""" Copyright (c) Meta Platforms, Inc. and affiliates. All rights reserved. This source code is licensed under the license found in the LICENSE file in the root directory of this source tree. """ import torch from torch.utils.data._utils.collate import default_collate def lengths_to_mask(lengths, max_len): mask = torch.arange(max_len, device=lengths.device).expand( len(lengths), max_len ) < lengths.unsqueeze(1) return mask def collate_tensors(batch): dims = batch[0].dim() max_size = [max([b.size(i) for b in batch]) for i in range(dims)] size = (len(batch),) + tuple(max_size) canvas = batch[0].new_zeros(size=size) for i, b in enumerate(batch): sub_tensor = canvas[i] for d in range(dims): sub_tensor = sub_tensor.narrow(d, 0, b.size(d)) sub_tensor.add_(b) return canvas ## social collate def collate_v2(batch): notnone_batches = [b for b in batch if b is not None] databatch = [b["inp"] for b in notnone_batches] missingbatch = [b["missing"] for b in notnone_batches] audiobatch = [b["audio"] for b in notnone_batches] lenbatch = [b["lengths"] for b in notnone_batches] alenbatch = [b["audio_lengths"] for b in notnone_batches] keyframebatch = [b["keyframes"] for b in notnone_batches] klenbatch = [b["key_lengths"] for b in notnone_batches] databatchTensor = collate_tensors(databatch) missingbatchTensor = collate_tensors(missingbatch) audiobatchTensor = collate_tensors(audiobatch) lenbatchTensor = torch.as_tensor(lenbatch) alenbatchTensor = torch.as_tensor(alenbatch) keyframeTensor = collate_tensors(keyframebatch) klenbatchTensor = torch.as_tensor(klenbatch) maskbatchTensor = ( lengths_to_mask(lenbatchTensor, databatchTensor.shape[-1]) .unsqueeze(1) .unsqueeze(1) ) # unqueeze for broadcasting motion = databatchTensor cond = { "y": { "missing": missingbatchTensor, "mask": maskbatchTensor, "lengths": lenbatchTensor, "audio": audiobatchTensor, "alengths": alenbatchTensor, "keyframes": keyframeTensor, "klengths": klenbatchTensor, } } return motion, cond def social_collate(batch): adapted_batch = [ { "inp": torch.tensor(b["motion"].T).to(torch.float32).unsqueeze(1), "lengths": b["m_length"], "audio": b["audio"] if torch.is_tensor(b["audio"]) else torch.tensor(b["audio"]).to(torch.float32), "keyframes": torch.tensor(b["keyframes"]).to(torch.float32), "key_lengths": b["k_length"], "audio_lengths": b["a_length"], "missing": torch.tensor(b["missing"]).to(torch.float32), } for b in batch ] return collate_v2(adapted_batch)