inclusive-ml
classification only
6f23aeb
import streamlit as st
from transformers import pipeline
import spacy
from spacy import displacy
import plotly.express as px
import numpy as np
st.set_page_config(page_title="Text Classification")
st.title("Text Classification'")
st.write("_This web application is intended for educational use, please do not upload any sensitive information._")
st.write("Placing a piece of text into one or more categories.")
@st.cache(allow_output_mutation=True, show_spinner=False)
def Loading_Classifier():
class1 = pipeline("zero-shot-classification",framework="pt")
return class1
def plot_result(top_topics, scores):
top_topics = np.array(top_topics)
scores = np.array(scores)
scores *= 100
fig = px.bar(x=scores, y=top_topics, orientation='h',
labels={'x': 'Probability', 'y': 'Category'},
text=scores,
range_x=(0,115),
title='Top Predictions',
color=np.linspace(0,1,len(scores)),
color_continuous_scale="Bluered")
fig.update(layout_coloraxis_showscale=False)
fig.update_traces(texttemplate='%{text:0.1f}%', textposition='outside')
st.plotly_chart(fig)
with st.spinner(text="Please wait for the models to load. This could take up to 60 seconds."):
class1 = Loading_Classifier()
cat1 = st.text_input('Enter each possible category name (separated by a comma). Maximum 5 categories.')
text = st.text_area('Enter Text Below:', height=200)
submit = st.button('Generate')
if submit:
st.subheader("Classification Results:")
labels1 = cat1.strip().split(',')
result = class1(text, candidate_labels=labels1)
cat1name = result['labels'][0]
cat1prob = result['scores'][0]
st.write('Category: {} | Probability: {:.1f}%'.format(cat1name,(cat1prob*100)))
plot_result(result['labels'][::-1][-10:], result['scores'][::-1][-10:])