""" Copyright (c) Meta Platforms, Inc. and affiliates. All rights reserved. This source code is licensed under the license found in the LICENSE file in the root directory of this source tree. """ import cProfile as profile import functools import pstats import blobfile as bf import numpy as np import torch from torch.optim import AdamW from tqdm import tqdm import utils.logger as logger from diffusion.fp16_util import MixedPrecisionTrainer from diffusion.resample import LossAwareSampler, create_named_schedule_sampler from utils.misc import dev, load_state_dict INITIAL_LOG_LOSS_SCALE = 20.0 class TrainLoop: def __init__( self, args, train_platform, model, diffusion, data, writer, rank=0, world_size=1 ): self.args = args self.dataset = args.dataset self.train_platform = train_platform self.model = model self.diffusion = diffusion self.cond_mode = model.module.cond_mode if world_size > 1 else model.cond_mode self.data = data self.batch_size = args.batch_size self.microbatch = args.batch_size # deprecating this option self.lr = args.lr self.log_interval = args.log_interval self.save_interval = args.save_interval self.resume_checkpoint = args.resume_checkpoint self.use_fp16 = False # deprecating this option self.fp16_scale_growth = 1e-3 # deprecating this option self.weight_decay = args.weight_decay self.lr_anneal_steps = args.lr_anneal_steps self.rank = rank self.world_size = world_size self.step = 0 self.resume_step = 0 self.global_batch = self.batch_size self.num_steps = args.num_steps self.num_epochs = self.num_steps // len(self.data) + 1 chunks = list(range(self.num_steps)) num_chunks = int(self.num_steps / 10) chunks = np.array_split(chunks, num_chunks) self.chunks = np.reshape(chunks[10_000::10], (-1)) self.sync_cuda = torch.cuda.is_available() self.writer = writer self._load_and_sync_parameters() self.mp_trainer = MixedPrecisionTrainer( model=self.model, use_fp16=self.use_fp16, fp16_scale_growth=self.fp16_scale_growth, ) self.save_dir = args.save_dir self.overwrite = args.overwrite self.opt = AdamW( self.mp_trainer.master_params, lr=self.lr, weight_decay=self.weight_decay ) if self.resume_step: self._load_optimizer_state() if torch.cuda.is_available(): self.device = torch.device(f"cuda:{self.rank}") self.schedule_sampler_type = "uniform" self.schedule_sampler = create_named_schedule_sampler( self.schedule_sampler_type, diffusion ) self.eval_wrapper, self.eval_data, self.eval_gt_data = None, None, None self.use_ddp = True self.ddp_model = self.model def _load_and_sync_parameters(self): resume_checkpoint = find_resume_checkpoint() or self.resume_checkpoint if resume_checkpoint: self.resume_step = parse_resume_step_from_filename(resume_checkpoint) logger.log(f"loading model from checkpoint: {resume_checkpoint}...") self.model.load_state_dict( load_state_dict(resume_checkpoint, map_location=dev()) ) def _load_optimizer_state(self): main_checkpoint = find_resume_checkpoint() or self.resume_checkpoint opt_checkpoint = bf.join( bf.dirname(main_checkpoint), f"opt{self.resume_step:09}.pt" ) if bf.exists(opt_checkpoint): logger.log(f"loading optimizer state from checkpoint: {opt_checkpoint}") state_dict = load_state_dict(opt_checkpoint, map_location=dev()) self.opt.load_state_dict(state_dict) def _print_stats(self, logger): if (self.step % 100 == 0 and self.step > 0) and self.rank == 0: v = logger.get_current().name2val v = v["loss"] print("step[{}]: loss[{:0.5f}]".format(self.step + self.resume_step, v)) def _write_to_logger(self, logger): if (self.step % self.log_interval == 0) and self.rank == 0: for k, v in logger.get_current().name2val.items(): if k == "loss": print( "step[{}]: loss[{:0.5f}]".format( self.step + self.resume_step, v ) ) self.writer.add_scalar(f"./Train/{k}", v, self.step) if k in ["step", "samples"] or "_q" in k: continue else: self.train_platform.report_scalar( name=k, value=v, iteration=self.step, group_name="Loss" ) self.writer.add_scalar(f"./Train/{k}", v, self.step) def run_loop(self): for _ in range(self.num_epochs): if self.rank == 0: prof = profile.Profile() prof.enable() for motion, cond in tqdm(self.data, disable=(self.rank != 0)): if not ( not self.lr_anneal_steps or self.step + self.resume_step < self.lr_anneal_steps ): break motion = motion.to(self.device) cond["y"] = { key: val.to(self.device) if torch.is_tensor(val) else val for key, val in cond["y"].items() } self.run_step(motion, cond) self._print_stats(logger) self._write_to_logger(logger) if (self.step % self.save_interval == 0) and self.rank == 0: self.save() self.step += 1 if (self.step == 1000) and self.rank == 0: prof.disable() stats = pstats.Stats(prof).strip_dirs().sort_stats("cumtime") stats.print_stats(10) if not ( not self.lr_anneal_steps or self.step + self.resume_step < self.lr_anneal_steps ): break # Save the last checkpoint if it wasn't already saved. if ((self.step - 1) % self.save_interval != 0) and self.rank == 0: self.save() def run_step(self, batch, cond): self.forward_backward(batch, cond) self.mp_trainer.optimize(self.opt) self._anneal_lr() if self.rank == 0: self.log_step() def forward_backward(self, batch, cond): self.mp_trainer.zero_grad() for i in range(0, batch.shape[0], self.microbatch): # Eliminates the microbatch feature assert i == 0 assert self.microbatch == self.batch_size micro = batch micro_cond = cond last_batch = (i + self.microbatch) >= batch.shape[0] t, weights = self.schedule_sampler.sample(micro.shape[0], batch.device) compute_losses = functools.partial( self.diffusion.training_losses, self.ddp_model, micro, t, model_kwargs=micro_cond, ) if last_batch or not self.use_ddp: losses = compute_losses() else: with self.ddp_model.no_sync(): losses = compute_losses() if isinstance(self.schedule_sampler, LossAwareSampler): self.schedule_sampler.update_with_local_losses( t, losses["loss"].detach() ) loss = (losses["loss"] * weights).mean() log_loss_dict( self.diffusion, t, {k: v * weights for k, v in losses.items()} ) self.mp_trainer.backward(loss) def _anneal_lr(self): if not self.lr_anneal_steps: return frac_done = (self.step + self.resume_step) / self.lr_anneal_steps lr = self.lr * (1 - frac_done) for param_group in self.opt.param_groups: param_group["lr"] = lr def log_step(self): logger.logkv("step", self.step + self.resume_step) logger.logkv("samples", (self.step + self.resume_step + 1) * self.global_batch) def ckpt_file_name(self): return f"model{(self.step+self.resume_step):09d}.pt" def save(self): def save_checkpoint(params): state_dict = self.mp_trainer.master_params_to_state_dict(params) # Do not save CLIP weights clip_weights = [e for e in state_dict.keys() if e.startswith("clip_model.")] for e in clip_weights: del state_dict[e] logger.log(f"saving model...") filename = self.ckpt_file_name() with bf.BlobFile(bf.join(self.save_dir, filename), "wb") as f: torch.save(state_dict, f) save_checkpoint(self.mp_trainer.master_params) with bf.BlobFile( bf.join(self.save_dir, f"opt{(self.step+self.resume_step):09d}.pt"), "wb", ) as f: torch.save(self.opt.state_dict(), f) def parse_resume_step_from_filename(filename): """ Parse filenames of the form path/to/modelNNNNNN.pt, where NNNNNN is the checkpoint's number of steps. """ split = filename.split("model") if len(split) < 2: return 0 split1 = split[-1].split(".")[0] try: return int(split1) except ValueError: return 0 def get_blob_logdir(): # You can change this to be a separate path to save checkpoints to # a blobstore or some external drive. return logger.get_dir() def find_resume_checkpoint(): # On your infrastructure, you may want to override this to automatically # discover the latest checkpoint on your blob storage, etc. return None def log_loss_dict(diffusion, ts, losses): for key, values in losses.items(): logger.logkv_mean(key, values.mean().item()) # Log the quantiles (four quartiles, in particular). for sub_t, sub_loss in zip(ts.cpu().numpy(), values.detach().cpu().numpy()): quartile = int(4 * sub_t / diffusion.num_timesteps) logger.logkv_mean(f"{key}_q{quartile}", sub_loss)