe_image.transformer = torch.compile(pipe_image.transformer, mode="max-autotune", fullgraph=True) | |
| os.makedirs("./output", exist_ok=True) | |
| os.makedirs("./gradio_tmp", exist_ok=True) | |
| # upscale_model = utils.load_sd_upscale("model_real_esran/RealESRGAN_x4.pth", device) | |
| # frame_interpolation_model = load_rife_model("model_rife") | |
| sys_prompt = """You are part of a team of bots that creates videos. You work with an assistant bot that will draw anything you say in square brackets. | |
| For example , outputting " a beautiful morning in the woods with the sun peaking through the trees " will trigger your partner bot to output an video of a forest morning , as described. You will be prompted by people looking to create detailed , amazing videos. The way to accomplish this is to take their short prompts and make them extremely detailed and descriptive. | |
| There are a few rules to follow: | |
| You will only ever output a single video description per user request. | |
| When modifications are requested , you should not simply make the description longer . You should refactor the entire description to integrate the suggestions. | |
| Other times the user will not want modifications , but instead want a new image . In this case , you should ignore your previous conversation with the user. | |
| Video descriptions must have the same num of words as examples below. Extra words will be ignored. | |
| """ | |
| def save_video(tensor: Union[List[np.ndarray], List[Image.Image]], fps: int = 8, prefix='rgb'): | |
| timestamp = datetime.now().strftime("%Y%m%d_%H%M%S") | |
| video_path = f"./output/{prefix}_{timestamp}.mp4" | |
| os.makedirs(os.path.dirname(video_path), exist_ok=True) | |
| export_to_video(tensor, video_path, fps=fps) | |
| return video_path | |
| def resize_if_unfit(input_video, progress=gr.Progress(track_tqdm=True)): | |
| width, height = get_video_dimensions(input_video) | |
| if width == 720 and height == 480: | |
| processed_video = input_video | |
| else: | |
| processed_video = center_crop_resize(input_video) | |
| return processed_video | |
| def get_video_dimensions(input_video_path): | |
| reader = imageio_ffmpeg.read_frames(input_video_path) | |
| metadata = next(reader) | |
| return metadata["size"] | |
| def center_crop_resize(input_video_path, target_width=720, target_height=480): | |
| cap = cv2.VideoCapture(input_video_path) | |
| orig_width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH)) | |
| orig_height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT)) | |
| orig_fps = cap.get(cv2.CAP_PROP_FPS) | |
| total_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT)) | |
| width_factor = target_width / orig_width | |
| height_factor = target_height / orig_height | |
| resize_factor = max(width_factor, height_factor) | |
| inter_width = int(orig_width * resize_factor) | |
| inter_height = int(orig_height * resize_factor) | |
| target_fps = 8 | |
| ideal_skip = max(0, math.ceil(orig_fps / target_fps) - 1) | |
| skip = min(5, ideal_skip) # Cap at 5 | |
| while (total_frames / (skip + 1)) < 49 and skip > 0: | |
| skip -= 1 | |
| processed_frames = [] | |
| frame_count = 0 | |
| total_read = 0 | |
| while frame_count < 49 and total_read < total_frames: | |
| ret, frame = cap.read() | |
| if not ret: | |
| break | |
| if total_read % (skip + 1) == 0: | |
| resized = cv2.resize(frame, (inter_width, inter_height), interpolation=cv2.INTER_AREA) | |
| start_x = (inter_width - target_width) // 2 | |
| start_y = (inter_height - target_height) // 2 | |
| cropped = resized[start_y : start_y + target_height, start_x : start_x + target_width] | |
| processed_frames.append(cropped) | |
| frame_count += 1 | |
| total_read += 1 | |
| cap.release() | |
| with tempfile.NamedTemporaryFile(suffix=".mp4", delete=False) as temp_file: | |
| temp_video_path = temp_file.name | |
| fourcc = cv2.VideoWriter_fourcc(*"mp4v") | |
| out = cv2.VideoWriter(temp_video_path, fourcc, target_fps, (target_width, target_height)) | |
| for frame in processed_frames: | |
| out.write(frame) | |
| out.release() | |
| return temp_video_path | |
| def infer( | |
| prompt: str, | |
| num_inference_steps: int, | |
| guidance_scale: float, | |
| seed: int = -1, | |
| progress=gr.Progress(track_tqdm=True), | |
| ): | |
| if seed == -1: | |
| seed = random.randint(0, 2**8 - 1) | |
| device = "cuda" if torch.cuda.is_available() else "cpu" | |
| pipe.to(device) | |
| video_pt = pipe( | |
| prompt=prompt + ", isolated background", | |
| num_videos_per_prompt=1, | |
| num_inference_steps=num_inference_steps, | |
| num_frames=13, | |
| use_dynamic_cfg=True, | |
| output_type="latent", | |
| guidance_scale=guidance_scale, | |
| generator=torch.Generator(device=device).manual_seed(int(seed)), | |
| ).frames | |
| # pipe.to("cpu") | |
| gc.collect() | |
| return (video_pt, seed) | |
| def convert_to_gif(video_path): | |
| clip = mp.VideoFileClip(video_path) | |
| clip = clip.set_fps(8) | |
| clip = clip.resize(height=240) | |
| gif_path = video_path.replace(".mp4", ".gif") | |
| clip.write_gif(gif_path, fps=8) | |
| return gif_path | |
| def delete_old_files(): | |
| while True: | |
| now = datetime.now() | |
| cutoff = now - timedelta(minutes=10) | |
| directories = ["./output", "./gradio_tmp"] | |
| for directory in directories: | |
| for filename in os.listdir(directory): | |
| file_path = os.path.join(directory, filename) | |
| if os.path.isfile(file_path): | |
| file_mtime = datetime.fromtimestamp(os.path.getmtime(file_path)) | |
| if file_mtime < cutoff: | |
| os.remove(file_path) | |
| time.sleep(600) | |
| threading.Thread(target=delete_old_files, daemon=True).start() | |
| # examples_videos = [["example_videos/horse.mp4"], ["example_videos/kitten.mp4"], ["example_videos/train_running.mp4"]] | |
| # examples_images = [["example_images/beach.png"], ["example_images/street.png"], ["example_images/camping.png"]] | |
| with gr.Blocks() as demo: | |
| gr.Markdown(""" | |
| <div style="text-align: center; font-size: 32px; font-weight: bold; margin-bottom: 20px;"> | |
| TransPixar + CogVideoX-5B Huggingface Space🤗 | |
| </div> | |
| <div style="text-align: center;"> | |
| <a href="https://huggingface.co/wileewang/TransPixar">🤗 TransPixar LoRA Hub</a> | | |
| <a href="https://github.com/wileewang/TransPixar">🌐 Github</a> | | |
| <a href="https://arxiv.org/pdf/2408.06072">📜 arxiv </a> | |
| </div> | |
| <div style="text-align: center; font-size: 15px; font-weight: bold; color: red; margin-bottom: 20px;"> | |
| ⚠️ This demo is for academic research and experiential use only. | |
| </div> | |
| """) | |
| with gr.Row(): | |
| with gr.Column(): | |
| # with gr.Accordion("I2V: Image Input (cannot be used simultaneously with video input)", open=False): | |
| # image_input = gr.Image(label="Input Image (will be cropped to 720 * 480)") | |
| # examples_component_images = gr.Examples(examples_images, inputs=[image_input], cache_examples=False) | |
| # with gr.Accordion("V2V: Video Input (cannot be used simultaneously with image input)", open=False): | |
| # video_input = gr.Video(label="Input Video (will be cropped to 49 frames, 6 seconds at 8fps)") | |
| # strength = gr.Slider(0.1, 1.0, value=0.8, step=0.01, label="Strength") | |
| # examples_component_videos = gr.Examples(examples_videos, inputs=[video_input], cache_examples=False) | |
| prompt = gr.Textbox(label="Prompt (Less than 200 Words)", placeholder="Enter your prompt here", lines=5) | |
| with gr.Group(): | |
| with gr.Column(): | |
| with gr.Row(): | |
| seed_param = gr.Number( | |
| label="Inference Seed (Enter a positive number, -1 for random)", value=-1 | |
| ) | |
| # with gr.Row(): | |
| # enable_scale = gr.Checkbox(label="Super-Resolution (720 × 480 -> 2880 × 1920)", value=False) | |
| # enable_rife = gr.Checkbox(label="Frame Interpolation (8fps -> 16fps)", value=False) | |
| # gr.Markdown( | |
| # "✨In this demo, we use [RIFE](https://github.com/hzwer/ECCV2022-RIFE) for frame interpolation and [Real-ESRGAN](https://github.com/xinntao/Real-ESRGAN) for upscaling(Super-Resolution).<br> The entire process is based on open-source solutions." | |
| # ) | |
| generate_button = gr.Button("🎬 Generate Video") | |
| # Add the note at the bottom-left | |
| with gr.Row(): | |
| gr.Markdown( | |
| """ | |
| **Note:** The RGB is a premultiplied version to avoid the color decontamination problem. | |
| It can directly composite with a background using: | |
| ``` | |
| composite = rgb + (1 - alpha) * background | |
| ``` | |
| """ | |
| ) | |
| with gr.Column(): | |
| rgb_video_output = gr.Video(label="Generate RGB Video", width=720, height=480) | |
| alpha_video_output = gr.Video(label="Generate Alpha Video", width=720, height=480) | |
| with gr.Row(): | |
| download_rgb_video_button = gr.File(label="📥 Download RGB Video", visible=False) | |
| download_alpha_video_button = gr.File(label="📥 Download Alpha Video", visible=False) | |
| seed_text = gr.Number(label="Seed Used for Video Generation", visible=False) | |
| def generate( | |
| prompt, | |
| seed_value, | |
| progress=gr.Progress(track_tqdm=True) | |
| ): | |
| latents, seed = infer( | |
| prompt, | |
| num_inference_steps=25, # NOT Changed | |
| guidance_scale=7.0, # NOT Changed | |
| seed=seed_value, | |
| progress=progress, | |
| ) | |
| latents_rgb, latents_alpha = latents.chunk(2, dim=1) | |
| frames_rgb = decode_latents(pipe, latents_rgb) | |
| frames_alpha = decode_latents(pipe, latents_alpha) | |
| pooled_alpha = np.max(frames_alpha, axis=-1, keepdims=True) | |
| frames_alpha_pooled = np.repeat(pooled_alpha, 3, axis=-1) | |
| premultiplied_rgb = frames_rgb * frames_alpha_pooled | |
| rgb_video_path = save_video(premultiplied_rgb[0], fps=8, prefix='rgb') | |
| rgb_video_update = gr.update(visible=True, value=rgb_video_path) | |
| alpha_video_path = save_video(frames_alpha_pooled[0], fps=8, prefix='alpha') | |
| alpha_video_update = gr.update(visible=True, value=alpha_video_path) | |
| seed_update = gr.update(visible=True, value=seed) | |
| pipe.to("cpu") | |
| return rgb_video_path, alpha_video_path, rgb_video_update, alpha_video_update, seed_update | |
| generate_button.click( | |
| generate, | |
| inputs=[prompt, seed_param], | |
| outputs=[rgb_video_output, alpha_video_output, download_rgb_video_button, download_alpha_video_button, seed_text], | |
| ) | |
| if __name__ == "__main__": | |
| demo.queue(max_size=15) | |
| demo.launch() | |